Item talk:Q54786

From geokb
Revision as of 12:57, 20 October 2023 by Sky (talk | contribs) (Updated person data cache with ORCID information)

orcid:

 activities:
   works:
     group:
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1186/s40537-023-00801-9
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.1186/s40537-023-00801-9
           external-id-value: 10.1186/s40537-023-00801-9
       last-modified-date:
         value: 1695729778199
       work-summary:
       - created-date:
           value: 1695729778199
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1186/s40537-023-00801-9
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1186/s40537-023-00801-9
             external-id-value: 10.1186/s40537-023-00801-9
         journal-title:
           value: Journal of Big Data
         last-modified-date:
           value: 1695729778199
         path: /0000-0002-3324-2589/work/143033278
         publication-date:
           day:
             value: '26'
           month:
             value: 09
           year:
             value: '2023'
         put-code: 143033278
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: A guide to creating an effective big data management framework
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.1186/s40537-023-00801-9
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1111/tgis.12830
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.1111/tgis.12830
           external-id-value: 10.1111/tgis.12830
       last-modified-date:
         value: 1654155064813
       work-summary:
       - created-date:
           value: 1635769543452
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1111/tgis.12830
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1111/tgis.12830
             external-id-value: 10.1111/tgis.12830
         journal-title:
           value: Transactions in GIS
         last-modified-date:
           value: 1654155064813
         path: /0000-0002-3324-2589/work/102375894
         publication-date:
           day: null
           month:
             value: '02'
           year:
             value: '2022'
         put-code: 102375894
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: GeoAI in the US Geological Survey for topographic mapping
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.1111/tgis.12830
         visibility: public
     last-modified-date:
       value: 1695729778199
     path: /0000-0002-3324-2589/works
 history:
   claimed: true
   completion-date: null
   creation-method: DIRECT
   deactivation-date: null
   last-modified-date:
     value: 1695729777835
   source: null
   submission-date:
     value: 1470142563736
   verified-email: true
   verified-primary-email: true
 person:
   name:
     created-date:
       value: 1470142563958
     credit-name: null
     family-name:
       value: Thiem
     given-names:
       value: Philip
     last-modified-date:
       value: 1470142563958
     path: 0000-0002-3324-2589
     source: null
     visibility: public

usgs_staff_profile:

 meta:
   status_code: 200
   timestamp: '2023-09-30T17:21:22.185256'
   url: https://www.usgs.gov/staff-profiles/philip-thiem
 profile:
   abstracts: []
   affiliations: []
   education: []
   email: pthiem@usgs.gov
   expertise_terms: []
   honors: []
   intro_statements:
   - Philip Thiem manages various high performance computing projects for the Center
     of Excellence for Geospatial Information Science(CEGIS).
   name: Philip Thiem
   name_qualifier: null
   orcid: 0000-0002-3324-2589
   organization_link: https://www.usgs.gov/centers/cegis
   organization_name: Center of Excellence for Geospatial Information Science (CEGIS)
   personal_statement: Philip Thiem is a EDGE Development Computer Scientist with
     the U.S. Geological Survey.  He received degrees in Computer Science and Mathematics.
     Worked for the Missouri University for Science and Technology until 2009 doing
     software development for hydrology research projects.  Later, started to work
     with the U.S. Geological Survey doing work on various things, notably automated
     contour generation, 3DEP product generation related software, software containers
     and DevOps workflows.  Philip started with CEGIS in 2020 to investigate parallel
     algorithms on multi-cores CPU and GPUs, scaled workflows, computing platforms,
     and numerical optimization.
   professional_experience: []
   title: Computer Scientist