Item talk:Q303339
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Modeling subsurface performance of a geothermal reservoir using machine learning", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70231484", "url": "https://pubs.usgs.gov/publication/70231484" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70231484 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3390/en15030967", "url": "https://doi.org/10.3390/en15030967" } ], "journal": { "@type": "Periodical", "name": "Energies", "volumeNumber": "15", "issueNumber": "3" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Energies" } ], "datePublished": "2022", "dateModified": "2022-05-11", "abstract": "Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells\u2014increasing or decreasing the fluid flow rates across the wells\u2014and drilling new wells at appropriate locations. The latter is expensive, time-consuming, and subject to many engineering constraints, but the former is a viable mechanism for periodic adjustment of the available fluid allocations. In this study, we describe a new approach combining reservoir modeling and machine learning to produce models that enable such a strategy. Our computational approach allows us, first, to translate sets of potential flow rates for the active wells into reservoir-wide estimates of produced energy, and second, to find optimal flow allocations among the studied sets. In our computational experiments, we utilize collections of simulations for a specific reservoir (which capture subsurface characterization and realize history matching) along with machine learning models that predict temperature and pressure timeseries for production wells. We evaluate this approach using an \u201copen-source\u201d reservoir we have constructed that captures many of the characteristics of Brady Hot Springs, a commercially operational geothermal field in Nevada, USA. Selected results from a reservoir model of Brady Hot Springs itself are presented to show successful application to an existing system. In both cases, energy predictions prove to be highly accurate: all observed prediction errors do not exceed 3.68% for temperatures and 4.75% for pressures. In a cumulative energy estimation, we observe prediction errors that are less than 4.04%. A typical reservoir simulation for Brady Hot Springs completes in approximately 4 h, whereas our machine learning models yield accurate 20-year predictions for temperatures, pressures, and produced energy in 0.9 s. This paper aims to demonstrate how the models and techniques from our study can be applied to achieve rapid exploration of controlled parameters and optimization of other geothermal reservoirs.", "description": "967, 20 p.", "publisher": { "@type": "Organization", "name": "MDPI" }, "author": [ { "@type": "Person", "name": "Johnston, Henry E.", "givenName": "Henry E.", "familyName": "Johnston", "affiliation": [ { "@type": "Organization", "name": "National Renewable Energy Lab" } ] }, { "@type": "Person", "name": "Martin, Michael J.", "givenName": "Michael J.", "familyName": "Martin", "affiliation": [ { "@type": "Organization", "name": "National Renewable Energy Lab" } ] }, { "@type": "Person", "name": "Siler, Drew L.", "givenName": "Drew L.", "familyName": "Siler", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-7540-8244", "url": "https://orcid.org/0000-0001-7540-8244" }, "affiliation": [ { "@type": "Organization", "name": "Geology, Minerals, Energy, and Geophysics Science Center", "url": "https://www.usgs.gov/centers/gmeg" } ] }, { "@type": "Person", "name": "Beckers, Koenraad F", "givenName": "Koenraad F", "familyName": "Beckers", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-8852-1323", "url": "https://orcid.org/0000-0002-8852-1323" }, "affiliation": [ { "@type": "Organization", "name": "National Renewable Energy Lab" } ] }, { "@type": "Person", "name": "Duplyakin, Dmitry", "givenName": "Dmitry", "familyName": "Duplyakin", "affiliation": [ { "@type": "Organization", "name": "National Renewable Energy Lab" } ] } ], "funder": [ { "@type": "Organization", "name": "Geology, Minerals, Energy, and Geophysics Science Center", "url": "https://www.usgs.gov/centers/gmeg" } ] }, "OpenAlex": { "_id": "https://openalex.org/w4210670220", "abstract_inverted_index": { "Geothermal": [ 0 ], "power": [ 1, 8 ], "plants": [ 