Item talk:Q241821

From geokb

{

 "USGS Publications Warehouse": {
   "@context": "https://schema.org",
   "@type": "Article",
   "additionalType": "Journal Article",
   "name": "L-moments and TL-moments of the generalized lambda distribution",
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse IndexID",
       "value": "70029785",
       "url": "https://pubs.usgs.gov/publication/70029785"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse Internal ID",
       "value": 70029785
     },
     {
       "@type": "PropertyValue",
       "propertyID": "DOI",
       "value": "10.1016/j.csda.2006.07.016",
       "url": "https://doi.org/10.1016/j.csda.2006.07.016"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "ISSN",
       "value": "01679473"
     }
   ],
   "journal": {
     "@type": "Periodical",
     "name": "Computational Statistics and Data Analysis",
     "volumeNumber": "51",
     "issueNumber": "9"
   },
   "inLanguage": "en",
   "isPartOf": [
     {
       "@type": "CreativeWorkSeries",
       "name": "Computational Statistics and Data Analysis"
     }
   ],
   "datePublished": "2007",
   "dateModified": "2012-03-12",
   "abstract": "The 4-parameter generalized lambda distribution (GLD) is a flexible distribution capable of mimicking the shapes of many distributions and data samples including those with heavy tails. The method of L-moments and the recently developed method of trimmed L-moments (TL-moments) are attractive techniques for parameter estimation for heavy-tailed distributions for which the L- and TL-moments have been defined. Analytical solutions for the first five L- and TL-moments in terms of GLD parameters are derived. Unfortunately, numerical methods are needed to compute the parameters from the L- or TL-moments. Algorithms are suggested for parameter estimation. Application of the GLD using both L- and TL-moment parameter estimates from example data is demonstrated, and comparison of the L-moment fit of the 4-parameter kappa distribution is made. A small simulation study of the 98th percentile (far-right tail) is conducted for a heavy-tail GLD with high-outlier contamination. The simulations show, with respect to estimation of the 98th-percent quantile, that TL-moments are less biased (more robost) in the presence of high-outlier contamination. However, the robustness comes at the expense of considerably more sampling variability. ?? 2006 Elsevier B.V. All rights reserved.",
   "publisher": {
     "@type": "Organization",
     "name": "U.S. Geological Survey"
   },
   "author": [
     {
       "@type": "Person",
       "name": "Asquith, W.H.",
       "givenName": "W.H.",
       "familyName": "Asquith"
     }
   ]
 },
 "OpenAlex": {
   "abstract_inverted_index": {
     "The": [
       0,
       26,
       141
     ],
     "4-parameter": [
       1,
       117
     ],
     "generalized": [
       2
     ],
     "lambda": [
       3
     ],
     "distribution": [
       4,
       9,
       119
     ],
     "(GLD)": [
       5
     ],
     "is": [
       6,
       107,
       120,
       132
     ],
     "a": [
       7,
       135
     ],
     "flexible": [
       8
     ],
     "capable": [
       10
     ],
     "of": [
       11,
       15,
       28,
       35,
       68,
       94,
       111,
       115,
       126,
       148,
       162,
       172
     ],
     "mimicking": [
       12
     ],
     "the": [
       13,
       31,
       50,
       60,
       80,
       83,
       95,
       112,
       116,
       127,
       149,
       160,
       166,
       170
     ],
     "shapes": [
       14
     ],
     "many": [
       16
     ],
     "distributions": [
       17,
       47
     ],
     "and": [
       18,
       30,
       52,
       64,
       100,
       109
     ],
     "data": [
       19,
       106
     ],
     "samples": [
       20
     ],
     "including": [
       21
     ],
     "those": [
       22
     ],
     "with": [
       23,
       138,
       144
     ],
     "heavy": [
       24
     ],
     "tails.": [
       25
     ],
     "method": [
       27,
       34
     ],
