Item talk:Q156809

From geokb
Revision as of 23:22, 1 August 2023 by Sky (talk | contribs) (Added abstract and other texts to publication item's discussion page for reference)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Population trends for North American winter birds based on hierarchical models

Managing widespread and persistent threats to birds requires knowledge of population dynamics at large spatial and temporal scales. For over 100 yrs, the Audubon Christmas Bird Count (CBC) has enlisted volunteers in bird monitoring efforts that span the Americas, especially southern Canada and the United States. We employed a Bayesian hierarchical model to control for variation in survey effort among CBC circles and, using CBC data from 1966 to 2013, generated early-winter population trend estimates for 551 species of birds. Selecting a subset of species that do not frequent bird feeders and have ≥25% range overlap with the distribution of CBC circles (228 species) we further estimated aggregate (i.e., across species) trends for the entire study region and at the level of states/provinces, Bird Conservation Regions, and Landscape Conservation Cooperatives. Moreover, we examined the relationship between ten biological traits—range size, population size, migratory strategy, habitat affiliation, body size, diet, number of eggs per clutch, age at sexual maturity, lifespan, and tolerance of urban/suburban settings—and CBC trend estimates. Our results indicate that 68% of the 551 species had increasing trends within the study area over the interval 1966–2013. When trends were examined across the subset of 228 species, the median population trend for the group was 0.9% per year at the continental level. At the regional level, aggregate trends were positive in all but a few areas. Negative population trends were evident in lower latitudes, whereas the largest increases were at higher latitudes, a pattern consistent with range shifts due to climate change. Nine of 10 biological traits were significantly associated with median population trend; however, none of the traits explained >34% of the deviance in the data, reflecting the indirect relationships between population trend estimates and species traits. Trend estimates based on the CBC are broadly congruent with estimates based on the North American Breeding Bird Survey, another large-scale monitoring program. Both of these efforts, conducted by citizen scientists, will be required going forward to ensure robust inference about population dynamics in the face of climate and land cover changes.