2 ], "typically": [ 3 ], "show": [ 4, 197 ], "decreasing": [ 5, 23 ], "heat": [ 6 ], "and": [ 7, 42, 74, 108, 136, 148, 224, 267, 281, 296 ], "production": [ 9, 152 ], "rates": [ 10, 27, 97 ], "over": [ 11 ], "time.": [ 12 ], "Mitigation": [ 13 ], "strategies": [ 14 ], "include": [ 15 ], "optimizing": [ 16 ], "the": [ 17, 24, 29, 49, 59, 99, 116, 169, 279 ], "management": [ 18 ], "of": [ 19, 58, 94, 105, 126, 168, 171, 189, 293, 298 ], "existing": [ 20, 202 ], "wells\u2014increasing": [ 21 ], "or": [ 22 ], "fluid": [ 25, 61 ], "flow": [ 26, 96, 113 ], "across": [ 28 ], "wells\u2014and": [ 30 ], "drilling": [ 31 ], "new": [ 32, 69 ], "wells": [ 33, 101 ], "at": [ 34 ], "appropriate": [ 35 ], "locations.": [ 36 ], "The": [ 37 ], "latter": [ 38 ], "is": [ 39, 51 ], "expensive,": [ 40 ], "time-consuming,": [ 41 ], "subject": [ 43 ], "to": [ 44, 77, 91, 110, 196, 200, 210, 276, 289 ], "many": [ 45, 167 ], "engineering": [ 46 ], "constraints,": [ 47 ], "but": [ 48 ], "former": [ 50 ], "a": [ 52, 68, 83, 129, 175, 186, 229 ], "viable": [ 53 ], "mechanism": [ 54 ], "for": [ 55, 98, 128, 151, 222, 226, 246, 264 ], "periodic": [ 56 ], "adjustment": [ 57 ], "available": [ 60 ], "allocations.": [ 62 ], "In": [ 63, 119, 204, 228 ], "this": [ 64, 156 ], "study,": [ 65 ], "we": [ 66, 123, 162, 233 ], "describe": [ 67 ], "approach": [ 70, 87, 157 ], "combining": [ 71 ], "reservoir": [ 72, 131, 161, 187, 244 ], "modeling": [ 73 ], "machine": [ 75, 142, 257 ], "learning": [ 76, 143, 258 ], "produce": [ 78 ], "models": [ 79, 144, 259, 280 ], "that": [ 80, 145, 165, 237 ], "enable": [ 81 ], "such": [ 82 ], "strategy.": [ 84 ], "Our": [ 85 ], "computational": [ 86, 121 ], "allows": [ 88 ], "us,": [ 89 ], "first,": [ 90 ], "translate": [ 92 ], "sets": [ 93 ], "potential": [ 95 ], "active": [ 100 ], "into": [ 102 ], "reservoir-wide": [ 103 ], "estimates": [ 104 ], "produced": [ 106, 268 ], "energy,": [ 107 ], "second,": [ 109 ], "find": [ 111 ], "optimal": [ 112 ], "allocations": [ 114 ], "among": [ 115 ], "studied": [ 117 ], "sets.": [ 118 ], "our": [ 120, 256, 284 ], "experiments,": [ 122 ], "utilize": [ 124 ], "collections": [ 125 ], "simulations": [ 127 ], "specific": [ 130 ], "(which": [ 132 ], "capture": [ 133 ], "subsurface": [ 134 ], "characterization": [ 135 ], "realize": [ 137 ], "history": [ 138 ], "matching)": [ 139 ], "along": [ 140 ], "with": [ 141 ], "predict": [ 146 ], "temperature": [ 147 ], "pressure": [ 149 ], "timeseries": [ 150 ], "wells.": [ 153 ], "We": [ 154 ], "evaluate": [ 155 ], "using": [ 158 ], "an": [ 159, 201 ], "\u201copen-source\u201d": [ 160 ], "have": [ 163 ], "constructed": [ 164 ], "captures": [ 166 ], "characteristics": [ 170 ], "Brady": [ 172, 190, 247 ], "Hot": [ 173, 191, 248 ], "Springs,": [ 174 ], "commercially": [ 176 ], "operational": [ 177 ], "geothermal": [ 178, 300 ], "field": [ 179 ], "in": [ 180, 251, 270 ], "Nevada,": [ 181 ], "USA.": [ 182 ], "Selected": [ 183 ], "results": [ 184 ], "from": [ 185, 283 ], "model": [ 188 ], "Springs": [ 192, 249 ], "itself": [ 193 ], "are": [ 194, 238 ], "presented": [ 195 ], "successful": [ 198 ], "application": [ 199 ], "system.": [ 203 ], "both": [ 205 ], "cases,": [ 206 ], "energy": [ 207, 231, 269 ], "predictions": [ 208, 263 ], "prove": [ 209 ], "be": [ 211, 287 ], "highly": [ 212 ], "accurate:": [ 213 ], "all": [ 214 ], "observed": [ 215 ], "prediction": [ 216, 235 ], "errors": [ 217, 236 ], "do": [ 218 ], "not": [ 219 ], "exceed": [ 220 ], "3.68%": [ 221 ], "temperatures": [ 223 ], "4.75%": [ 225 ], "pressures.": [ 227 ], "cumulative": [ 230 ], "estimation,": [ 232 ], "observe": [ 234 ], "less": [ 239 ], "than": [ 240 ], "4.04%.": [ 241 ], "A": [ 242 ], "typical": [ 243 ], "simulation": [ 245 ], "completes": [ 250 ], "approximately": [ 252 ], "4": [ 253 ], "h,": [ 254 ], "whereas": [ 255 ], "yield": [ 260 ], "accurate": [ 261 ], "20-year": [ 262 ], "temperatures,": [ 265 ], "pressures,": [ 266 ], "0.9": [ 271 ], "s.": [ 272 ], "This": [ 273 ], "paper": [ 274 ], "aims": [ 275 ], "demonstrate": [ 277 ], "how": [ 278 ], "techniques": [ 282 ], "study": [ 285 ], "can": [ 286 ], "applied": [ 288 ], "achieve": [ 290 ], "rapid": [ 291 ], "exploration": [ 292 ], "controlled": [ 294 ], "parameters": [ 295 ], "optimization": [ 297 ], "other": [ 299 ], "reservoirs.": [ 301 ] }, "apc_list": { "value": 