Item talk:Q44493
From geokb
{
"USGS Staff Profile": { "_id": "https://www.usgs.gov/staff-profiles/kyle-r-anderson", "item": "https://geokb.wikibase.cloud/entity/Q44493", "last_update": "2024-05-12T00:00:00Z", "previous_address": null, "qid": "Q44493", "retrieved": "2024-05-12T00:00:00Z", "schema": { "@context": "https://schema.org", "@type": "Person", "affiliation": [], "description": [ { "@type": "TextObject", "abstract": "Volcano Geophysicist with the California Volcano Observatory", "additionalType": "short description" }, { "@type": "TextObject", "abstract": "I am a geophysicist specializing in volcanic systems. I use monitoring data to better understand and forecast volcanic processes and hazards.", "additionalType": "staff profile page introductory statement" }, { "@type": "TextObject", "abstract": "I work to understand volcanic systems by developing mathematical models which relate magma physics with monitoring data such as ground deformations and eruption rates. Model predictions can be compared with real-world observations using probabilistic statistical approaches, making it possible to constrain properties of volcanic systems such as the composition and volume of stored magma. These techniques can also be used in some cases to forecast future eruptive activity. I've worked most extensively at Mount St. Helens and K\u012blauea volcanoes, but I'm interested in volcanoes and eruptions around the world.Research InterestsPhysics of magma systems and volcanic eruptionsCaldera collapse processesEpisodic/cyclic eruptive behaviorVolatiles in magma and influence on eruptive processesRates of magma supply, storage, and eruptionGround deformation caused by magmatic processesVolcanic hazards assessments and forecastsUncertainty quantification", "additionalType": "personal statement" } ], "email": "kranderson@usgs.gov", "hasCredential": [ { "@type": "EducationalOccupationalCredential", "name": "PhD: Geophysics, Stanford University" }, { "@type": "EducationalOccupationalCredential", "name": "MS: Geophysics, Stanford University" }, { "@type": "EducationalOccupationalCredential", "name": "BA: Geology-Physics, Whitman College" } ], "hasOccupation": [ { "@type": "OrganizationalRole", "affiliatedOrganization": { "@type": "Organization", "name": "California Volcano Observatory", "url": "https://www.usgs.gov/observatories/calvo" }, "roleName": "Volcano Geophysicist", "startDate": "2024-05-12T16:10:21.608302" }, { "@type": "Occupation", "additionalType": "self-claimed professional experience", "name": "Research Geophysicist, USGS Volcano Science Center (California Volcano Observatory) (2015-present)" }, { "@type": "Occupation", "additionalType": "self-claimed professional experience", "name": "Mendenhall Postdoctoral Research Fellow, USGS Hawaiian Volcano Observatory (2012-2015)" } ], "identifier": [ { "@type": "PropertyValue", "propertyID": "GeoKB", "value": "https://geokb.wikibase.cloud/entity/Q44493" }, { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0001-8041-3996" } ], "jobTitle": "Volcano Geophysicist", "knowsAbout": [ { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Volcanology" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Volcano Monitoring" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Mathematical Modeling" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Inverse Methods" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Fluid Dynamics" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Volcano Geodesy" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "Numerical Methods" } ], "memberOf": { "@type": "OrganizationalRole", "member": { "@type": "Organization", "name": "U.S. Geological Survey" }, "name": "staff member", "startDate": "2024-05-12T16:10:21.605631" }, "name": "Kyle R. Anderson, Ph.D.", "url": "https://www.usgs.gov/staff-profiles/kyle-r-anderson" }, "status_code": "200" }, "ORCID": { "@context": "http://schema.org", "@id": "https://orcid.org/0000-0001-8041-3996", "@reverse": { "creator": [ { "@id": "https://doi.org/10.1146/annurev-earth-031621-075925", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1146/annurev-earth-031621-075925" }, "name": "The 2018 Eruption of K\u012blauea: Insights, Puzzles, and Opportunities for Volcano Science" }, { "@id": "https://doi.org/10.1029/2024jb028886", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2024jb028886" }, "name": "Earthquake Cycle Mechanics During Caldera Collapse: Simulating the 2018 K\u0131\u0304lauea