Item talk:Q149806

From geokb

Distribution of mineral phases in the Eocene Green River Formation, Piceance Basin, Colorado – Implications for the evolution of Lake Uinta

The mineralogy of the Eocene Green River Formation in the Piceance Basin, Colorado, has been the subject of numerous studies since the 1920s. Most previous work has focused on the resource potential of these lacustrine mudrocks, which in addition to substantial oil shale potential (in-place resources of 353 billion barrels of synthetic crude oil for rocks yielding at least 25 gallons per ton, GPT), includes nahcolite, a currently utilized soda ash resource, and dawsonite, a potential alternative source of aluminum. Another reason to study the mineralogy in this system is that the geographic and stratigraphic distribution of various authigenic minerals may provide insights into the geochemistry and depositional environment of the long-lived Eocene Lake Uinta. In this study, legacy non-quantitative (presence/absence) X-ray diffraction (XRD) data recently published by the U.S. Geological Survey (USGS) for more than nine-thousand samples collected from thirty coreholes in the Green River Formation, Piceance Basin were examined. These data were used to better define the stratigraphic and paleogeographic extent of a set of indicator minerals (illite, analcime, albite, dawsonite, and nahcolite) within the Piceance Basin lacustrine strata. This set of minerals was selected based on observations from previous work and variability in their occurrence and co-occurrence within the Piceance Basin. The USGS database has been used to (1) construct maps showing geographic variations in mineral occurrences for 14 stratigraphically defined rich and lean oil shale zones; (2) assess co-occurrences of indicator minerals; and (3) compare occurrence results with quantitative XRD datasets collected on Piceance Basin oil shales. Occurrences of many authigenic minerals (analcime, dawsonite, and nahcolite) varied in the lacustrine strata near and around the depocenter, but others, like quartz, dolomite, and feldspar (potassium + undifferentiated), were widely and consistently present (>90% of samples) across the basin. Shifts in the distribution of indicator mineral occurrences generally coincide with changes identified in previous lake history descriptions and indicate that the water chemistry of Lake Uinta varied significantly going from near-shore to the depocenter and through time.