2200, "currency": "CHF", "value_usd": 2382, "provenance": "doaj" }, "apc_paid": { "value": 2200, "currency": "CHF", "value_usd": 2382, "provenance": "doaj" }, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5091156524", "display_name": "Dmitry Duplyakin", "orcid": "https://orcid.org/0000-0001-5132-0168" }, "institutions": [ { "id": "https://openalex.org/I1297288678", "display_name": "National Renewable Energy Laboratory", "ror": "https://ror.org/036266993", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1297288678", "https://openalex.org/I1330989302", "https://openalex.org/I2800842121" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Dmitry Duplyakin", "raw_affiliation_strings": [ "National Renewable Energy Laboratory, Golden, CO 80401, USA" ], "affiliations": [ { "raw_affiliation_string": "National Renewable Energy Laboratory, Golden, CO 80401, USA", "institution_ids": [ "https://openalex.org/I1297288678" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5031082371", "display_name": "Koenraad Beckers", "orcid": "https://orcid.org/0000-0002-8852-1323" }, "institutions": [ { "id": "https://openalex.org/I1297288678", "display_name": "National Renewable Energy Laboratory", "ror": "https://ror.org/036266993", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1297288678", "https://openalex.org/I1330989302", "https://openalex.org/I2800842121" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Koenraad F. Beckers", "raw_affiliation_strings": [ "National Renewable Energy Laboratory, Golden, CO 80401, USA" ], "affiliations": [ { "raw_affiliation_string": "National Renewable Energy Laboratory, Golden, CO 80401, USA", "institution_ids": [ "https://openalex.org/I1297288678" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5044713309", "display_name": "Drew L. Siler", "orcid": "https://orcid.org/0000-0001-7540-8244" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Drew L. Siler", "raw_affiliation_strings": [ "U.S. Geological Survey, Moffett Field, CA 94035, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Moffett Field, CA 94035, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5018681679", "display_name": "Michael Martin", "orcid": "https://orcid.org/0000-0002-6526-4408" }, "institutions": [ { "id": "https://openalex.org/I1297288678", "display_name": "National Renewable Energy Laboratory", "ror": "https://ror.org/036266993", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1297288678", "https://openalex.org/I1330989302", "https://openalex.org/I2800842121" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Michael J. Martin", "raw_affiliation_strings": [ "National Renewable Energy Laboratory, Golden, CO 80401, USA" ], "affiliations": [ { "raw_affiliation_string": "National Renewable Energy Laboratory, Golden, CO 80401, USA", "institution_ids": [ "https://openalex.org/I1297288678" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5086627568", "display_name": "Henry Johnston", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I1297288678", "display_name": "National Renewable Energy Laboratory", "ror": "https://ror.org/036266993", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1297288678", "https://openalex.org/I1330989302", "https://openalex.org/I2800842121" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Henry E. Johnston", "raw_affiliation_strings": [ "National Renewable Energy Laboratory, Golden, CO 80401, USA" ], "affiliations": [ { "raw_affiliation_string": "National Renewable Energy Laboratory, Golden, CO 80401, USA", "institution_ids": [ "https://openalex.org/I1297288678" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/en15030967", "pdf_url": "https://www.mdpi.com/1996-1073/15/3/967/pdf?version=1651806894", "source": { "id": "https://openalex.org/S198098182", "display_name": "Energies", "issn_l": "1996-1073", "issn": [ "1996-1073" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "biblio": { "volume": "15", "issue": "3", "first_page": "967", "last_page": "967" }, "citation_normalized_percentile": { "value": 0.999907, "is_in_top_1_percent": true, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W4210670220", "cited_by_count": 14, "cited_by_percentile_year": { "min": 95, "max": 96 }, "concepts": [ { "id": "https://openalex.org/C111766609", "wikidata": "https://www.wikidata.org/wiki/Q636340", "display_name": "Geothermal