Item talk:Q152401

From geokb
Revision as of 15:55, 1 August 2023 by Sky (talk | contribs) (Added abstract and other texts to publication item's discussion page for reference)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Spring-staging ecology of midcontinent greater white-fronted geese

A major part of the midcontinent greater white-fronted goose (Anser albifrons) population stages for several weeks in spring in the Rainwater Basin Area (RBA) of south-central Nebraska where substantial mortality from disease occurs periodically. Effective management of this population requires better data on use of habitat, vulnerability to disease, and the role of staging areas in migration and reproduction. We studied use of habitat, foods, nutrient dynamics, and effect of changes in agriculture on food availability and habitat needs in spring 1979-80. During daylight, geese were observed primarily in harvested cornfields (76%) and growing winter wheat (23%). Corn grain and winter wheat shoots composed 90 and 9%, respectively, of foods consumed by collected geese (n = 42). Feeding activity did not vary among post-harvest cornfield treatments except that little feeding occurred (P < 0.05) in moldboard-plowed fields (<1%). Fat content for all geese increased (P 0.01) with Julian date; protein content increased (P = 0.03) only among adult females, and there was no evidence (P > 0.05) of temporal variation in calcium content. Adult geese storing 14.2 g of fat per day deposited approximately 582 g of fat between 22 February and 8 April. Energy requirements for thermal regulation were small compared with requirements for fat synthesis and probably had little effect on nutrient deposition. The 34,000 white-fronted geese present on the Harvard Marsh and Prairie Dog Marsh study areas in March 1980 probably used <20% of the corn available within a 5-km radius. We believe that midcontinent white-fronted geese arrive on Arctic breeding grounds with larger and less variable fat reserves than prior to modern agricultural development. We attribute this response to increased food availability on staging areas where the net effect of agricultural changes has been an increase in corn availability. Waterfowl managers can increase dispersion of geese and provide favorable foraging conditions by maintaining well-distributed wetland roosting habitat and by working with private landowners to ensure access to grain in the vicinity of wetlands.