Eruption" }, { "@id": "https://doi.org/10.1029/2023gc011341", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2023gc011341" }, "name": "Versatile Modeling Of Deformation (VMOD) Inversion Framework: Application to 20\u00a0Years of Observations at Westdahl Volcano and Fisher Caldera, Alaska, US" }, { "@id": "https://doi.org/10.1007/s00445-024-01725-9", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00445-024-01725-9" }, "name": "Pre-existing ground cracks as lava flow pathways at K\u012blauea in 2014" }, { "@id": "https://doi.org/10.1038/s41561-023-01372-3", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41561-023-01372-3" }, "name": "Stress-driven recurrence and precursory moment-rate surge in caldera collapse earthquakes" }, { "@id": "https://doi.org/10.1007/s00445-023-01687-4", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00445-023-01687-4" }, "name": "Understanding the drivers of volcano deformation through geodetic model verification and validation" }, { "@id": "https://doi.org/10.1080/00401706.2023.2182365", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/00401706.2023.2182365" }, "name": "Calibration of Imperfect Geophysical Models by Multiple Satellite Interferograms with Measurement Bias" }, { "@id": "https://doi.org/10.1016/j.epsl.2023.118288", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.epsl.2023.118288" }, "name": "Ring fault creep drives volcano-tectonic seismicity during caldera collapse of K\u012blauea in 2018" }, { "@id": "https://doi.org/10.1029/2022gl099270", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022gl099270" }, "name": "Could K\u0131\u0304lauea's 2020 Post Caldera\u2010Forming Eruption Have Been Anticipated?" }, { "@id": "https://doi.org/10.1002/essoar.10511270.1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10511270.1" }, "name": "Could Kilauea's 2020 post caldera-forming eruption have been anticipated?" }, { "@id": "https://doi.org/10.1038/s41586-021-04163-1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41586-021-04163-1" }, "name": "Rainfall an unlikely factor in K\u012blauea\u2019s 2018 rift eruption" }, { "@id": "https://doi.org/10.1029/2021jb023324", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021jb023324" }, "name": "Earthquake\u2010Derived Seismic Velocity Changes During the 2018 Caldera Collapse of K\u012blauea Volcano" }, { "@id": "https://doi.org/10.3133/sir20225116", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20225116" }, "name": "Optimizing satellite resources for the global assessment and mitigation of volcanic hazards\u2014Suggestions from the USGS Powell Center Volcano Remote Sensing Working Group" }, { "@id": "https://doi.org/10.1016/j.jvolgeores.2021.107381", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jvolgeores.2021.107381" }, "name": "Evaluating the state-of-the-art in remote volcanic eruption characterization Part II: Ulawun volcano, Papua New Guinea" }, { "@id": "https://doi.org/10.1016/j.jvolgeores.2021.107354", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jvolgeores.2021.107354" }, "name": "Evaluating the state-of-the-art in remote volcanic eruption characterization Part I: Raikoke volcano, Kuril Islands" }, { "@id": "https://doi.org/10.1029/2021gc009911", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021gc009911" }, "name": "Multidisciplinary Constraints on Magma Compressibility, the Pre\u2010Eruptive Exsolved Volatile Fraction, and the H2O/CO2 Molar Ratio for the 2006 Augustine Eruption, Alaska" }, { "@id": "https://doi.org/10.1073/pnas.2101469118", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.2101469118" }, "name": "Repeating caldera collapse events constrain fault friction at the kilometer scale" }, { "@id": "https://doi.org/10.3133/pp1867g", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/pp1867g" }, "name": "A decade of geodetic change at K\u012blauea\u2019s summit\u2014Observations, interpretations, and unanswered questions from studies of the 2008\u20132018 Halema\u02bbuma\u02bbu eruption" }, { "@id": "https://doi.org/10.1038/s41467-020-19190-1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-020-19190-1" }, "name": "The cascading origin of the 2018 K\u012blauea eruption and implications for future forecasting" }, { "@id": "https://doi.org/10.1785/0220200083", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1785/0220200083" }, "name": "Very-Long-Period (VLP) Seismic Artifacts during the 2018 Caldera Collapse at K\u012blauea, Hawai\u2018i" }, { "@id": "https://doi.org/10.1029/2020gl088867", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020gl088867" }, "name": "Caldera