     "L-moments": [
       29,
       37
     ],
     "recently": [
       32
     ],
     "developed": [
       33
     ],
     "trimmed": [
       36
     ],
     "(TL-moments)": [
       38
     ],
     "are": [
       39,
       71,
       76,
       88,
       154
     ],
     "attractive": [
       40
     ],
     "techniques": [
       41
     ],
     "for": [
       42,
       45,
       48,
       59,
       90,
       134
     ],
     "parameter": [
       43,
       91,
       102
     ],
     "estimation": [
       44,
       147
     ],
     "heavy-tailed": [
       46
     ],
     "which": [
       49
     ],
     "L-": [
       51,
       63,
       84,
       99
     ],
     "TL-moments": [
       53,
       65,
       153
     ],
     "have": [
       54
     ],
     "been": [
       55
     ],
     "defined.": [
       56
     ],
     "Analytical": [
       57
     ],
     "solutions": [
       58
     ],
     "first": [
       61
     ],
     "five": [
       62
     ],
     "in": [
       66,
       159
     ],
     "terms": [
       67
     ],
     "GLD": [
       69,
       96,
       137
     ],
     "parameters": [
       70,
       81
     ],
     "derived.": [
       72
     ],
     "Unfortunately,": [
       73
     ],
     "numerical": [
       74
     ],
     "methods": [
       75
     ],
     "needed": [
       77
     ],
     "to": [
       78,
       146
     ],
     "compute": [
       79
     ],
     "from": [
       82,
       104
     ],
     "or": [
       85
     ],
     "TL-moments.": [
       86
     ],
     "Algorithms": [
       87
     ],
     "suggested": [
       89
     ],
     "estimation.": [
       92
     ],
     "Application": [
       93
     ],
     "using": [
       97
     ],
     "both": [
       98
     ],
     "TL-moment": [
       101
     ],
     "estimates": [
       103
     ],
     "example": [
       105
     ],
     "demonstrated,": [
       108
     ],
     "comparison": [
       110
     ],
     "L-moment": [
       113
     ],
     "fit": [
       114
     ],
     "kappa": [
       118
     ],
     "made.": [
       121
     ],
     "A": [
       122
     ],
     "small": [
       123
     ],
     "simulation": [
       124
     ],
     "study": [
       125
     ],
     "98th": [
       128
     ],
     "percentile": [
       129
     ],
     "(far-right": [
       130
     ],
     "tail)": [
       131
     ],
     "conducted": [
       133
     ],
     "heavy-tail": [
       136
     ],
     "high-outlier": [
       139,
       163
     ],
     "contamination.": [
       140,
       164
     ],
     "simulations": [
       142
     ],
     "show,": [
       143
     ],
     "respect": [
       145
     ],
     "98th-percent": [
       150
     ],
     "quantile,": [
       151
     ],
     "that": [
       152
     ],
     "less": [
       155
     ],
     "biased": [
       156
     ],
     "(more": [
       157
     ],
     "robost)": [
       158
     ],
     "presence": [
       161
     ],
     "However,": [
       165
     ],
     "robustness": [
       167
     ],
     "comes": [
       168
     ],
     "at": [
       169
     ],
     "expense": [
       171
     ],
     "considerably": [
       173
     ],
     "more": [
       174
     ],
     "sampling": [
       175
     ],
     "variability.": [
       176
     ]
   },
   "apc_list": {
     "value": 3340,
     "currency": "USD",
     "value_usd": 3340,
     "provenance": "doaj"
   },
   "apc_paid": null,
   "authorships": [
     {
       "author_position": "first",
       "author": {
         "id": "https://openalex.org/A5073463401",
         "display_name": "William H. Asquith",
         "orcid": "https://orcid.org/0000-0002-7400-1861"
       },
       "institutions": [
         {
           "id": "https://openalex.org/I1286329397",
           "display_name": "United States Geological Survey",
           "ror": "https://ror.org/035a68863",
           "country_code": "US",
           "type": "government",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249"
           ]
         }
       ],
