Item talk:Q244907
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Monte Carlo simulations of product distributions and contained metal estimates", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70188867", "url": "https://pubs.usgs.gov/publication/70188867" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70188867 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1007/s11053-013-9206-8", "url": "https://doi.org/10.1007/s11053-013-9206-8" } ], "journal": { "@type": "Periodical", "name": "Natural Resources Research", "volumeNumber": "22", "issueNumber": "3" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Natural Resources Research" } ], "datePublished": "2013", "dateModified": "2018-02-15", "abstract": "Estimation of product distributions of two factors was simulated by conventional Monte Carlo techniques using factor distributions that were independent (uncorrelated). Several simulations using uniform distributions of factors show that the product distribution has a central peak approximately centered at the product of the medians of the factor distributions. Factor distributions that are peaked, such as Gaussian (normal) produce an even more peaked product distribution. Piecewise analytic solutions can be obtained for independent factor distributions and yield insight into the properties of the product distribution. As an example, porphyry copper grades and tonnages are now available in at least one public database and their distributions were analyzed. Although both grade and tonnage can be approximated with lognormal distributions, they are not exactly fit by them. The grade shows some nonlinear correlation with tonnage for the published database. Sampling by deposit from available databases of grade, tonnage, and geological details of each deposit specifies both grade and tonnage for that deposit. Any correlation between grade and tonnage is then preserved and the observed distribution of grades and tonnages can be used with no assumption of distribution form.", "description": "16 p.", "publisher": { "@type": "Organization", "name": "Springer" }, "author": [ { "@type": "Person", "name": "Gettings, Mark E. mgetting@usgs.gov", "givenName": "Mark E.", "familyName": "Gettings", "email": "mgetting@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-2910-2321", "url": "https://orcid.org/0000-0002-2910-2321" }, "affiliation": [ { "@type": "Organization", "name": "Geology, Minerals, Energy, and Geophysics Science Center", "url": "https://www.usgs.gov/centers/gmeg" } ] } ], "funder": [ { "@type": "Organization", "name": "Geology, Minerals, Energy, and Geophysics Science Center", "url": "https://www.usgs.gov/centers/gmeg" } ] }, "OpenAlex": { "abstract_inverted_index": null, "apc_list": { "value": 2790, "currency": "EUR", "value_usd": 3590, "provenance": "doaj" }, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5054361370", "display_name": "M.E. Gettings", "orcid": "https://orcid.org/0000-0002-2910-2321" }, "institutions": [ { "id": "https://openalex.org/I114681415", "display_name": "Arizona Geological Survey", "ror": "https://ror.org/00vcszp55", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I114681415" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "M. E. Gettings", "raw_affiliation_strings": [ "U. S. Geological Survey, Tucson, USA" ], "affiliations": [ { "raw_affiliation_string": "U. S. Geological Survey, Tucson, USA", "institution_ids": [ "https://openalex.org/I114681415" ] } ] } ], "best_oa_location": null, "biblio": { "volume": "22", "issue": "3", "first_page": "239", "last_page": "254" }, "citation_normalized_percentile": { "value": 0.594101, "is_in_top_1_percent": false, "is_in_top_10_percent": false }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2021606604", "cited_by_count": 1, "cited_by_percentile_year": { "min": 65, "max": 73 }, "concepts": [ { "id": "https://openalex.org/C36656581", "wikidata": "https://www.wikidata.org/wiki/Q491774", "display_name": "Tonnage", "level": 2, "score": 0.84335715 }, { "id": "https://openalex.org/C19499675", "wikidata": "https://www.wikidata.org/wiki/Q232207", "display_name": "Monte Carlo method", "level": 2, "score": 0.74788433 }, { "id": "https://openalex.org/C151620405", "wikidata": "https://www.wikidata.org/wiki/Q826116", "display_name": "Log-normal distribution", "level": 2, "score": 0.6670846 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 0.4902349 }, { "id": "https://openalex.org/C110121322", "wikidata": "https://www.wikidata.org/wiki/Q865811", "display_name": "Distribution (mathematics)", "level": 2, "score": 0.47245124 }, { "id": "https://openalex.org/C163716315", "wikidata": "https://www.wikidata.org/wiki/Q901177", "display_name": "Gaussian", "level": 2, "score": 0.46354812 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 0.44915974 }, { "id": "https://openalex.org/C149441793", "wikidata": "https://www.wikidata.org/wiki/Q200726", "display_name": "Probability distribution", "level": 2, "score": 0.44479534 }, { "id": "https://openalex.org/C140779682", "wikidata": "https://www.wikidata.org/wiki/Q210868", "display_name": "Sampling (signal processing)", "level": 3, "score": 0.43059647 }, { "id": "https://openalex.org/C90673727", "wikidata": "https://www.wikidata.org/wiki/Q901718", "display_name": "Product (mathematics)", "level": 2, "score": 0.41928917 }, { "id": "https://openalex.org/C121864883", "wikidata": "https://www.wikidata.org/wiki/Q677916", "display_name": "Statistical physics", "level": 1, "score": 0.3338654 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.23534328 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 0.19232428 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 0.13775963 }, { "id": "https://openalex.org/C2524010", "wikidata": "https://www.wikidata.org/wiki/Q8087", "display_name": "Geometry", "level": 1, "score": 0.11951032 }, { "id": "https://openalex.org/C134306372", "wikidata": "https://www.wikidata.org/wiki/Q7754", "display_name": "Mathematical