Item talk:Q253462
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "A random forest approach for bounded outcome variables", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70211522", "url": "https://pubs.usgs.gov/publication/70211522" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70211522 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1080/10618600.2019.1705310", "url": "https://doi.org/10.1080/10618600.2019.1705310" } ], "journal": { "@type": "Periodical", "name": "Journal of Computational and Graphical Statistics", "volumeNumber": "29", "issueNumber": "3" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Journal of Computational and Graphical Statistics" } ], "datePublished": "2020", "dateModified": "2020-10-12", "abstract": "Random forests have become an established tool for classication and regres-\nsion, in particular in high-dimensional settings and in the presence of non-additive\npredictor-response relationships. For bounded outcome variables restricted to the\nunit interval, however, classical modeling approaches based on mean squared error\nloss may severely suer as they do not account for heteroscedasticity in the data.\nTo address this issue, we propose a random forest approach for relating a beta dis-\ntributed outcome to a set of explanatory variables. Our approach explicitly makes\nuse of the likelihood function of the beta distribution for the selection of splits dur-\ning the tree-building procedure. In each iteration of the tree-building algorithm it\nchooses one explanatory variable in combination with a split point that maximizes\nthe log-likelihood function of the beta distribution with the parameter estimates de-\nrived from the nodes of the currently built tree. Results of several simulation studies\nand an application using data from the U.S.A. National Lakes Assessment Survey\ndemonstrate the properties and usefulness of the method, in particular when com-\npared to random forest approaches based on mean squared error loss and parametric\nregression models.", "description": "20 p.", "publisher": { "@type": "Organization", "name": "Taylor and Francis" }, "author": [ { "@type": "Person", "name": "Weinhold, Leonie", "givenName": "Leonie", "familyName": "Weinhold", "affiliation": [ { "@type": "Organization", "name": "University of Bonn, Germany" } ] }, { "@type": "Person", "name": "Schmid, Matthias", "givenName": "Matthias", "familyName": "Schmid", "affiliation": [ { "@type": "Organization", "name": "University of Bonn, Germany" } ] }, { "@type": "Person", "name": "Mitchell, Richard M.", "givenName": "Richard M.", "familyName": "Mitchell", "affiliation": [ { "@type": "Organization", "name": "USEPA, Washington D.C." } ] }, { "@type": "Person", "name": "Maloney, Kelly O. kmaloney@usgs.gov", "givenName": "Kelly O.", "familyName": "Maloney", "email": "kmaloney@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-2304-0745", "url": "https://orcid.org/0000-0003-2304-0745" }, "affiliation": [ { "@type": "Organization", "name": "Leetown Science Center", "url": "https://www.usgs.gov/centers/eesc" } ] }, { "@type": "Person", "name": "Wright, Marvin N.", "givenName": "Marvin N.", "familyName": "Wright", "affiliation": [ { "@type": "Organization", "name": "Leibniz Institute for Prevention Research and Epidemiology, Germany" } ] }, { "@type": "Person", "name": "Berger, Moritz", "givenName": "Moritz", "familyName": "Berger", "affiliation": [ { "@type": "Organization", "name": "University of Bonn, Germany" } ] } ], "funder": [ { "@type": "Organization", "name": "Leetown Science Center", "url": "https://www.usgs.gov/centers/eesc" } ] }, "OpenAlex": { "abstract_inverted_index": { "Random": [ 0 ], "forests": [ 1 ], "have": [ 2 ], "become": [ 3 ], "an": [ 4, 146 ], "established": [ 5 ], "tool": [ 6 ], "for": [ 7, 51, 66, 91, 185 ], "classification": [ 8 ], "and": [ 9, 16, 145, 160, 179 ], "regression,": [ 10 ], "in": [ 11, 13, 17, 53, 112, 165 ], "particular": [ 12, 166 ], "high-dimensional": [ 14 ], "settings": [ 15 ], "the": [ 18, 30, 54, 84, 88, 92, 97, 104, 120, 124, 128, 133, 136, 151, 158, 163 ], "presence": [ 19 ], "of": [ 20, 75, 