       "countries": [
         "US"
       ],
       "is_corresponding": true,
       "raw_author_name": "William H. Asquith",
       "raw_affiliation_strings": [
         "U.S. Geological Survey, 8027 Exchange Drive, Austin, TX 78754, USA"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "U.S. Geological Survey, 8027 Exchange Drive, Austin, TX 78754, USA",
           "institution_ids": [
             "https://openalex.org/I1286329397"
           ]
         }
       ]
     }
   ],
   "best_oa_location": null,
   "biblio": {
     "volume": "51",
     "issue": "9",
     "first_page": "4484",
     "last_page": "4496"
   },
   "citation_normalized_percentile": {
     "value": 0.896838,
     "is_in_top_1_percent": false,
     "is_in_top_10_percent": false
   },
   "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2046634821",
   "cited_by_count": 85,
   "cited_by_percentile_year": {
     "min": 96,
     "max": 97
   },
   "concepts": [
     {
       "id": "https://openalex.org/C118671147",
       "wikidata": "https://www.wikidata.org/wiki/Q578714",
       "display_name": "Quantile",
       "level": 2,
       "score": 0.6858767
     },
     {
       "id": "https://openalex.org/C79337645",
       "wikidata": "https://www.wikidata.org/wiki/Q779824",
       "display_name": "Outlier",
       "level": 2,
       "score": 0.6844115
     },
     {
       "id": "https://openalex.org/C33923547",
       "wikidata": "https://www.wikidata.org/wiki/Q395",
       "display_name": "Mathematics",
       "level": 0,
       "score": 0.6082737
     },
     {
       "id": "https://openalex.org/C179254644",
       "wikidata": "https://www.wikidata.org/wiki/Q13222844",
       "display_name": "Moment (physics)",
       "level": 2,
       "score": 0.5958095
     },
     {
       "id": "https://openalex.org/C122048520",
       "wikidata": "https://www.wikidata.org/wiki/Q2913954",
       "display_name": "Percentile",
       "level": 2,
       "score": 0.5911068
     },
     {
       "id": "https://openalex.org/C2778113609",
       "wikidata": "https://www.wikidata.org/wiki/Q10897",
       "display_name": "Lambda",
       "level": 2,
       "score": 0.55218154
     },
     {
       "id": "https://openalex.org/C110121322",
       "wikidata": "https://www.wikidata.org/wiki/Q865811",
       "display_name": "Distribution (mathematics)",
       "level": 2,
       "score": 0.5093101
     },
     {
       "id": "https://openalex.org/C2780033567",
       "wikidata": "https://www.wikidata.org/wiki/Q6823720",
       "display_name": "Method of moments (probability theory)",
       "level": 3,
       "score": 0.4938367
     },
     {
       "id": "https://openalex.org/C28826006",
       "wikidata": "https://www.wikidata.org/wiki/Q33521",
       "display_name": "Applied mathematics",
       "level": 1,
       "score": 0.44362655
     },
     {
       "id": "https://openalex.org/C63479239",
       "wikidata": "https://www.wikidata.org/wiki/Q7353546",
       "display_name": "Robustness (evolution)",
       "level": 3,
       "score": 0.43070263
     },
     {
       "id": "https://openalex.org/C105795698",
       "wikidata": "https://www.wikidata.org/wiki/Q12483",
       "display_name": "Statistics",
       "level": 1,
       "score": 0.4059606
     },
     {
       "id": "https://openalex.org/C134306372",
       "wikidata": "https://www.wikidata.org/wiki/Q7754",
       "display_name": "Mathematical analysis",
       "level": 1,
       "score": 0.37438363
     },
     {
       "id": "https://openalex.org/C121864883",
       "wikidata": "https://www.wikidata.org/wiki/Q677916",
       "display_name": "Statistical physics",
       "level": 1,
       "score": 0.3313179
     },
     {
       "id": "https://openalex.org/C121332964",
       "wikidata": "https://www.wikidata.org/wiki/Q413",
       "display_name": "Physics",
       "level": 0,
       "score": 0.23804179
     },
     {
       "id": "https://openalex.org/C185429906",
       "wikidata": "https://www.wikidata.org/wiki/Q1130160",
       "display_name": "Estimator",
       "level": 2,
       "score": 0.21413949
     },
     {