Collapse Geometry Revealed by Near\u2010Field GPS Displacements at K\u012blauea Volcano in 2018" }, { "@id": "https://doi.org/10.1029/2020gl087856", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020gl087856" }, "name": "The Prevalence and Significance of Offset Magma Reservoirs at Arc Volcanoes" }, { "@id": "https://doi.org/10.1029/2018jb016974", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018jb016974" }, "name": "Partly Cloudy With a Chance of Lava Flows: Forecasting Volcanic Eruptions in the Twenty\u2010First Century" }, { "@id": "https://doi.org/10.3133/ofr20201002", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20201002" }, "name": "Preliminary analyses of volcanic hazards at K\u012blauea Volcano, Hawai\u2018i, 2017\u20132018" }, { "@id": "https://doi.org/10.1029/2019gl085904", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019gl085904" }, "name": "Temporal Variations in Scrubbing of Magmatic Gases at the Summit of K\u012blauea Volcano, Hawai\u2018i" }, { "@id": "https://doi.org/10.1126/science.aay9070", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.aay9070" }, "name": "Cyclic lava effusion during the 2018 eruption of K\u012blauea Volcano" }, { "@id": "https://doi.org/10.1126/science.aaz1822", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.aaz1822" }, "name": "Magma reservoir failure and the onset of caldera collapse at K\u012blauea Volcano in 2018" }, { "@id": "https://doi.org/10.1029/2019gl084689", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019gl084689" }, "name": "Mechanics of Inflationary Deformation During Caldera Collapse: Evidence From the 2018 K\u012blauea Eruption" }, { "@id": "https://doi.org/10.1016/j.epsl.2019.115736", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.epsl.2019.115736" }, "name": "Physicochemical models of effusive rhyolitic eruptions constrained with InSAR and DEM data: A case study of the 2011-2012 Cord\u00f3n Caulle eruption" }, { "@id": "https://doi.org/10.1029/2018gl081757", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018gl081757" }, "name": "A Cautionary Tale of Topography and Tilt from K\u012blauea Caldera" }, { "@id": "https://doi.org/10.1016/j.epsl.2018.11.030", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.epsl.2018.11.030" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85057578049" } ], "name": "Eruptions in sync: Improved constraints on K\u012blauea Volcano's hydraulic connection" }, { "@id": "https://doi.org/10.1126/science.aav7046", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.aav7046" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85058858929" } ], "name": "The 2018 rift eruption and summit collapse of K\u012blauea Volcano" }, { "@id": "https://doi.org/10.1002/2017jb014580", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017jb014580" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85039542594" } ], "name": "Decaying Lava Extrusion Rate at El Reventador Volcano, Ecuador, Measured Using High\u2010Resolution Satellite Radar" }, { "@id": "https://doi.org/10.1002/2017jb014343", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017jb014343" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85035096468" } ], "name": "Constraining the Magmatic System at Mount St. Helens (2004\u20132008) Using Bayesian Inversion With Physics\u2010Based Models Including Gas Escape and Crystallization" }, { "@id": "https://doi.org/10.1038/ngeo3007", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85028813907" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/ngeo3007" } ], "name": "Abundant carbon in the mantle beneath Hawai\u2018i" }, { "@id": "https://doi.org/10.1016/j.epsl.2016.04.029", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84975482169" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.epsl.2016.04.029" } ], "name": "Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: K\u012blauea Volcano, 2000\u20132012" }, { "@id": "https://doi.org/10.1130/gsatg262a.1", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/gsatg262a.