Item talk:Q245988
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Crop classification modelling using remote sensing and environmental data in the Greater Platte River Basin, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70038147", "url": "https://pubs.usgs.gov/publication/70038147" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70038147 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1080/01431161.2012.680617", "url": "https://doi.org/10.1080/01431161.2012.680617" } ], "journal": { "@type": "Periodical", "name": "International Journal of Remote Sensing", "volumeNumber": "33", "issueNumber": "19" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "International Journal of Remote Sensing" } ], "datePublished": "2012", "dateModified": "2017-04-06", "abstract": "With an ever expanding population, potential climate variability and an increasing demand for agriculture-based alternative fuels, accurate agricultural land-cover classification for specific crops and their spatial distributions are becoming critical to researchers, policymakers, land managers and farmers. It is important to ensure the sustainability of these and other land uses and to quantify the net impacts that certain management practices have on the environment. Although other quality crop classification products are often available, temporal and spatial coverage gaps can create complications for certain regional or time-specific applications. Our goal was to develop a model capable of classifying major crops in the Greater Platte River Basin (GPRB) for the post-2000 era to supplement existing crop classification products. This study identifies annual spatial distributions and area totals of corn, soybeans, wheat and other crops across the GPRB from 2000 to 2009. We developed a regression tree classification model based on 2.5 million training data points derived from the National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) in relation to a variety of other relevant input environmental variables. The primary input variables included the weekly 250\u00a0m US Geological Survey Earth Observing System Moderate Resolution Imaging Spectroradiometer normalized differential vegetation index, average long-term growing season temperature, average long-term growing season precipitation and yearly start of growing season. An overall model accuracy rating of 78% was achieved for a test sample of roughly 215 000 independent points that were withheld from model training. Ten 250\u00a0m resolution annual crop classification maps were produced and evaluated for the GPRB region, one for each year from 2000 to 2009. In addition to the model accuracy assessment, our validation focused on spatial distribution and county-level crop area totals in comparison with the NASS CDL and county statistics from the US Department of Agriculture (USDA) Census of Agriculture. The results showed that our model produced crop classification maps that closely resembled the spatial distribution trends observed in the NASS CDL and exhibited a close linear agreement with county-by-county crop area totals from USDA census data (R 2 = 0.90).", "description": "15 p.", "publisher": { "@type": "Organization", "name": "Taylor and Francis" }, "author": [ { "@type": "Person", "name": "Wylie, Bruce K. wylie@usgs.gov", "givenName": "Bruce K.", "familyName": "Wylie", "email": "wylie@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-7374-1083", "url": "https://orcid.org/0000-0002-7374-1083" }, "affiliation": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" }, { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center (Geography)", "url": "https://www.usgs.gov/centers/eros" } ] }, { "@type": "Person", "name": "Tieszen, Larry L. tieszen@usgs.gov", "givenName": "Larry