       "id": "https://openalex.org/C74650414",
       "wikidata": "https://www.wikidata.org/wiki/Q11397",
       "display_name": "Classical mechanics",
       "level": 1,
       "score": 0.07954916
     },
     {
       "id": "https://openalex.org/C120665830",
       "wikidata": "https://www.wikidata.org/wiki/Q14620",
       "display_name": "Optics",
       "level": 1,
       "score": 0.0
     },
     {
       "id": "https://openalex.org/C55493867",
       "wikidata": "https://www.wikidata.org/wiki/Q7094",
       "display_name": "Biochemistry",
       "level": 1,
       "score": 0.0
     },
     {
       "id": "https://openalex.org/C185592680",
       "wikidata": "https://www.wikidata.org/wiki/Q2329",
       "display_name": "Chemistry",
       "level": 0,
       "score": 0.0
     },
     {
       "id": "https://openalex.org/C104317684",
       "wikidata": "https://www.wikidata.org/wiki/Q7187",
       "display_name": "Gene",
       "level": 2,
       "score": 0.0
     }
   ],
   "corresponding_author_ids": [
     "https://openalex.org/A5073463401"
   ],
   "corresponding_institution_ids": [
     "https://openalex.org/I1286329397"
   ],
   "countries_distinct_count": 1,
   "counts_by_year": [
     {
       "year": 2024,
       "cited_by_count": 2
     },
     {
       "year": 2023,
       "cited_by_count": 9
     },
     {
       "year": 2022,
       "cited_by_count": 3
     },
     {
       "year": 2021,
       "cited_by_count": 3
     },
     {
       "year": 2020,
       "cited_by_count": 2
     },
     {
       "year": 2019,
       "cited_by_count": 4
     },
     {
       "year": 2017,
       "cited_by_count": 5
     },
     {
       "year": 2016,
       "cited_by_count": 11
     },
     {
       "year": 2015,
       "cited_by_count": 7
     },
     {
       "year": 2014,
       "cited_by_count": 4
     },
     {
       "year": 2013,
       "cited_by_count": 6
     },
     {
       "year": 2012,
       "cited_by_count": 9
     }
   ],
   "created_date": "2016-06-24",
   "datasets": [],
   "display_name": "L-moments and TL-moments of the generalized lambda distribution",
   "doi": "https://doi.org/10.1016/j.csda.2006.07.016",
   "fulltext_origin": "ngrams",
   "fwci": 2.696,
   "grants": [],
   "has_fulltext": true,
   "id": "https://openalex.org/W2046634821",
   "ids": {
     "openalex": "https://openalex.org/W2046634821",
     "doi": "https://doi.org/10.1016/j.csda.2006.07.016",
     "mag": "2046634821"
   },
   "indexed_in": [
     "crossref"
   ],
   "institutions_distinct_count": 1,
   "is_paratext": false,
   "is_retracted": false,
   "keywords": [
     {
       "id": "https://openalex.org/keywords/quantile",
       "display_name": "Quantile",
       "score": 0.6858767
     },
     {
       "id": "https://openalex.org/keywords/lifetime-modeling",
       "display_name": "Lifetime Modeling",
       "score": 0.497501
     },
     {
       "id": "https://openalex.org/keywords/robustness",
       "display_name": "Robustness (evolution)",
       "score": 0.43070263
     }
   ],
   "language": "en",
   "locations": [
     {
       "is_oa": false,
       "landing_page_url": "https://doi.org/10.1016/j.csda.2006.07.016",
       "pdf_url": null,
       "source": {
         "id": "https://openalex.org/S132362803",
         "display_name": "Computational Statistics & Data Analysis",
         "issn_l": "0167-9473",
         "issn": [
           "0167-9473",
           "1872-7352"
         ],
         "is_oa": false,
         "is_in_doaj": false,
         "is_core": true,
         "host_organization": "https://openalex.org/P4310320990",
         "host_organization_name": "Elsevier BV",
         "host_organization_lineage": [
           "https://openalex.org/P4310320990"
         ],
         "host_organization_lineage_names": [
           "Elsevier BV"
         ],
         "type": "journal"
       },
       "license": null,
       "license_id": null,
       "version": null,
       "is_accepted": false,
       "is_published": false
     }
   ],
   "locations_count": 1,
   "mesh": [],
   "ngrams_url": "https://api.openalex.org/works/W2046634821/ngrams",
