Item talk:Q152087

From geokb

Demographic patterns of postfire regeneration in Mediterranean-climate shrublands of California

This study uses detailed demographic data to determine the extent to which functional groupings, based on seedling recruitment and resprouting response to fire, capture the dynamics of postfire responses and early successional change in fire-prone ecosystems. Following massive wildfires in southern California, USA, we sampled chaparral and sage scrub vegetation in nested 0.1-ha plots from 90 sites for five postfire years. Prefire density of woody skeletons and cover and density of all postfire species were recorded. Functional types of postfire obligate seeder, facultative seeder, and obligate resprouter are broadly useful but fail to capture much of the dynamics of postfire succession in these shrublands. For the woody flora, stratifying these three regeneration modes by life-form captures important differences. Postfire obligate-seeding shrubs exhibit a single postfire seedling cohort whereas the faster growing suffrutescent species reach reproductive maturity by the second year and produce multiple seedling cohorts. Postfire obligate-resprouting shrubs reach reproductive maturity early but have very limited seedling recruitment in the early postfire years, whereas obligate-resprouting subshrubs flower the first year from resprouts and have seedling recruitment pulses in the second and subsequent postfire years. For the rich herbaceous flora, further subdivisions are needed to capture the range of variation. Herbaceous perennials are nearly all postfire obligate resprouters, and there are important demographic differences during early succession in different growth forms such as geophytes and rhizomatous grasses. Annuals lack resprouting ability and are postfire obligate seeders. Some exhibit extreme life-history specialization and are present only in the immediate postfire year(s). Others are highly specialized on fire but persist during early succession, and still others are opportunistic species widely distributed on open sites but can expand their populations during early succession. ?? 2006 by the Ecological Society of America.