gradient", "level": 2, "score": 0.80632496 }, { "id": "https://openalex.org/C14641988", "wikidata": "https://www.wikidata.org/wiki/Q7315329", "display_name": "Reservoir modeling", "level": 2, "score": 0.6817886 }, { "id": "https://openalex.org/C183250156", "wikidata": "https://www.wikidata.org/wiki/Q5916050", "display_name": "Reservoir engineering", "level": 3, "score": 0.61767095 }, { "id": "https://openalex.org/C78762247", "wikidata": "https://www.wikidata.org/wiki/Q1273174", "display_name": "Petroleum engineering", "level": 1, "score": 0.5802194 }, { "id": "https://openalex.org/C518406490", "wikidata": "https://www.wikidata.org/wiki/Q127993", "display_name": "Geothermal energy", "level": 3, "score": 0.5468315 }, { "id": "https://openalex.org/C2778668878", "wikidata": "https://www.wikidata.org/wiki/Q6380338", "display_name": "Reservoir simulation", "level": 2, "score": 0.5127388 }, { "id": "https://openalex.org/C25197100", "wikidata": "https://www.wikidata.org/wiki/Q890886", "display_name": "Drilling", "level": 2, "score": 0.50101113 }, { "id": "https://openalex.org/C2779538338", "wikidata": "https://www.wikidata.org/wiki/Q2990590", "display_name": "Completion (oil and gas wells)", "level": 2, "score": 0.4426424 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.44257393 }, { "id": "https://openalex.org/C38349280", "wikidata": "https://www.wikidata.org/wiki/Q1434290", "display_name": "Flow (mathematics)", "level": 2, "score": 0.42216215 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 0.34171593 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 0.20416999 }, { "id": "https://openalex.org/C8058405", "wikidata": "https://www.wikidata.org/wiki/Q46255", "display_name": "Geophysics", "level": 1, "score": 0.13328263 }, { "id": "https://openalex.org/C548895740", "wikidata": "https://www.wikidata.org/wiki/Q22656", "display_name": "Petroleum", "level": 2, "score": 0.113960415 }, { "id": "https://openalex.org/C78519656", "wikidata": "https://www.wikidata.org/wiki/Q101333", "display_name": "Mechanical engineering", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C151730666", "wikidata": "https://www.wikidata.org/wiki/Q7205", "display_name": "Paleontology", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C2524010", "wikidata": "https://www.wikidata.org/wiki/Q8087", "display_name": "Geometry", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 0.0 } ], "corresponding_author_ids": [ "https://openalex.org/A5091156524" ], "corresponding_institution_ids": [ "https://openalex.org/I1297288678" ], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2024, "cited_by_count": 8 }, { "year": 2023, "cited_by_count": 3 }, { "year": 2022, "cited_by_count": 3 } ], "created_date": "2022-02-08", "datasets": [], "display_name": "Modeling Subsurface Performance of a Geothermal Reservoir Using Machine Learning", "doi": "https://doi.org/10.3390/en15030967", "fwci": 3.404, "grants": [ { "funder": "https://openalex.org/F4320306084", "funder_display_name": "U.S. Department of Energy", "award_id": "DE-FOA-0001956-1551" } ], "has_fulltext": false, "id": "https://openalex.org/W4210670220", "ids": { "openalex": "https://openalex.org/W4210670220", "doi": "https://doi.org/10.3390/en15030967" }, "indexed_in": [ "crossref", "doaj" ], "institutions_distinct_count": 2, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/reservoir-simulation", "display_name": "Reservoir Simulation", "score": 0.594581 }, { "id": "https://openalex.org/keywords/production-forecasting", "display_name": "Production Forecasting", "score": 0.540104 }, { "id": "https://openalex.org/keywords/geomechanical-modeling", "display_name": "Geomechanical Modeling", "score": 0.53915 }, { "id": "https://openalex.org/keywords/well-placement", "display_name": "Well Placement", "score": 0.535346 }, { "id": "https://openalex.org/keywords/enhanced-geothermal-systems", "display_name": "Enhanced Geothermal Systems", "score": 0.530153 } ], "language": "en", "locations": [ { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/en15030967", "pdf_url": "https://www.mdpi.com/1996-1073/15/3/967/pdf?version=1651806894", "source": { "id": "https://openalex.org/S198098182", "display_name": "Energies", "issn_l": "1996-1073", "issn": [ "1996-1073" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, { "is_oa": false, "landing_page_url": "https://doaj.org/article/f7375213c77e4b84b35a07f11325e160", "pdf_url": null, "source": { "id": "https://openalex.org/S4306401280", "display_name": "DOAJ (DOAJ: Directory of Open Access Journals)", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": null, "host_organization_name": null, "host_organization_lineage": [], "host_organization_lineage_names": [], "type": "repository" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, { "is_oa": false, "landing_page_url": "https://www.osti.gov/biblio/1842861", "pdf_url": null, "source": { "id": "https://openalex.org/S4306402487", "display_name": "OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/I139351228", "host_organization_name": "Office of Scientific and Technical Information", "host_organization_lineage": [ "https://openalex.org/I139351228" ], "host_organization_lineage_names": [ "Office of Scientific and Technical Information" ], "type": "repository" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, { "is_oa": false, "landing_page_url": "https://www.osti.gov/biblio/1845676", "pdf_url": null, "source": { "id": "https://openalex.org/S4306402487", "display_name": "OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/I139351228", "host_organization_name": "Office of Scientific and Technical Information", "host_organization_lineage": [ "https://openalex.org/I139351228" ], "host_organization_lineage_names": [ "Office of Scientific and Technical Information" ], "type": "repository" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 4, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W4210670220/ngrams", "open_access": { "is_oa": true, "oa_status": "gold", "oa_url": "https://www.mdpi.com/1996-1073/15/3/967/pdf?version=1651806894", "any_repository_has_fulltext": false }, "primary_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/en15030967", "pdf_url": "https://www.mdpi.com/1996-1073/15/3/967/pdf?version=1651806894", "source": { "id": "https://openalex.org/S198098182", "display_name": "Energies", "issn_l": "1996-1073", "issn": [ "1996-1073" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "primary_topic": { "id": "https://openalex.org/T11801", "display_name": "Advanced Techniques in Reservoir Management", "score": 0.9999, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2022-01-28", "publication_year": 2022, "referenced_works": [ "https://openalex.org/W2080827166", "https://openalex.org/W2090680837", "https://openalex.org/W2790926926", "https://openalex.org/W2889279000", "https://openalex.org/W2955681491", "https://openalex.org/W3041466434", "https://openalex.org/W3081861640", "https://openalex.org/W3088905862", "https://openalex.org/W3100789280", "https://openalex.org/W3128227151", "https://openalex.org/W3153905844", "https://openalex.org/W3160821982", "https://openalex.org/W3207511419", "https://openalex.org/W41369163", "https://openalex.org/W4287726209" ], "referenced_works_count": 15, "related_works": [ "https://openalex.org/W4390448207", "https://openalex.org/W2269853253", "https://openalex.org/W2188534328", "https://openalex.org/W2160098563", "https://openalex.org/W2080212234", "https://openalex.org/W2041496920", "https://openalex.org/W2034096346", "https://openalex.org/W2023204696", "https://openalex.org/W2014712776", "https://openalex.org/W1989461326" ], "sustainable_development_goals": [ { "display_name": "Affordable and clean energy", "score": 0.7, "id": "https://metadata.un.org/sdg/7" } ], "title": "Modeling Subsurface Performance of a Geothermal Reservoir Using Machine Learning", "topics": [ { "id": "https://openalex.org/T11801", "display_name": "Advanced Techniques in Reservoir Management", "score": 0.9999, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10635", "display_name": "Hydraulic Fracturing in Shale Gas Reservoirs", "score": 0.997, "subfield": { "id": "https://openalex.org/subfields/2210", "display_name": "Mechanical Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11225", "display_name": "Geothermal Energy Technology and Applications", "score": 0.9953, "subfield": { "id": "https://openalex.org/subfields/2105", "display_name": "Renewable Energy, Sustainability and the Environment" }, "field": { "id": "https://openalex.org/fields/21", "display_name": "Energy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-12T21:25:44.750770", "versions": [] }
}