L.", "familyName": "Tieszen", "email": "tieszen@usgs.gov" }, { "@type": "Person", "name": "Howard, Daniel M.", "givenName": "Daniel M.", "familyName": "Howard", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-7563-7538", "url": "https://orcid.org/0000-0002-7563-7538" } } ], "funder": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "UNITED STATES", "url": "https://geonames.org/4074035" }, { "@type": "Place", "additionalType": "unknown", "name": "Greater Platte River Basin" } ] }, "OpenAlex": { "abstract_inverted_index": { "With": [ 0 ], "an": [ 1, 9 ], "ever": [ 2 ], "expanding": [ 3 ], "population,": [ 4 ], "potential": [ 5 ], "climate": [ 6 ], "variability": [ 7 ], "and": [ 8, 23, 35, 46, 50, 74, 122, 129, 209, 250, 277, 288, 323 ], "increasing": [ 10 ], "demand": [ 11 ], "for": [ 12, 20, 81, 106, 224, 252, 257 ], "agriculture-based": [ 13 ], "alternative": [ 14 ], "fuels,": [ 15 ], "accurate": [ 16 ], "agricultural": [ 17 ], "land-cover": [ 18 ], "classification": [ 19, 68, 114, 144, 246, 309 ], "specific": [ 21 ], "crops": [ 22, 98, 131 ], "their": [ 24 ], "spatial": [ 25, 75, 120, 275, 315 ], "distributions": [ 26, 121 ], "are": [ 27, 70 ], "becoming": [ 28 ], "critical": [ 29 ], "to": [ 30, 40, 51, 90, 110, 137, 167, 262, 266 ], "researchers,": [ 31 ], "policymakers,": [ 32 ], "land": [ 33, 48 ], "managers": [ 34 ], "farmers.": [ 36 ], "It": [ 37 ], "is": [ 38 ], "important": [ 39 ], "ensure": [ 41 ], "the": [ 42, 53, 62, 100, 107, 133, 155, 181, 253, 267, 285, 292, 314, 320 ], "sustainability": [ 43 ], "of": [ 44, 95, 125, 170, 212, 220, 228, 295, 299 ], "these": [ 45 ], "other": [ 47, 65, 130, 171 ], "uses": [ 49 ], "quantify": [ 52 ], "net": [ 54 ], "impacts": [ 55 ], "that": [ 56, 234, 304, 311 ], "certain": [ 57, 82 ], "management": [ 58 ], "practices": [ 59 ], "have": [ 60 ], "on": [ 61, 147, 274 ], "environment.": [ 63 ], "Although": [ 64 ], "quality": [ 66 ], "crop": [ 67, 113, 245, 279, 308, 331 ], "products": [ 69 ], "often": [ 71 ], "available,": [ 72 ], "temporal": [ 73 ], "coverage": [ 76 ], "gaps": [ 77 ], "can": [ 78 ], "create": [ 79 ], "complications": [ 80 ], "regional": [ 83 ], "or": [ 84 ], "time-specific": [ 85 ], "applications.": [ 86 ], "Our": [ 87 ], "goal": [ 88 ], "was": [ 89, 222 ], "develop": [ 91 ], "a": [ 92, 141, 168, 225, 325 ], "model": [ 93, 145, 217, 238, 268, 306 ], "capable": [ 94 ], "classifying": [ 96 ], "major": [ 97 ], "in": [ 99, 165, 282, 319 ], "Greater": [ 101 ], "Platte": [ 102 ], "River": [ 103 ], "Basin": [ 104 ], "(GPRB)": [ 105 ], "post-2000": [ 108 ], "era": [ 109 ], "supplement": [ 111 ], "existing": [ 112 ], "products.": [ 115 ], "This": [ 116 ], "study": [ 117 ], "identifies": [ 118 ], "annual": [ 119, 244 ], "area": [ 123, 280, 332 ], "totals": [ 124, 281, 333 ], "corn,": [ 126 ], "soybeans,": [ 127 ], "wheat": [ 128 ], "across": [ 132 ], "GPRB": [ 134, 254 ], "from": [ 135, 154, 237, 260, 291, 334 ], "2000": [ 136, 261 ], "2009.": [ 138, 263 ], "We": [ 139 ], "developed": [ 140 ], "regression": [ 142 ], "tree": [ 143 ], "based": [ 146 ], "2.5": [ 148 ], "million": [ 149 ], "training": [ 150 ], "data": [ 151, 337 ], "points": [ 152, 233 ], "derived": [ 153 ], "National": [ 156 ], "Agricultural": [ 157 ], "Statistics": [ 158 ], "Service": [ 159 ], "(NASS)": [ 160 ], "Cropland": [ 161 ], "Data": [ 162 ], "Layer": [ 163 ], "(CDL)": [ 164 ], "relation": [ 166 ], "variety": [ 169 ], "relevant": [ 172 ], "input": [ 173, 178 ], "environmental": [ 174 ], "variables.": [ 175 ], "The": [ 176, 301 ], "primary": [ 177 ], "variables": [ 179 ], "included": [ 180 ], "weekly": [ 182 ], "250": [ 183, 241 ], "m": [ 184, 242 ], "US": [ 185, 293 ], "Geological": [ 186 ], "Survey": [ 187 ], "Earth": [ 188 ], "Observing": [ 189 ], "System": [ 190 ], "Moderate": [ 191 ], "Resolution": [ 