   "open_access": {
     "is_oa": false,
     "oa_status": "closed",
     "oa_url": null,
     "any_repository_has_fulltext": false
   },
   "primary_location": {
     "is_oa": false,
     "landing_page_url": "https://doi.org/10.1016/j.csda.2006.07.016",
     "pdf_url": null,
     "source": {
       "id": "https://openalex.org/S132362803",
       "display_name": "Computational Statistics & Data Analysis",
       "issn_l": "0167-9473",
       "issn": [
         "0167-9473",
         "1872-7352"
       ],
       "is_oa": false,
       "is_in_doaj": false,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310320990",
       "host_organization_name": "Elsevier BV",
       "host_organization_lineage": [
         "https://openalex.org/P4310320990"
       ],
       "host_organization_lineage_names": [
         "Elsevier BV"
       ],
       "type": "journal"
     },
     "license": null,
     "license_id": null,
     "version": null,
     "is_accepted": false,
     "is_published": false
   },
   "primary_topic": {
     "id": "https://openalex.org/T11186",
     "display_name": "Global Drought Monitoring and Assessment",
     "score": 0.9951,
     "subfield": {
       "id": "https://openalex.org/subfields/2306",
       "display_name": "Global and Planetary Change"
     },
     "field": {
       "id": "https://openalex.org/fields/23",
       "display_name": "Environmental Science"
     },
     "domain": {
       "id": "https://openalex.org/domains/3",
       "display_name": "Physical Sciences"
     }
   },
   "publication_date": "2007-05-01",
   "publication_year": 2007,
   "referenced_works": [
     "https://openalex.org/W1481794564",
     "https://openalex.org/W1505850045",
     "https://openalex.org/W1558034244",
     "https://openalex.org/W1559250156",
     "https://openalex.org/W1585379323",
     "https://openalex.org/W1602426923",
     "https://openalex.org/W1965018248",
     "https://openalex.org/W1993427788",
     "https://openalex.org/W2024109362",
     "https://openalex.org/W2050017654",
     "https://openalex.org/W2056199992",
     "https://openalex.org/W2077990550",
     "https://openalex.org/W2164540610",
     "https://openalex.org/W2169449449",
     "https://openalex.org/W2297448116",
     "https://openalex.org/W4236128260",
     "https://openalex.org/W4236802179",
     "https://openalex.org/W4243597181"
   ],
   "referenced_works_count": 18,
   "related_works": [
     "https://openalex.org/W4390690393",
     "https://openalex.org/W4382516294",
     "https://openalex.org/W3132003399",
     "https://openalex.org/W3124946120",
     "https://openalex.org/W2909697207",
     "https://openalex.org/W2585269888",
     "https://openalex.org/W2047938026",
     "https://openalex.org/W2044551864",
     "https://openalex.org/W1572557500",
     "https://openalex.org/W1488761988"
   ],
   "sustainable_development_goals": [],
   "title": "L-moments and TL-moments of the generalized lambda distribution",
   "topics": [
     {
       "id": "https://openalex.org/T11186",
       "display_name": "Global Drought Monitoring and Assessment",
       "score": 0.9951,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10968",
       "display_name": "Skew Distributions and Applications in Statistics",
       "score": 0.9943,
       "subfield": {
         "id": "https://openalex.org/subfields/2613",
         "display_name": "Statistics and Probability"
       },
       "field": {
         "id": "https://openalex.org/fields/26",
         "display_name": "Mathematics"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10282",
       "display_name": "Modeling and Forecasting Financial Volatility",
       "score": 0.9862,
       "subfield": {
         "id": "https://openalex.org/subfields/2003",
         "display_name": "Finance"
       },
       "field": {
         "id": "https://openalex.org/fields/20",
         "display_name": "Economics, Econometrics and Finance"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     }
   ],
   "type": "article",
   "type_crossref": "journal-article",
   "updated_date": "2024-08-15T06:49:30.633994",
   "versions": []
 }

}