Item talk:Q55273

From geokb
Revision as of 00:20, 30 July 2023 by Sky (talk | contribs) (Added abstract and other texts to publication item's discussion page for reference)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Distribution of chlorinated volatile organic compounds and per- and polyfluoroalkyl substances in groundwater and surface water at the former Naval Air Warfare Center, West Trenton, New Jersey, 2018

Groundwater wells and surface-water storm sewers contaminated with volatile organic compounds (VOCs) and per- and polyfluoroalkyl substances (PFASs) at the former Naval Air Warfare Center (NAWC) site in West Trenton, New Jersey were sampled in 2018 as part of the Navy’s long-term monitoring program. Trichloroethene (TCE), cis-1,2-dichloroethene (cisDCE), and vinyl chloride concentrations were plotted in map view and selected cross sections to elucidate the vertical and horizontal extent and distribution of contamination, along with a tabular comparison between 2018 and previous analytical results. The 2018 data showed that the areas of VOC contamination (>1 microgram per liter) decreased slightly on the north and east sides of the NAWC site from previous sampling dates; these decreases are attributed to the influence of the pump-and-treat system, natural attenuation processes, and various engineered bioaugmentation experiments that have occurred onsite. Off-site groundwater samples indicate the VOC contaminated groundwater is likely hydraulically constrained by the pump-and-treat system and appears to not be moving offsite to the south and west of NAWC. Only one offsite well, 50BR, located along the eastern margin of the site, was found to have detectable TCE and cisDCE concentrations, indicating that VOC contamination continues to migrate a short distance offsite to the east. Detectable VOC contamination was found in wells as deep as 200 and 221 feet on both the east and west sides of the NAWC site. Comparisons of present-day data to data from past sampling efforts indicate that TCE concentrations in most wells have decreased slowly over time.

Results from surface-water samples indicate that VOCs enter surface water predominantly through the West Ditch drainage system. Concentrations and fluxes of VOCs are higher when groundwater levels are higher, indicating contaminated groundwater discharges into the surface water system. Higher VOC concentrations at the Interceptor site relative to other sites in the West Ditch indicate the contamination in the West Ditch system is likely caused by contaminated groundwater discharging to the West Ditch storm sewer near manhole MH-140 when water table levels are high.

The pump-and-treat extraction wells at the former NAWC site were sampled for per- and polyfluoroalkyl substances (PFAS) in 2018. The suite of reported PFAS include perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid, and perfluorobutane sulfonate. Concentrations were plotted in map view to determine the areal extent of the PFAS contamination at the site. Extraction well 48BR sampled on the eastern half of the site was found to have PFOS and PFOA concentrations greater than the New Jersey Department of Environmental Protection Drinking Water maximum contaminant levels (MCLs), which is consistent with the distribution of highest PFAS concentrations in surface water in the OF-4 storm sewer system that drains that area, as well as previously collected PFAS concentrations in monitoring wells. On the western half of the site, the extraction well 08BR sample exceeded MCLs for PFOA and PFOS and the extraction well 22BR sample exceeded the MCL for PFOA, but samples from all other extraction wells were below the MCLs or other criteria for all PFAS analyzed. Concentrations of PFOA exceeded concentrations of PFOS on the west side of NAWC in both groundwater and surface water, which contrasts with the conditions on the east side of NAWC where PFOS concentrations exceeded PFOA concentrations. However, this observation was based on a limited number of samples on the west side of NAWC from 2018 and previous years, so more PFAS sampling is needed on the west side to assess this further.

Table of Contents

  • Abstract
  • Introduction
  • Background
  • Methods
  • Distribution of VOC and PFAS Contamination in Groundwater
  • Distribution of VOC and PFAS Contamination in Surface Water
  • Summary and Conclusions
  • References Cited
  • Appendix 1. Groundwater Flow Directions at the Former Naval Air Warfare Center, West Trenton, New Jersey, 2018
  • Appendix 2. Locations, Construction, and Sampling Frequency of Wells at the Former Naval Air Warfare Center, West Trenton, New Jersey
  • Appendix 3. Volatile Organic Compounds and Per- and Polyfluoroalkyl Substances Concentrations Measured in Wells in 2018; Changes in Concentrations of TCE, cisDCE, and VC in Wells Between 2018 Samples and the Most Recent Prior Sample Analyzed; and the Overall Trend of Concentration Changes at the Former Naval Air Warfare Center, West Trenton, New Jersey
  • Appendix 4. Concentrations and Fluxes of Volatile Organic Compounds and Per- and Polyfluoroalkyl Substances in Storm-Sewer Lines and Springs Associated with the Former Naval Air Warfare Center, West Trenton, New Jersey, 2018