83, 87, 94, 103, 123, 135, 141, 162 ], "nonadditive": [ 21 ], "predictor-response": [ 22 ], "relationships.": [ 23 ], "For": [ 24 ], "bounded": [ 25 ], "outcome": [ 26, 71 ], "variables": [ 27 ], "restricted": [ 28 ], "to": [ 29, 72, 169 ], "unit": [ 31 ], "interval,": [ 32 ], "however,": [ 33 ], "classical": [ 34 ], "modeling": [ 35 ], "approaches": [ 36, 172 ], "based": [ 37, 173 ], "on": [ 38, 174 ], "mean": [ 39, 175 ], "squared": [ 40, 176 ], "error": [ 41, 177 ], "loss": [ 42, 178 ], "may": [ 43 ], "severely": [ 44 ], "suffer": [ 45 ], "as": [ 46 ], "they": [ 47 ], "do": [ 48 ], "not": [ 49 ], "account": [ 50 ], "heteroscedasticity": [ 52 ], "data.": [ 55 ], "To": [ 56 ], "address": [ 57 ], "this": [ 58, 186 ], "issue,": [ 59 ], "we": [ 60 ], "propose": [ 61 ], "a": [ 62, 68, 73, 115 ], "random": [ 63, 170 ], "forest": [ 64, 171 ], "approach": [ 65, 79 ], "relating": [ 67 ], "beta": [ 69, 89, 125 ], "distributed": [ 70 ], "set": [ 74 ], "explanatory": [ 76, 110 ], "variables.": [ 77 ], "Our": [ 78 ], "explicitly": [ 80 ], "makes": [ 81 ], "use": [ 82 ], "likelihood": [ 85 ], "function": [ 86, 122 ], "distribution": [ 90, 126 ], "selection": [ 93 ], "splits": [ 95 ], "during": [ 96 ], "tree-building": [ 98, 105 ], "procedure.": [ 99 ], "In": [ 100 ], "each": [ 101 ], "iteration": [ 102 ], "algorithm": [ 106 ], "it": [ 107 ], "chooses": [ 108 ], "one": [ 109 ], "variable": [ 111 ], "combination": [ 113 ], "with": [ 114, 127 ], "split": [ 116 ], "point": [ 117 ], "that": [ 118 ], "maximizes": [ 119 ], "log-likelihood": [ 121 ], "parameter": [ 129 ], "estimates": [ 130 ], "derived": [ 131 ], "from": [ 132, 150 ], "nodes": [ 134 ], "currently": [ 137 ], "built": [ 138 ], "tree.": [ 139 ], "Results": [ 140 ], "several": [ 142 ], "simulation": [ 143 ], "studies": [ 144 ], "application": [ 147 ], "using": [ 148 ], "data": [ 149 ], "U.S.A.": [ 152 ], "National": [ 153 ], "Lakes": [ 154 ], "Assessment": [ 155 ], "Survey": [ 156 ], "demonstrate": [ 157 ], "properties": [ 159 ], "usefulness": [ 161 ], "method,": [ 164 ], "when": [ 167 ], "compared": [ 168 ], "parametric": [ 180 ], "regression": [ 181 ], "models.": [ 182 ], "Supplementary": [ 183 ], "materials": [ 184 ], "article": [ 187 ], "are": [ 188 ], "available": [ 189 ], "online.": [ 190 ] }, "apc_list": null, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5015083021", "display_name": "Leonie Weinhold", "orcid": "https://orcid.org/0000-0002-9194-9427" }, "institutions": [ { "id": "https://openalex.org/I2799391451", "display_name": "University Hospital Bonn", "ror": "https://ror.org/01xnwqx93", "country_code": "DE", "type": "healthcare", "lineage": [ "https://openalex.org/I2799391451" ] }, { "id": "https://openalex.org/I4210099379", "display_name": "Zimmer Biomet (Germany)", "ror": "https://ror.org/016731f38", "country_code": "DE", "type": "company", "lineage": [ "https://openalex.org/I4210099379", "https://openalex.org/I4210115238" ] } ], "countries": [ "DE" ], "is_corresponding": false, "raw_author_name": "Leonie Weinhold", "raw_affiliation_strings": [ "Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany." ], "affiliations": [ { "raw_affiliation_string": "Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany.", "institution_ids": [ "https://openalex.org/I2799391451", "https://openalex.org/I4210099379" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5031620559", "display_name": "Matthias Schmid", "orcid": "https://orcid.org/0000-0002-0788-0317" }, "institutions": [ { "id": "https://openalex.org/I2799391451", "display_name": "University Hospital Bonn", "ror": "https://ror.org/01xnwqx93", "country_code": "DE", "type": "healthcare", "lineage": [ "https://openalex.org/I2799391451" ] }, { "id": "https://openalex.org/I4210099379", "display_name": "Zimmer Biomet (Germany)", "ror": "https://ror.org/016731f38", "country_code": "DE", "type": "company", "lineage": [ "https://openalex.org/I4210099379", "https://openalex.org/I4210115238" ] } ], "countries": [ "DE" ], "is_corresponding": false, "raw_author_name": "Matthias Schmid", "raw_affiliation_strings": [ "Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany." ], "affiliations": [ { "raw_affiliation_string": "Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany.", "institution_ids": [ "https://openalex.org/I2799391451", "https://openalex.org/I4210099379" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5071067832", "display_name": "Richard Mitchell", "orcid": "https://orcid.org/0000-0003-0051-7336" }, "institutions": [ { "id": "https://openalex.org/I1302368450", "display_name": "Environmental Protection Agency", "ror": "https://ror.org/03tns0030", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1302368450" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Richard Mitchell", "raw_affiliation_strings": [ "USEPA Office of Wetlands, Oceans, and Watersheds, Washington, DC." ], "affiliations": [ { "raw_affiliation_string": "USEPA Office of Wetlands, Oceans, and Watersheds, Washington, DC.", "institution_ids": [ "https://openalex.org/I1302368450" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5017149910", "display_name": "Kelly O. Maloney", "orcid": "https://orcid.org/0000-0003-2304-0745" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Kelly O. Maloney", "raw_affiliation_strings": [ "U.S. Geological Survey, Leetown Science Center, Kearneysville, WV." ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Leetown Science Center, Kearneysville, WV.", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5087084229", "display_name": "Marvin Wright", "orcid": "https://orcid.org/0000-0002-8542-6291" }, "institutions": [ { "id": "https://openalex.org/I4210113759", "display_name": "Leibniz Institute for Prevention Research and Epidemiology - BIPS", "ror": "https://ror.org/02c22vc57", "country_code": "DE", "type": "facility", "lineage": [ "https://openalex.org/I315704651", "https://openalex.org/I4210113759" ] } ], "countries": [ "DE" ], "is_corresponding": false, "raw_author_name": "Marvin N. Wright", "raw_affiliation_strings": [ "Leibniz Institute for Prevention Research and Epidemiology \u2013 BIPS, Bremen, Germany." ], "affiliations": [ { "raw_affiliation_string": "Leibniz Institute for Prevention Research and Epidemiology \u2013 BIPS, Bremen, Germany.", "institution_ids": [ "https://openalex.org/I4210113759" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5080177315", "display_name": "Moritz Berger", "orcid": "https://orcid.org/0000-0002-0656-5286" }, "institutions": [ { "id": "https://openalex.org/I2799391451", "display_name": "University Hospital Bonn", "ror": "https://ror.org/01xnwqx93", "country_code": "DE", "type": "healthcare", "lineage": [ "https://openalex.org/I2799391451" ] }, { "id": "https://openalex.org/I4210099379", "display_name": "Zimmer Biomet (Germany)", "ror": "https://ror.org/016731f38", "country_code": "DE", "type": "company", "lineage": [ "https://openalex.org/I4210099379", "https://openalex.org/I4210115238" ] } ], "countries": [ "DE" ], "is_corresponding": false, "raw_author_name": "Moritz Berger", "raw_affiliation_strings": [ "Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany." ], "affiliations": [ { "raw_affiliation_string": "Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany.", "institution_ids": [ "https://openalex.org/I2799391451", "https://openalex.org/I4210099379" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193767", "pdf_url": null, "source": { "id": "https://openalex.org/S2764455111", "display_name": "PubMed Central", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/I1299303238", "host_organization_name": "National Institutes of Health", "host_organization_lineage": [ "https://openalex.org/I1299303238" ], "host_organization_lineage_names": [ "National Institutes of Health" ], "type": "repository" }, "license": null, "license_id": null, "version": "acceptedVersion", "is_accepted": true, "is_published": false }, "biblio": { "volume": "29", "issue": "3", "first_page": "639", "last_page": "658" }, "citation_normalized_percentile": { "value": 0.777948, "is_in_top_1_percent": false, "is_in_top_10_percent": false }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2995780113", "cited_by_count": 8, "cited_by_percentile_year": { "min": 85, "max": 87 }, "concepts": [ { "id": "https://openalex.org/C101104100", "wikidata": "https://www.wikidata.org/wiki/Q1063540", "display_name": "Heteroscedasticity", "level": 2, "score": 0.7124466 }, { "id": "https://openalex.org/C169258074", "wikidata": "https://www.wikidata.org/wiki/Q245748", "display_name": "Random forest", "level": 2, "score": 0.6389484 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 0.56341875 }, { "id": "https://openalex.org/C148220186", "wikidata": "https://www.wikidata.org/wiki/Q7111912", "display_name": "Outcome (game theory)", "level": 2, "score": 0.5383637 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 0.5380018 }, { "id": "https://openalex.org/C139945424", "wikidata": "https://www.wikidata.org/wiki/Q1940696", "display_name": "Mean squared error", "level": 2, "score": 0.4553081 }, { "id": "https://openalex.org/C117251300", "wikidata": "https://www.wikidata.org/wiki/Q1849855", "display_name": "Parametric statistics", "level": 2, "score": 0.44711396 }, { "id": "https://openalex.org/C122123141", "wikidata": "https://www.wikidata.org/wiki/Q176623", "display_name": "Random variable", "level": 2, "score": 0.4433608 }, { "id": "https://openalex.org/C103402496", "wikidata": "https://www.wikidata.org/wiki/Q1106171", "display_name": "Prediction interval", "level": 2, "score": 0.43600166 }, { "id": "https://openalex.org/C113174947", "wikidata": "https://www.wikidata.org/wiki/Q2859736", "display_name": "Tree (set theory)", "level": 2, "score": 0.4188854 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.37871397 }, { "id": "https://openalex.org/C149782125", "wikidata": "https://www.wikidata.org/wiki/Q160039", "display_name": "Econometrics", "level": 1, "score": 0.36247453 }, { "id": "https://openalex.org/C119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 0.21603692 }, { "id": "https://openalex.org/C134306372", "wikidata": "https://www.wikidata.org/wiki/Q7754", "display_name": "Mathematical analysis", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C144237770", "wikidata": "https://www.wikidata.org/wiki/Q747534", "display_name": "Mathematical economics", "level": 1, "score": 0.0 } ], "corresponding_author_ids": [], "corresponding_institution_ids": [], "countries_distinct_count": 2, "counts_by_year": [ { "year": 2024, "cited_by_count": 3 }, { "year": 2023, "cited_by_count": 1 }, { "year": 2022, "cited_by_count": 3 }, { "year": 2021, "cited_by_count": 1 } ], "created_date": "2019-12-26", "datasets": [ "https://openalex.org/W4394160164", "https://openalex.org/W4394184193" ], "display_name": "A Random Forest Approach for Bounded Outcome Variables", "doi": "https://doi.org/10.1080/10618600.2019.1705310", "fwci": 0.411, "grants": [], "has_fulltext": false, "id": "https://openalex.org/W2995780113", "ids": { "openalex": "https://openalex.org/W2995780113", "doi": "https://doi.org/10.1080/10618600.2019.1705310", "mag": "2995780113", "pmid": "https://pubmed.ncbi.nlm.nih.gov/34121830", "pmcid": "https://www.ncbi.nlm.nih.gov/pmc/articles/8193767" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 5, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/rainfall-runoff-modeling", "display_name": "Rainfall-Runoff Modeling", "score": 0.537472 }, { "id": "https://openalex.org/keywords/model-evaluation", "display_name": "Model Evaluation", "score": 0.523413 }, { "id": "https://openalex.org/keywords/prediction-interval", "display_name": "Prediction interval", "score": 0.43600166 }, { "id": "https://openalex.org/keywords/tree", "display_name": "Tree (set theory)", "score": 0.4188854 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.1080/10618600.2019.1705310", "pdf_url": null, "source": { "id": "https://openalex.org/S76159266", "display_name": "Journal of Computational and Graphical Statistics", "issn_l": "1061-8600", "issn": [ "1061-8600", "1537-2715" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320547", "host_organization_name": "Taylor & Francis", "host_organization_lineage": [ "https://openalex.org/P4310320547" ], "host_organization_lineage_names": [ "Taylor & Francis" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, { "is_oa": true, "landing_page_url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193767", "pdf_url": null, "source": { "id": "https://openalex.org/S2764455111", "display_name": "PubMed Central", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/I1299303238", "host_organization_name": "National Institutes of Health", "host_organization_lineage": [ "https://openalex.org/I1299303238" ], "host_organization_lineage_names": [ "National Institutes of Health" ], "type": "repository" }, "license": null, "license_id": null, "version": "acceptedVersion", "is_accepted": true, "is_published": false } ], "locations_count": 2, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W2995780113/ngrams", "open_access": { "is_oa": true, "oa_status": "green", "oa_url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193767", "any_repository_has_fulltext": true }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.1080/10618600.2019.1705310", "pdf_url": null, "source": { "id": "https://openalex.org/S76159266", "display_name": "Journal of Computational and Graphical Statistics", "issn_l": "1061-8600", "issn": [ "1061-8600", "1537-2715" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320547", "host_organization_name": "Taylor & Francis", "host_organization_lineage": [ "https://openalex.org/P4310320547" ], "host_organization_lineage_names": [ "Taylor & Francis" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "score": 0.9995, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2020-02-07", "publication_year": 2020, "referenced_works": [ "https://openalex.org/W129305155", "https://openalex.org/W1543780680", "https://openalex.org/W1748932423", "https://openalex.org/W1773422510", "https://openalex.org/W1875061881", "https://openalex.org/W1964551960", "https://openalex.org/W1998328693", "https://openalex.org/W1998643818", "https://openalex.org/W2018480328", "https://openalex.org/W2018560289", "https://openalex.org/W2022501109", "https://openalex.org/W2025720061", "https://openalex.org/W2034777510", "https://openalex.org/W2040490772", "https://openalex.org/W2045803758", "https://openalex.org/W2055992413", "https://openalex.org/W2098827594", "https://openalex.org/W2102636708", "https://openalex.org/W2111940674", "https://openalex.org/W2125360150", "https://openalex.org/W2127170577", "https://openalex.org/W2133121527", "https://openalex.org/W2134836760", "https://openalex.org/W2139086914", "https://openalex.org/W2144666171", "https://openalex.org/W2154065358", "https://openalex.org/W2168728176", "https://openalex.org/W2515727304", "https://openalex.org/W2601236146", "https://openalex.org/W2748085014", "https://openalex.org/W2783504177", "https://openalex.org/W2787894218", "https://openalex.org/W2802643674", "https://openalex.org/W2884900899", "https://openalex.org/W2898815507", "https://openalex.org/W2902985749", "https://openalex.org/W2903496424", "https://openalex.org/W2911964244", "https://openalex.org/W2968627562", "https://openalex.org/W3102027041", "https://openalex.org/W3102708157", "https://openalex.org/W4205834855", "https://openalex.org/W4299798163" ], "referenced_works_count": 43, "related_works": [ "https://openalex.org/W4210613793", "https://openalex.org/W4205265935", "https://openalex.org/W3124109721", "https://openalex.org/W2322414326", "https://openalex.org/W2155596820", "https://openalex.org/W2122520405", "https://openalex.org/W2108677674", "https://openalex.org/W2086095931", "https://openalex.org/W2082929752", "https://openalex.org/W2029240391" ], "sustainable_development_goals": [ { "display_name": "Life on land", "score": 0.59, "id": "https://metadata.un.org/sdg/15" } ], "title": "A Random Forest Approach for Bounded Outcome Variables", "topics": [ { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "score": 0.9995, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11490", "display_name": "Hydrological Modeling using Machine Learning Methods", "score": 0.9961, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11311", "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "score": 0.9957, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-09T00:38:00.613565", "versions": [] }
}