192 ], "Imaging": [ 193 ], "Spectroradiometer": [ 194 ], "normalized": [ 195 ], "differential": [ 196 ], "vegetation": [ 197 ], "index,": [ 198 ], "average": [ 199, 204 ], "long-term": [ 200, 205 ], "growing": [ 201, 206, 213 ], "season": [ 202, 207 ], "temperature,": [ 203 ], "precipitation": [ 208 ], "yearly": [ 210 ], "start": [ 211 ], "season.": [ 214 ], "An": [ 215 ], "overall": [ 216 ], "accuracy": [ 218, 269 ], "rating": [ 219 ], "78%": [ 221 ], "achieved": [ 223 ], "test": [ 226 ], "sample": [ 227 ], "roughly": [ 229 ], "215": [ 230 ], "000": [ 231 ], "independent": [ 232 ], "were": [ 235, 248 ], "withheld": [ 236 ], "training.": [ 239 ], "Ten": [ 240 ], "resolution": [ 243 ], "maps": [ 247, 310 ], "produced": [ 249, 307 ], "evaluated": [ 251 ], "region,": [ 255 ], "one": [ 256 ], "each": [ 258 ], "year": [ 259 ], "In": [ 264 ], "addition": [ 265 ], "assessment,": [ 270 ], "our": [ 271, 305 ], "validation": [ 272 ], "focused": [ 273 ], "distribution": [ 276, 316 ], "county-level": [ 278 ], "comparison": [ 283 ], "with": [ 284, 329 ], "NASS": [ 286, 321 ], "CDL": [ 287, 322 ], "county": [ 289 ], "statistics": [ 290 ], "Department": [ 294 ], "Agriculture": [ 296 ], "(USDA)": [ 297 ], "Census": [ 298 ], "Agriculture.": [ 300 ], "results": [ 302 ], "showed": [ 303 ], "closely": [ 312 ], "resembled": [ 313 ], "trends": [ 317 ], "observed": [ 318 ], "exhibited": [ 324 ], "close": [ 326 ], "linear": [ 327 ], "agreement": [ 328 ], "county-by-county": [ 330 ], "USDA": [ 335 ], "census": [ 336 ], "(R": [ 338 ], "2": [ 339 ], "=": [ 340 ], "0.90).": [ 341 ] }, "apc_list": null, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5003503362", "display_name": "Daniel M. Howard", "orcid": "https://orcid.org/0000-0002-7563-7538" }, "institutions": [ { "id": "https://openalex.org/I4210112445", "display_name": "Stinger Ghaffarian Technologies (United States)", "ror": "https://ror.org/02133fc38", "country_code": "US", "type": "company", "lineage": [ "https://openalex.org/I4210112445" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Daniel M. Howard", "raw_affiliation_strings": [ "Stinger Ghaffarian Technologies (SGT), Contractor to USGS EROS Center , Sioux Falls , SD , 57198 , USA" ], "affiliations": [ { "raw_affiliation_string": "Stinger Ghaffarian Technologies (SGT), Contractor to USGS EROS Center , Sioux Falls , SD , 57198 , USA", "institution_ids": [ "https://openalex.org/I4210112445" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5005345378", "display_name": "Bruce K. Wylie", "orcid": "https://orcid.org/0000-0002-7374-1083" }, "institutions": [ { "id": "https://openalex.org/I22555787", "display_name": "University of Sioux Falls", "ror": "https://ror.org/05ndpad60", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I22555787" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Bruce K. Wylie", "raw_affiliation_strings": [ "USGS EROS Center , Sioux Falls , SD , 57198 , USA" ], "affiliations": [ { "raw_affiliation_string": "USGS EROS Center , Sioux Falls , SD , 57198 , USA", "institution_ids": [ "https://openalex.org/I22555787" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5025752366", "display_name": "Larry L. Tieszen", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I22555787", "display_name": "University of Sioux Falls", "ror": "https://ror.org/05ndpad60", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I22555787" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Larry L. Tieszen", "raw_affiliation_strings": [ "USGS EROS Center , Sioux Falls , SD , 57198 , USA" ], "affiliations": [ { "raw_affiliation_string": "USGS EROS Center , Sioux Falls , SD , 57198 , USA", "institution_ids": [ "https://openalex.org/I22555787" ] } ] } ], "best_oa_location": null, "biblio": { "volume": "33", "issue": "19", "first_page": "6094", "last_page": "6108" }, "citation_normalized_percentile": { "value": 