analysis", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C106131492", "wikidata": "https://www.wikidata.org/wiki/Q3072260", "display_name": "Filter (signal processing)", "level": 2, "score": 0.0 }, { "id": "https://openalex.org/C62520636", "wikidata": "https://www.wikidata.org/wiki/Q944", "display_name": "Quantum mechanics", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C31972630", "wikidata": "https://www.wikidata.org/wiki/Q844240", "display_name": "Computer vision", "level": 1, "score": 0.0 } ], "corresponding_author_ids": [ "https://openalex.org/A5054361370" ], "corresponding_institution_ids": [ "https://openalex.org/I114681415" ], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2018, "cited_by_count": 1 } ], "created_date": "2016-06-24", "datasets": [], "display_name": "Monte Carlo Simulations of Product Distributions and Contained Metal Estimates", "doi": "https://doi.org/10.1007/s11053-013-9206-8", "fulltext_origin": "ngrams", "fwci": 0.0, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W2021606604", "ids": { "openalex": "https://openalex.org/W2021606604", "doi": "https://doi.org/10.1007/s11053-013-9206-8", "mag": "2021606604" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 1, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/tonnage", "display_name": "Tonnage", "score": 0.84335715 }, { "id": "https://openalex.org/keywords/log-normal-distribution", "display_name": "Log-normal distribution", "score": 0.6670846 }, { "id": "https://openalex.org/keywords/parameter-estimation", "display_name": "Parameter Estimation", "score": 0.522242 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.1007/s11053-013-9206-8", "pdf_url": null, "source": { "id": "https://openalex.org/S2764600758", "display_name": "Natural Resources Research", "issn_l": "1520-7439", "issn": [ "1520-7439", "1573-8981" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310319900", "host_organization_name": "Springer Science+Business Media", "host_organization_lineage": [ "https://openalex.org/P4310319965", "https://openalex.org/P4310319900" ], "host_organization_lineage_names": [ "Springer Nature", "Springer Science+Business Media" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W2021606604/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.1007/s11053-013-9206-8", "pdf_url": null, "source": { "id": "https://openalex.org/S2764600758", "display_name": "Natural Resources Research", "issn_l": "1520-7439", "issn": [ "1520-7439", "1573-8981" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310319900", "host_organization_name": "Springer Science+Business Media", "host_organization_lineage": [ "https://openalex.org/P4310319965", "https://openalex.org/P4310319900" ], "host_organization_lineage_names": [ "Springer Nature", "Springer Science+Business Media" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "score": 0.9968, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2013-04-12", "publication_year": 2013, "referenced_works": [ "https://openalex.org/W1154358570", "https://openalex.org/W1489119587", "https://openalex.org/W1524950519", "https://openalex.org/W17682891", "https://openalex.org/W1966547888", "https://openalex.org/W1969481231", "https://openalex.org/W1971054294", "https://openalex.org/W1985093013", "https://openalex.org/W1994665973", "https://openalex.org/W2024081693", "https://openalex.org/W2030891183", "https://openalex.org/W2031105664", "https://openalex.org/W2045756671", "https://openalex.org/W2049404034", "https://openalex.org/W2051203581", "https://openalex.org/W2052356014", "https://openalex.org/W2052490764", "https://openalex.org/W2053886761", "https://openalex.org/W20569399", "https://openalex.org/W2057656735", "https://openalex.org/W2058885761", "https://openalex.org/W2071022920", "https://openalex.org/W2075910178", "https://openalex.org/W2081242912", "https://openalex.org/W2098290609", "https://openalex.org/W2118789641", "https://openalex.org/W2127025275", "https://openalex.org/W2162188693", "https://openalex.org/W2313299119", "https://openalex.org/W2328831975", "https://openalex.org/W2582743722", "https://openalex.org/W2615737084", "https://openalex.org/W2764856544", "https://openalex.org/W28659080", "https://openalex.org/W2912565176", "https://openalex.org/W30999049", "https://openalex.org/W37618337", "https://openalex.org/W4205634987", "https://openalex.org/W4206302131", "https://openalex.org/W4211007335", "https://openalex.org/W4212908912", "https://openalex.org/W4214637188", "https://openalex.org/W4233407387", "https://openalex.org/W4285719527", "https://openalex.org/W4292230278", "https://openalex.org/W4292691288", "https://openalex.org/W4735884", "https://openalex.org/W55527691", "https://openalex.org/W597511998", "https://openalex.org/W605402020", "https://openalex.org/W61286221", "https://openalex.org/W79351562" ], "referenced_works_count": 52, "related_works": [ "https://openalex.org/W897433691", "https://openalex.org/W638262213", "https://openalex.org/W4293167341", "https://openalex.org/W2910372528", "https://openalex.org/W2392450091", "https://openalex.org/W2386147781", "https://openalex.org/W2371270590", "https://openalex.org/W2223237913", "https://openalex.org/W2147780556", "https://openalex.org/W2129097568" ], "sustainable_development_goals": [], "title": "Monte Carlo Simulations of Product Distributions and Contained Metal Estimates", "topics": [ { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "score": 0.9968, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12368", "display_name": "Application of Grey System Theory in Forecasting", "score": 0.9615, "subfield": { "id": "https://openalex.org/subfields/1803", "display_name": "Management Science and Operations Research" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T13487", "display_name": "Total Least Squares Methods and Applications", "score": 0.9162, "subfield": { "id": "https://openalex.org/subfields/2604", "display_name": "Applied Mathematics" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-15T05:57:50.079228", "versions": [] }
}