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84956664890" } ], "name": "The 2014\u20132015 P\u0101hoa lava flow crisis at K\u012blauea Volcano, Hawai\u2019i: Disaster avoided and lessons learned" }, { "@id": "https://doi.org/10.3133/sir20165059", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20165059" }, "name": "The 2014 annual report for the Hawaiian Volcano Observatory" }, { "@id": "https://doi.org/10.1007/s00445-015-0973-4", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00445-015-0973-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84942120853" } ], "name": "The 2004\u20132008 dome-building eruption at Mount St. Helens, Washington: epilogue" }, { "@id": "https://doi.org/10.1130/g36896.1", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84949528477" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/g36896.1" } ], "name": "Lava lake level as a gauge of magma reservoir pressure and eruptive hazard" }, { "@id": "https://doi.org/10.1002/9781118872079.ch11", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85059240016" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/9781118872079.ch11" } ], "name": "Episodic Deflation-Inflation Events at K\u012blauea Volcano and Implications for the Shallow Magma System" }, { "@id": "https://doi.org/10.1038/ngeo2064", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84895421578" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/ngeo2064" } ], "name": "Volcanology: Look up for magma insights" }, { "@id": "https://doi.org/10.1002/jgrb.50169", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880718136" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jgrb.50169" } ], "name": "Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004-2008" }, { "@id": "https://doi.org/10.1029/2010jb007939", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010jb007939" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79960484368" } ], "name": "Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes" }, { "@id": "https://doi.org/10.1029/2009jb007102", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78249287873" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2009jb007102" } ], "name": "Cyclic ground tilt associated with the 2004\u20132008 eruption of Mount St. Helens" } ] }, "@type": "Person", "address": { "@type": "PostalAddress", "addressCountry": "US" }, "affiliation": { "@type": "Organization", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "2928" }, "name": "U.S. Geological Survey" }, "alumniOf": { "@type": "Organization", "alternateName": "Geophysics", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "6429" }, "name": "Stanford University" }, "familyName": "Anderson", "givenName": "Kyle R.", "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "7404580538" }, "mainEntityOfPage": "https://orcid.org/0000-0001-8041-3996", "name": "Kyle R. Anderson", "url": "https://www.usgs.gov/staff-profiles/kyle-r-anderson" }, "OpenAlex": { "created_date": "2023-07-21", "display_name": "K. R. Anderson", "display_name_alternatives": [ "K. R. Anderson", "K. Anderson", "Kyle Anderson", "Kyle R. Anderson", "Kelso R. Anderson" ], "ids": { "openalex": "https://openalex.org/A5087723414", "orcid": "https://orcid.org/0000-0001-8041-3996", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=7404580538&partnerID=MN8TOARS" }, "last_known_institutions": [ { "country_code": "US", "display_name": "Google (United States)", "id": "https://openalex.org/I1291425158", "lineage": [ "https://openalex.org/I1291425158", "https://openalex.org/I4210128969" ], "ror": "https://ror.org/00njsd438", "type": "company" } ], "orcid": "https://orcid.org/0000-0001-8041-3996", "topics": [ { "count": 55, "display_name": "Seismicity and Tectonic Plate Interactions", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10110", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 44, "display_name": "Tectonic and Geochronological Evolution of Orogens", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10001", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 33, "display_name": "Machine Learning for Earthquake Early Warning Systems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Computer Science", "id": "https://openalex.org/fields/17" }, "id": "https://openalex.org/T13018", "subfield": { "display_name": "Artificial Intelligence", "id": "https://openalex.org/subfields/1702" } }, { "count": 25, "display_name": "High-Resolution Seismic Noise Tomography", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11757", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 17, "display_name": "Mantle Dynamics and Earth's Structure", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10413", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 17, "display_name": "Seismic Waveform Inversion in Geophysics", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10271", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 11, "display_name": "Study of Earthquake Precursor