0.999952, "is_in_top_1_percent": true, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2065069954", "cited_by_count": 35, "cited_by_percentile_year": { "min": 93, "max": 94 }, "concepts": [ { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.6145892 }, { "id": "https://openalex.org/C2777007095", "wikidata": "https://www.wikidata.org/wiki/Q676840", "display_name": "Moderate-resolution imaging spectroradiometer", "level": 3, "score": 0.52190876 }, { "id": "https://openalex.org/C2780648208", "wikidata": "https://www.wikidata.org/wiki/Q3001793", "display_name": "Land cover", "level": 3, "score": 0.5208193 }, { "id": "https://openalex.org/C118518473", "wikidata": "https://www.wikidata.org/wiki/Q11451", "display_name": "Agriculture", "level": 2, "score": 0.51521903 }, { "id": "https://openalex.org/C137660486", "wikidata": "https://www.wikidata.org/wiki/Q732240", "display_name": "Growing season", "level": 2, "score": 0.45997027 }, { "id": "https://openalex.org/C66204764", "wikidata": "https://www.wikidata.org/wiki/Q219416", "display_name": "Sustainability", "level": 2, "score": 0.42415202 }, { "id": "https://openalex.org/C2908647359", "wikidata": "https://www.wikidata.org/wiki/Q2625603", "display_name": "Population", "level": 2, "score": 0.42399782 }, { "id": "https://openalex.org/C4792198", "wikidata": "https://www.wikidata.org/wiki/Q1165944", "display_name": "Land use", "level": 2, "score": 0.4139405 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 0.31978238 }, { "id": "https://openalex.org/C19269812", "wikidata": "https://www.wikidata.org/wiki/Q26540", "display_name": "Satellite", "level": 2, "score": 0.13186613 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 0.12166679 }, { "id": "https://openalex.org/C149923435", "wikidata": "https://www.wikidata.org/wiki/Q37732", "display_name": "Demography", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C144024400", "wikidata": "https://www.wikidata.org/wiki/Q21201", "display_name": "Sociology", "level": 0, "score": 0.0 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 0.0 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 0.0 }, { "id": "https://openalex.org/C146978453", "wikidata": "https://www.wikidata.org/wiki/Q3798668", "display_name": "Aerospace engineering", "level": 1, "score": 0.0 } ], "corresponding_author_ids": [], "corresponding_institution_ids": [], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2024, "cited_by_count": 2 }, { "year": 2023, "cited_by_count": 2 }, { "year": 2022, "cited_by_count": 3 }, { "year": 2021, "cited_by_count": 2 }, { "year": 2020, "cited_by_count": 4 }, { "year": 2019, "cited_by_count": 3 }, { "year": 2018, "cited_by_count": 1 }, { "year": 2017, "cited_by_count": 2 }, { "year": 2016, "cited_by_count": 3 }, { "year": 2015, "cited_by_count": 3 }, { "year": 2014, "cited_by_count": 6 }, { "year": 2013, "cited_by_count": 2 }, { "year": 2012, "cited_by_count": 1 } ], "created_date": "2016-06-24", "datasets": [], "display_name": "Crop classification modelling using remote sensing and environmental data in the Greater Platte River Basin, USA", "doi": "https://doi.org/10.1080/01431161.2012.680617", "fulltext_origin": "ngrams", "fwci": 2.978, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W2065069954", "ids": { "openalex": "https://openalex.org/W2065069954", "doi": "https://doi.org/10.1080/01431161.2012.680617", "mag": "2065069954" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 2, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/vegetation-monitoring", "display_name": "Vegetation Monitoring", "score": 0.54049 }, { "id": "https://openalex.org/keywords/terrain-analysis", "display_name": "Terrain Analysis", "score": 0.539997 }, { "id": "https://openalex.org/keywords/digital-soil-mapping", "display_name": "Digital Soil Mapping", "score": 0.525817 }, { "id": "https://openalex.org/keywords/moderate-resolution-imaging-spectroradiometer", "display_name": "Moderate-resolution imaging spectroradiometer", "score": 0.52190876 }, { "id": "https://openalex.org/keywords/land-cover", "display_name": "Land cover", "score": 0.5208193 }, { "id": "https://openalex.org/keywords/biomass-estimation", "display_name": "Biomass Estimation", "score": 0.51592 }, { "id": "https://openalex.org/keywords/growing-season", "display_name": "Growing season", "score": 0.45997027 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.1080/01431161.2012.680617", "pdf_url": null, "source": { "id": "https://openalex.org/S117411352", "display_name": "International Journal of Remote Sensing", "issn_l": "0143-1161", "issn": [ "0143-1161", "1366-5901" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320547", "host_organization_name": "Taylor & Francis", "host_organization_lineage": [ "https://openalex.org/P4310320547" ], "host_organization_lineage_names": [ "Taylor & Francis" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W2065069954/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.1080/01431161.2012.680617", "pdf_url": null, "source": { "id": "https://openalex.org/S117411352", "display_name": "International Journal of Remote Sensing", "issn_l": "0143-1161", "issn": [ "0143-1161", "1366-5901" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320547", "host_organization_name": "Taylor & Francis", "host_organization_lineage": [ "https://openalex.org/P4310320547" ], "host_organization_lineage_names": [ "Taylor & Francis" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.9993, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2012-04-19", "publication_year": 2012, "referenced_works": [ "https://openalex.org/W116562479", "https://openalex.org/W1263192620", "https://openalex.org/W1483968530", "https://openalex.org/W1781559127", "https://openalex.org/W181107242", "https://openalex.org/W1984227167", "https://openalex.org/W1985114715", "https://openalex.org/W1993616767", "https://openalex.org/W2000786281", "https://openalex.org/W2015008560", "https://openalex.org/W2030165874", "https://openalex.org/W2031340414", "https://openalex.org/W2057597491", "https://openalex.org/W2069981052", "https://openalex.org/W2073533231", "https://openalex.org/W2074222846", "https://openalex.org/W2079224844", "https://openalex.org/W2089208284", "https://openalex.org/W2107146364", "https://openalex.org/W2132228161", "https://openalex.org/W2148022840", "https://openalex.org/W2158897782", "https://openalex.org/W2159758382", "https://openalex.org/W2168341437", "https://openalex.org/W2169497991", "https://openalex.org/W2913431146", "https://openalex.org/W2915157699" ], "referenced_works_count": 27, "related_works": [ "https://openalex.org/W3192667092", "https://openalex.org/W3133615129", "https://openalex.org/W2921923888", "https://openalex.org/W2908695806", "https://openalex.org/W2373152553", "https://openalex.org/W2188959887", "https://openalex.org/W2181097983", "https://openalex.org/W2087854757", "https://openalex.org/W2086038705", "https://openalex.org/W1968232416" ], "sustainable_development_goals": [ { "score": 0.71, "display_name": "Zero hunger", "id": "https://metadata.un.org/sdg/2" } ], "title": "Crop classification modelling using remote sensing and environmental data in the Greater Platte River Basin, USA", "topics": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.9993, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "score": 0.9987, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "score": 0.9971, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-15T07:57:31.603607", "versions": [] }
}