Item talk:Q144790

From geokb
Revision as of 12:41, 1 August 2023 by Sky (talk | contribs) (Added abstract and other texts to publication item's discussion page for reference)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The effects of crude oil and remediation burning on three clones of smooth cordgrass (Spartina alterniflora Loisel.)

Burning has been employed as an oil spill remediation technique in coastal marshes, even though the combined and interactive effects of soil and burning on vegetation are poorly understood. Variation among clones of perennial marsh grasses in response to these perturbations is not known. We performed a greenhouse experiment designed to assess the effects of Venezuelan crude oil alone and of oil followed by burning on three clonal genets of Spartina alterniflora. The fully-crossed 6-mo experiment involved five dosages of oil (0 l m-2, 4 l m-2, 8 l m-2, 16 l m-2, and 24 l m-2) and two burn treatments (burned or unburned) applied to ramets from three clones. All oil-only dosages reduced survival, but burning after oiling (oil + burn treatments) increased survival relative to oil-only groups in all except the highest two oil dosages. Higher oil-only treatments also reduced ramet densities and inhibited density increases over 6 mo. Burning after treatment with the 16 l m-2 oil concentration allowed increased production of new ramets, but burning exacerbated the negative impacts on ramet density at the oil concentration of 24 l m-2. At some intermediate oil dosages, burning remediated the negative effects of oil on aboveground biomass production and growth in height. There was a significant effect of oil-only treatments on numbers of flowering ramets produced, in which two clones responded with decreased flower production and one exhibited increased flowering. There was no main effect of oil + burn on flowering. There were significant among-clones differences in all response variables to one or both treatments. Our experiment demonstrates that burning of oiled S. alterniflora marshes may have little measurable effect at low levels of Venezuelan crude oil, can remediate the effects of oil at intermediate oil concentrations, but can increase the negative impacts at high concentrations of oil. These results indicate that oil spills have the potential to adversely affect genetic diversity in S. alterniflora populations by eliminating some sensitive clonal variants or changing the relative dominance of genets. These results suggest certain clones may be better suited for phytoremediation or restoration planting following oil spills.