Item talk:Q49599
From geokb
usgs_staff_profile:
meta: status_code: 200 timestamp: '2023-09-30T17:19:09.750609' url: https://www.usgs.gov/staff-profiles/curt-storlazzi profile: abstracts: [] affiliations: [] education: - '2002-2004: Research Fellow, Partnership for Interdisciplinary Studies of Coastal Oceans Consortium' - '2000-2002: Post-doctoral Researcher, UCSC Institute for Marine Sciences' - '2000: Ph.D., UCSC, Earth Sciences Department' - '1996: B.Sc., University of Delaware, Geology Department' email: cstorlazzi@usgs.gov expertise_terms: - coastal ecosystems - marine ecosystems - marine geology - marine water quality - ocean characteristics - ocean circulation - ocean currents - ocean processes - ocean salinity - ocean temperature - tides (oceanic) - ocean waves - reef ecosystems - sea-floor characteristics honors: [] intro_statements: - My interests span the coastal zone, from seacliff erosional processes to sediment dynamics in the shallow coastal ocean. My research focuses on the quantitative study of hydrodynamics, sediment transport, and geomorphology in coastal and marine environments. name: Curt Storlazzi, PhD name_qualifier: null orcid: 0000-0001-8057-4490 organization_link: https://www.usgs.gov/centers/pcmsc organization_name: Pacific Coastal and Marine Science Center personal_statement: 'Research TopicsCoral reef morphology, hydrodynamics, and sediment, nutrient, contaminant, and larval transportThe role of coral reefs and other coastal ecosystems in coastal hazard risk reductionThe interplay between geologic structure, climatic fluctuations, and coastal processesHigh-resolution oceanographic instrumentation and coastal mapping techniquesThe influence of physical processes on coral reef ecosystemsMany tropical coastal environments have been impacted by infrastructure development, nutrient and contaminant delivery, and natural and human-induced sedimentation. The high geomorphic and hydrodynamic complexity both within and between coral reefs, in conjunction with past technical restrictions, has limited our understanding of the nature of flow and the resulting flux of physical, chemical, and biologic material in these ecosystems. Understanding the physical controls on the timing and magnitude of flow and sediment, larvae, nutrient, and contaminant transport, along with their impact on seafloor geomorphology, stability, and sedimentation in these refugia are essential to assessing modern anthropogenic impacts (climate change, etc.) on these ecosystems and help guide how restoration can increase the resiliency of coral reef-lined coastal communities.See: Coral Reef Project and The Value of U.S. Coral Reefs for Risk Reduction (links below)The influence of climate change and sea-level rise on coral reef-lined coastsObservations show that sea level is rising and recent projections indicate sea level will exceed 1.0 m, and may reach 2.0 m, above 2000 levels by the end of the 21st century. The amount of land and water available for human habitation, water and food sources, and ecosystems along coral reef-lined coasts is limited and vulnerable to wave-driven flooding during storms. Rising sea levels will further exacerbate the impacts of storms on coral reef-lined coasts by reducing wave breaking (and thus energy dissipation) over reefs and result in greater wave energy impacting the shoreline, causing increased flooding and changes to the coast such as erosion. Understanding the physical controls on the timing and magnitude of flooding, along with their impact on coastal geomorphology, are essential to assessing impacts on, and the future sustainability of, coastal infrastructure, agriculture, freshwater availability, and ecosystems.See: Low-lying areas of tropical Pacific islands (links below)' professional_experience: - '2002-present: Research Geologist and Oceanographer, USGS Coastal and Marine Hazards and Resources Program' - '2002-present: Research Associate, University of California at Santa Cruz (UCSC) Institute for Marine Sciences' title: Research Geologist