Phenomena", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T12424", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } }, { "count": 10, "display_name": "Machine Learning for Mineral Prospectivity Mapping", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Computer Science", "id": "https://openalex.org/fields/17" }, "id": "https://openalex.org/T12157", "subfield": { "display_name": "Artificial Intelligence", "id": "https://openalex.org/subfields/1702" } }, { "count": 9, "display_name": "Geological Evolution of South China Sea", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T13177", "subfield": { "display_name": "Geology", "id": "https://openalex.org/subfields/1907" } }, { "count": 8, "display_name": "Landslide Hazards and Risk Assessment", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10535", "subfield": { "display_name": "Management, Monitoring, Policy and Law", "id": "https://openalex.org/subfields/2308" } }, { "count": 8, "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10995", "subfield": { "display_name": "Environmental Chemistry", "id": "https://openalex.org/subfields/2304" } }, { "count": 7, "display_name": "Geological Modeling and Uncertainty Analysis", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T13067", "subfield": { "display_name": "Geochemistry and Petrology", "id": "https://openalex.org/subfields/1906" } }, { "count": 6, "display_name": "Global Sea Level Variability and Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11405", "subfield": { "display_name": "Oceanography", "id": "https://openalex.org/subfields/1910" } }, { "count": 5, "display_name": "Demand Response in Smart Grids", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T10603", "subfield": { "display_name": "Electrical and Electronic Engineering", "id": "https://openalex.org/subfields/2208" } }, { "count": 5, "display_name": "Numerical Weather Prediction Models", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10466", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 5, "display_name": "Synthetic Aperture Radar Interferometry", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T10801", "subfield": { "display_name": "Aerospace Engineering", "id": "https://openalex.org/subfields/2202" } }, { "count": 5, "display_name": "Rotational Seismology and Engineering Applications", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T13885", "subfield": { "display_name": "Ocean Engineering", "id": "https://openalex.org/subfields/2212" } }, { "count": 4, "display_name": "Cryogenic Fluid Storage and Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T13200", "subfield": { "display_name": "Aerospace Engineering", "id": "https://openalex.org/subfields/2202" } }, { "count": 4, "display_name": "Hybrid Rocket Propulsion and Stability Analysis", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T12513", "subfield": { "display_name": "Aerospace Engineering", "id": "https://openalex.org/subfields/2202" } }, { "count": 4, "display_name": "Nanoelectronics and Transistors", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T10558", "subfield": { "display_name": "Electrical and Electronic Engineering", "id": "https://openalex.org/subfields/2208" } }, { "count": 4, "display_name": "Quantum Computing and Simulation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Computer Science", "id": "https://openalex.org/fields/17" }, "id": "https://openalex.org/T10682", "subfield": { "display_name": "Artificial Intelligence", "id": "https://openalex.org/subfields/1702" } }, { "count": 3, "display_name": "Modeling and Optimization of Cyclone Separators", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T12540", "subfield": { "display_name": "Computational Mechanics", "id": "https://openalex.org/subfields/2206" } }, { "count": 3, "display_name": "Atomic Layer Deposition Technology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T10472", "subfield": { "display_name": "Electrical and Electronic Engineering", "id": "https://openalex.org/subfields/2208" } }, { "count": 3, "display_name": "Evolution and Applications of CubeSat Missions", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T12449", "subfield": { "display_name": "Aerospace Engineering", "id": "https://openalex.org/subfields/2202" } }, { "count": 3, "display_name": "Tectonic Evolution of Carpathian-Pannonian Region", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T12821", "subfield": { "display_name": "Geophysics", "id": "https://openalex.org/subfields/1908" } } ], "updated_date": "2024-05-17T09:40:45.700534" }
}