Item talk:Q242765
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern Minnesota", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70047133", "url": "https://pubs.usgs.gov/publication/70047133" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70047133 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3390/rs5073212", "url": "https://doi.org/10.3390/rs5073212" } ], "journal": { "@type": "Periodical", "name": "Remote Sensing", "volumeNumber": "5", "issueNumber": "7" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Remote Sensing" } ], "datePublished": "2013", "dateModified": "2013-07-22", "abstract": "Wetland mapping at the landscape scale using remotely sensed data requires both affordable data and an efficient accurate classification method. Random forest classification offers several advantages over traditional land cover classification techniques, including a bootstrapping technique to generate robust estimations of outliers in the training data, as well as the capability of measuring classification confidence. Though the random forest classifier can generate complex decision trees with a multitude of input data and still not run a high risk of over fitting, there is a great need to reduce computational and operational costs by including only key input data sets without sacrificing a significant level of accuracy. Our main questions for this study site in Northern Minnesota were: (1) how does classification accuracy and confidence of mapping wetlands compare using different remote sensing platforms and sets of input data; (2) what are the key input variables for accurate differentiation of upland, water, and wetlands, including wetland type; and (3) which datasets and seasonal imagery yield the best accuracy for wetland classification. Our results show the key input variables include terrain (elevation and curvature) and soils descriptors (hydric), along with an assortment of remotely sensed data collected in the spring (satellite visible, near infrared, and thermal bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite radar). We undertook this exploratory analysis to inform decisions by natural resource managers charged with monitoring wetland ecosystems and to aid in designing a system for consistent operational mapping of wetlands across landscapes similar to those found in Northern Minnesota.", "description": "27 p.", "publisher": { "@type": "Organization", "name": "MDPI AG" }, "author": [ { "@type": "Person", "name": "Gallant, Alisa L. gallant@usgs.gov", "givenName": "Alisa L.", "familyName": "Gallant", "email": "gallant@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-3029-6637", "url": "https://orcid.org/0000-0002-3029-6637" }, "affiliation": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center (Geography)", "url": "https://www.usgs.gov/centers/eros" }, { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ] }, { "@type": "Person", "name": "Knight, Joseph F.", "givenName": "Joseph F.", "familyName": "Knight" }, { "@type": "Person", "name": "Corcoran, Jennifer M.", "givenName": "Jennifer M.", "familyName": "Corcoran" } ], "funder": [ { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "United States", "url": "https://geonames.org/4074035" }, { "@type": "Place", "additionalType": "state", "name": "Minnesota" }, { "@type": "Place", "geo": [ { "@type": "GeoShape", "additionalProperty": { "@type": "PropertyValue", "name": "GeoJSON", "value": { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {}, "geometry": { "type": "Polygon", "coordinates": [ [ [ -97.24, 43.5 ], [ -97.24, 49.38 ], [ -89.49, 49.38 ], [ -89.49, 43.5 ], [ -97.24, 43.5 ] ] ] } } ] } } }, { "@type": "GeoCoordinates", "latitude": 46.43999999999999, "longitude": -93.365 } ] } ] }, "OpenAlex": { "abstract_inverted_index": { "Wetland": [ 0 ], "mapping": [ 1, 125, 253 ], "at": [ 2 ], "the": [ 3, 43, 49, 56, 141, 164, 173, 196 ], "landscape": [ 4 ], "scale": [ 5 ], "using": [ 6, 128, 222 ], "remotely": [ 7, 191 ], "sensed": [ 8, 192 ], "data": [ 9, 13, 70, 97, 193 ], "requires": [ 10 ], "both": [ 11 ], "affordable": [ 12 ], "and": [ 14, 71, 89, 122, 133, 151, 156, 160, 180, 182, 202, 209, 213, 215, 218, 243 ], "an": [ 15, 188 ], "efficient": [ 16 ], "accurate": [ 17, 146 ], "classification": [ 18, 22, 30, 53, 120 ], "method.": [ 19 ], "Random": [ 20 ], "forest": [ 21, 58 ], "offers": [ 23 ], "several": [ 24 ], "advantages": [ 25 ], "over": [ 26, 79 ], "traditional": [ 27 ], "land": [ 28 ], "cover": [ 29 ], "techniques,": [ 31 ], "including": [ 32, 93, 153 ], "a": [ 33, 66, 75, 83, 101, 248 ], "bootstrapping": [ 34 ], "technique": [ 35 ], "to": [ 36, 86, 231, 244, 259 ], "generate": [ 37, 61 ], "robust": [ 38 ], "estimations": [ 39 ], "of": [ 40, 51, 68, 78, 104, 124, 135, 148, 190, 254 ], "outliers": [ 41 ], "in": [ 42, 113, 195, 246, 262 ], "training": [ 44 ], "data,": [ 45 ], "as": [ 46, 48 ], "well": [ 47 ], "capability": [ 50 ], "measuring": [ 52 ], "confidence.": [ 54 ], "Though": [ 55 ], "random": [ 57 ], "classifier": [ 59 ], "can": [ 60 ], "complex": [ 62 ], "decision": [ 63 ], "trees": [ 64 ], "with": [ 65, 187, 239 ], "multitude": [ 67 ], "input": [ 69, 96, 136, 143, 175 ], "still": [ 72 ], "not": [ 73 ], "run": [ 74 ], "high": [ 76 ], "risk": [ 77 ], "fitting,": [ 80 ], "there": [ 81 ], "is": [ 82 ], "great": [ 84 ], "need": [ 85 ], "reduce": [ 87 ], "computational": [ 88 ], "operational": [ 90, 252 ], "costs": [ 91 ], "by": [ 92, 234 ], "only": [ 94 ], "key": [ 95, 142, 174 ], "sets": [ 98, 134 ], "without": [ 99 ], "sacrificing": [ 100 ], "significant": [ 102 ], "level": [ 103 ], "accuracy.": [ 105 ], "Our": [ 106, 170 ], "main": [ 107 ], "questions": [ 108 ], "for": [ 109, 145, 167, 250 ], "this": [ 110, 228 ], "study": [ 111 ], "site": [ 112 ], "Northern": [ 114, 263 ], "Minnesota": [ 115 ], "were:": [ 116 ], "(1)": [ 117 ], "how": [ 118 ], "does": [ 119 ], "accuracy": [ 121, 166 ], "confidence": [ 123 ], "wetlands": [ 126, 255 ], "compare": [ 127 ], "different": [ 129 ], "remote": [ 130 ], "sensing": [ 131 ], "platforms": [ 132 ], "data;": [ 137 ], "(2)": [ 138 ], "what": [ 139 ], "are": [ 140 ], "variables": [ 144, 176 ], "differentiation": [ 147 ], "upland,": [ 149 ], "water,": [ 150 ], "wetlands,": [ 152 ], "wetland": [ 154, 168, 241 ], "type;": [ 155 ], "(3)": [ 157 ], "which": [ 158 ], "datasets": [ 159 ], "seasonal": [ 161 ], "imagery": [ 162 ], "yield": [ 163 ], "best": [ 165 ], "classification.": [ 169 ], "results": [ 171 ], "show": [ 172 ], "include": [ 177 ], "terrain": [ 178 ], "(elevation": [ 179 ], "curvature)": [ 181 ], "soils": [ 183 ], "descriptors": [ 184 ], "(hydric),": [ 185 ], "along": [ 186 ], "assortment": [ 189 ], "collected": [ 194 ], "spring": [ 197 ], "(satellite": [ 198 ], "visible,": [ 199 ], "near": [ 200 ], "infrared,": [ 201 ], "thermal": [ 203 ], "bands;": [ 204 ], "satellite": [ 205, 224 ], "normalized": [ 206 ], "vegetation": [ 207 ], "index": [ 208 ], "Tasseled": [ 210 ], "Cap": [ 211 ], "greenness": [ 212 ], "wetness;": [ 214 ], "horizontal-horizontal": [ 216 ], "(HH)": [ 217 ], "horizontal-vertical": [ 219 ], "(HV)": [ 220 ], "polarization": [ 221 ], "L-band": [ 223 ], "radar).": [ 225 ], "We": [ 226 ], "undertook": [ 227 ], "exploratory": [ 229 ], "analysis": [ 230 ], "inform": [ 232 ], "decisions": [ 233 ], "natural": [ 235 ], "resource": [ 236 ], "managers": [ 237 ], "charged": [ 238 ], "monitoring": [ 240 ], "ecosystems": [ 242 ], "aid": [ 245 ], "designing": [ 247 ], "system": [ 249 ], "consistent": [ 251 ], "across": [ 256 ], "landscapes": [ 257 ], "similar": [ 258 ], "those": [ 260 ], "found": [ 261 ], "Minnesota.": [ 264 ] }, "apc_list": { "value": 2500, "currency": "CHF", "value_usd": 2707, "provenance": "doaj" }, "apc_paid": { "value": 2500, "currency": "CHF", "value_usd": 2707, "provenance": "doaj" }, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5045001825", "display_name": "Jennifer Corcoran", "orcid": null }, "institutions": [ { "id": "https://openalex.org/I1322780083", "display_name": "Minnesota Department of Natural Resources", "ror": "https://ror.org/056vcnr65", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1322780083" ] }, { "id": "https://openalex.org/I130238516", "display_name": "University of Minnesota", "ror": "https://ror.org/017zqws13", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I130238516" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Jennifer Corcoran", "raw_affiliation_strings": [ "Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave. N, St. Paul, MN 55108, USA" ], "affiliations": [ { "raw_affiliation_string": "Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave. N, St. Paul, MN 55108, USA", "institution_ids": [ "https://openalex.org/I1322780083", "https://openalex.org/I130238516" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5068564619", "display_name": "Joseph Knight", "orcid": "https://orcid.org/0000-0001-5846-9416" }, "institutions": [ { "id": "https://openalex.org/I1322780083", "display_name": "Minnesota Department of Natural Resources", "ror": "https://ror.org/056vcnr65", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1322780083" ] }, { "id": "https://openalex.org/I130238516", "display_name": "University of Minnesota", "ror": "https://ror.org/017zqws13", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I130238516" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Joseph Knight", "raw_affiliation_strings": [ "Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave. N, St. Paul, MN 55108, USA" ], "affiliations": [ { "raw_affiliation_string": "Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave. N, St. Paul, MN 55108, USA", "institution_ids": [ "https://openalex.org/I1322780083", "https://openalex.org/I130238516" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5008824829", "display_name": "Alisa L. Gallant", "orcid": "https://orcid.org/0000-0002-3029-6637" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Alisa Gallant", "raw_affiliation_strings": [ "Earth Resources Observation and Science Center, US Geological Survey, Sioux Falls, SD 57198, USA" ], "affiliations": [ { "raw_affiliation_string": "Earth Resources Observation and Science Center, US Geological Survey, Sioux Falls, SD 57198, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] } ], "best_oa_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/rs5073212", "pdf_url": "https://www.mdpi.com/2072-4292/5/7/3212/pdf?version=1403132646", "source": { "id": "https://openalex.org/S43295729", "display_name": "Remote Sensing", "issn_l": "2072-4292", "issn": [ "2072-4292" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "biblio": { "volume": "5", "issue": "7", "first_page": "3212", "last_page": "3238" }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2138499468", "cited_by_count": 188, "cited_by_percentile_year": { "min": 99, "max": 100 }, "concepts": [ { "id": "https://openalex.org/c62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 0.7206141, "qid": "Q158877" }, { "id": "https://openalex.org/c169258074", "wikidata": "https://www.wikidata.org/wiki/Q245748", "display_name": "Random forest", "level": 2, "score": 0.6738359, "qid": null }, { "id": "https://openalex.org/c39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.5682354, "qid": "Q166085" }, { "id": "https://openalex.org/c2776898743", "wikidata": "https://www.wikidata.org/wiki/Q18353408", "display_name": "Topographic Wetness Index", "level": 3, "score": 0.5668987, "qid": null }, { "id": "https://openalex.org/c67715294", "wikidata": "https://www.wikidata.org/wiki/Q170321", "display_name": "Wetland", "level": 2, "score": 0.56201005, "qid": null }, { "id": "https://openalex.org/c41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.49404007, "qid": "Q158969" }, { "id": "https://openalex.org/c161840515", "wikidata": "https://www.wikidata.org/wiki/Q186131", "display_name": "Terrain", "level": 2, "score": 0.49296355, "qid": null }, { "id": "https://openalex.org/c2780408538", "wikidata": "https://www.wikidata.org/wiki/Q3615217", "display_name": "Ancillary data", "level": 2, "score": 0.45493233, "qid": null }, { "id": "https://openalex.org/c181843262", "wikidata": "https://www.wikidata.org/wiki/Q640492", "display_name": "Digital elevation model", "level": 2, "score": 0.4124146, "qid": null }, { "id": "https://openalex.org/c58640448", "wikidata": "https://www.wikidata.org/wiki/Q42515", "display_name": "Cartography", "level": 1, "score": 0.1946719, "qid": "Q158966" }, { "id": "https://openalex.org/c154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 0.18124184, "qid": "Q166116" }, { "id": "https://openalex.org/c205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 0.1394799, "qid": "Q158983" }, { "id": "https://openalex.org/c18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 0.0, "qid": "Q158972" }, { "id": "https://openalex.org/c86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 0.0, "qid": "Q158998" } ], "corresponding_author_ids": [ "https://openalex.org/A5045001825" ], "corresponding_institution_ids": [ "https://openalex.org/I1322780083", "https://openalex.org/I130238516" ], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2024, "cited_by_count": 7 }, { "year": 2023, "cited_by_count": 21 }, { "year": 2022, "cited_by_count": 14 }, { "year": 2021, "cited_by_count": 23 }, { "year": 2020, "cited_by_count": 26 }, { "year": 2019, "cited_by_count": 19 }, { "year": 2018, "cited_by_count": 16 }, { "year": 2017, "cited_by_count": 22 }, { "year": 2016, "cited_by_count": 7 }, { "year": 2015, "cited_by_count": 20 }, { "year": 2014, "cited_by_count": 11 }, { "year": 2013, "cited_by_count": 1 } ], "created_date": "2016-06-24", "datasets": [], "display_name": "Influence of Multi-Source and Multi-Temporal Remotely Sensed and Ancillary Data on the Accuracy of Random Forest Classification of Wetlands in Northern Minnesota", "doi": "https://doi.org/10.3390/rs5073212", "fulltext_origin": "pdf", "fwci": 8.611, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W2138499468", "ids": { "openalex": "https://openalex.org/W2138499468", "doi": "https://doi.org/10.3390/rs5073212", "mag": "2138499468" }, "indexed_in": [ "crossref", "doaj" ], "institutions_distinct_count": 3, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/topographic-wetness-index", "display_name": "Topographic Wetness Index", "score": 0.5668987 }, { "id": "https://openalex.org/keywords/tree-height-estimation", "display_name": "Tree Height Estimation", "score": 0.558367 }, { "id": "https://openalex.org/keywords/global-forest-mapping", "display_name": "Global Forest Mapping", "score": 0.545028 }, { "id": "https://openalex.org/keywords/biomass-estimation", "display_name": "Biomass Estimation", "score": 0.521608 }, { "id": "https://openalex.org/keywords/vegetation-monitoring", "display_name": "Vegetation Monitoring", "score": 0.519641 }, { "id": "https://openalex.org/keywords/ancillary-data", "display_name": "Ancillary data", "score": 0.45493233 } ], "language": "en", "locations": [ { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/rs5073212", "pdf_url": "https://www.mdpi.com/2072-4292/5/7/3212/pdf?version=1403132646", "source": { "id": "https://openalex.org/S43295729", "display_name": "Remote Sensing", "issn_l": "2072-4292", "issn": [ "2072-4292" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, { "is_oa": false, "landing_page_url": "https://doaj.org/article/c46e0423377e48828e545f741bdc50a1", "pdf_url": null, "source": { "id": "https://openalex.org/S4306401280", "display_name": "DOAJ (DOAJ: Directory of Open Access Journals)", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": null, "host_organization_name": null, "host_organization_lineage": [], "host_organization_lineage_names": [], "type": "repository" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, { "is_oa": true, "landing_page_url": "http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.348.3464", "pdf_url": "http://www.mdpi.com/2072-4292/5/7/3212/pdf/", "source": { "id": "https://openalex.org/S4306400349", "display_name": "CiteSeer X (The Pennsylvania State University)", "issn_l": null, "issn": null, "is_oa": true, "is_in_doaj": false, "is_core": false, "host_organization": "https://openalex.org/I130769515", "host_organization_name": "Pennsylvania State University", "host_organization_lineage": [ "https://openalex.org/I130769515" ], "host_organization_lineage_names": [ "Pennsylvania State University" ], "type": "repository" }, "license": null, "license_id": null, "version": "submittedVersion", "is_accepted": false, "is_published": false } ], "locations_count": 3, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W2138499468/ngrams", "open_access": { "is_oa": true, "oa_status": "gold", "oa_url": "https://www.mdpi.com/2072-4292/5/7/3212/pdf?version=1403132646", "any_repository_has_fulltext": true }, "primary_location": { "is_oa": true, "landing_page_url": "https://doi.org/10.3390/rs5073212", "pdf_url": "https://www.mdpi.com/2072-4292/5/7/3212/pdf?version=1403132646", "source": { "id": "https://openalex.org/S43295729", "display_name": "Remote Sensing", "issn_l": "2072-4292", "issn": [ "2072-4292" ], "is_oa": true, "is_in_doaj": true, "is_core": true, "host_organization": "https://openalex.org/P4310310987", "host_organization_name": "Multidisciplinary Digital Publishing Institute", "host_organization_lineage": [ "https://openalex.org/P4310310987" ], "host_organization_lineage_names": [ "Multidisciplinary Digital Publishing Institute" ], "type": "journal" }, "license": "cc-by", "license_id": "https://openalex.org/licenses/cc-by", "version": "publishedVersion", "is_accepted": true, "is_published": true }, "primary_topic": { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "score": 0.9993, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2013-07-04", "publication_year": 2013, "referenced_works": [ "https://openalex.org/W135054518", "https://openalex.org/W1610015390", "https://openalex.org/W19523708", "https://openalex.org/W1965547294", "https://openalex.org/W1970323848", "https://openalex.org/W1972923945", "https://openalex.org/W1976650458", "https://openalex.org/W1977287730", "https://openalex.org/W1980989386", "https://openalex.org/W1989428365", "https://openalex.org/W1995242424", "https://openalex.org/W1995987039", "https://openalex.org/W1998210139", "https://openalex.org/W2000648382", "https://openalex.org/W2010344121", "https://openalex.org/W2010513013", "https://openalex.org/W2011287653", "https://openalex.org/W2011287807", "https://openalex.org/W2012376022", "https://openalex.org/W2020647169", "https://openalex.org/W2031052650", "https://openalex.org/W2031366096", "https://openalex.org/W2033697548", "https://openalex.org/W2035325819", "https://openalex.org/W2035549557", "https://openalex.org/W2036225928", "https://openalex.org/W2036632898", "https://openalex.org/W2037513227", "https://openalex.org/W2040466059", "https://openalex.org/W2041149928", "https://openalex.org/W2042145752", "https://openalex.org/W2044015570", "https://openalex.org/W2053885782", "https://openalex.org/W2060392059", "https://openalex.org/W2074626545", "https://openalex.org/W2076834037", "https://openalex.org/W2081345410", "https://openalex.org/W2082874195", "https://openalex.org/W2083173052", "https://openalex.org/W2083630421", "https://openalex.org/W2089806346", "https://openalex.org/W2093376989", "https://openalex.org/W2096246734", "https://openalex.org/W2096611296", "https://openalex.org/W2097272115", "https://openalex.org/W2098653311", "https://openalex.org/W2099300271", "https://openalex.org/W2114475797", "https://openalex.org/W2114828048", "https://openalex.org/W2115076670", "https://openalex.org/W2115226769", "https://openalex.org/W2120958899", "https://openalex.org/W2125877832", "https://openalex.org/W2127070009", "https://openalex.org/W2132424470", "https://openalex.org/W2133989913", "https://openalex.org/W2138516781", "https://openalex.org/W2141713151", "https://openalex.org/W2147996636", "https://openalex.org/W2150913843", "https://openalex.org/W2154717921", "https://openalex.org/W2158000553", "https://openalex.org/W2159708906", "https://openalex.org/W2163307144", "https://openalex.org/W2163654989", "https://openalex.org/W2164377514", "https://openalex.org/W2168867644", "https://openalex.org/W2173333326", "https://openalex.org/W2176737848", "https://openalex.org/W2178710310", "https://openalex.org/W2474181313", "https://openalex.org/W2505820723", "https://openalex.org/W2568312764", "https://openalex.org/W2599678739", "https://openalex.org/W273955616", "https://openalex.org/W2911964244", "https://openalex.org/W56001729", "https://openalex.org/W631298914" ], "referenced_works_count": 78, "related_works": [ "https://openalex.org/W4211117413", "https://openalex.org/W3181132894", "https://openalex.org/W2901260776", "https://openalex.org/W2803140400", "https://openalex.org/W2746250280", "https://openalex.org/W2519812196", "https://openalex.org/W2084918444", "https://openalex.org/W2023339048", "https://openalex.org/W2000407383", "https://openalex.org/W1992962589" ], "sustainable_development_goals": [ { "score": 0.58, "display_name": "Life on land", "id": "https://metadata.un.org/sdg/15" } ], "title": "Influence of Multi-Source and Multi-Temporal Remotely Sensed and Ancillary Data on the Accuracy of Random Forest Classification of Wetlands in Northern Minnesota", "topics": [ { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "score": 0.9993, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "score": 0.9987, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10889", "display_name": "Soil Erosion and Agricultural Sustainability", "score": 0.9958, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-08T16:53:12.716508", "versions": [], "qid": null }
}