Item talk:Q269162

From geokb
Revision as of 23:54, 21 August 2024 by Sky (talk | contribs) (Created page with "{ "USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Examining the effect of physicochemical and meteorological variables on water quality indicators of harmful algal blooms in a shallow hypereutrophic lake using machine learning techniques", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

{

 "USGS Publications Warehouse": {
   "@context": "https://schema.org",
   "@type": "Article",
   "additionalType": "Journal Article",
   "name": "Examining the effect of physicochemical and meteorological variables on water quality indicators of harmful algal blooms in a shallow hypereutrophic lake using machine learning techniques",
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse IndexID",
       "value": "70251161",
       "url": "https://pubs.usgs.gov/publication/70251161"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse Internal ID",
       "value": 70251161
     },
     {
       "@type": "PropertyValue",
       "propertyID": "DOI",
       "value": "10.1021/acsestwater.3c00299",
       "url": "https://doi.org/10.1021/acsestwater.3c00299"
     }
   ],
   "journal": {
     "@type": "Periodical",
     "name": "Water",
     "volumeNumber": "4",
     "issueNumber": "3"
   },
   "inLanguage": "en",
   "isPartOf": [
     {
       "@type": "CreativeWorkSeries",
       "name": "Water"
     }
   ],
   "datePublished": "2024",
   "dateModified": "2024-03-12",
   "abstract": "Two independent machine learning techniques, boosted regression trees and artificial neural networks, were used to examine the physicochemical and meteorological variables that affect the seasonal growth and decline of harmful algal blooms (HABs) in a shallow, hypereutrophic lake in southern Oregon. High temporal resolution data collected at four monitoring locations were aggregated into daily timesteps to create two response variables: (1) daily maximum pH (pHmax), representing HAB growth, and (2) daily minimum dissolved oxygen (DOmin), representing HAB decline. Predictors included meteorological and physical data, estimates of external phosphorus loading, and previous-year average nutrient concentrations, and excluded HAB biomass and internal phosphorus loading. The predictors that captured seasonal changes in both pHmax\u00a0and DOmin\u00a0were temperature, inflows, lake-surface elevation, and external phosphorus loading, while short-term changes were captured by measures of stratification, temperature, and wind speed. The pHmax\u00a0models had similar fits with leave-one-year-out cross-validation (LOYO-CV)\u00a0R2\u00a0values of 0.2\u20130.43 (median = 0.40). The DOmin\u00a0models for the deeper locations had LOYO-CV\u00a0R2\u00a0values of 0.27\u20130.43 compared to 0.1\u20130.25 for the shallower locations. Model performance was affected by variability due to patchiness of HABs, measurement uncertainty, and advection.",
   "description": "10 p.; Data Release",
   "publisher": {
     "@type": "Organization",
     "name": "American Chemical Society"
   },
   "author": [
     {
       "@type": "Person",
       "name": "Wherry, Susan swherry@usgs.gov",
       "givenName": "Susan",
       "familyName": "Wherry",
       "email": "swherry@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0002-6749-8697",
         "url": "https://orcid.org/0000-0002-6749-8697"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Oregon Water Science Center",
           "url": "https://www.usgs.gov/centers/oregon-water-science-center"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Schenk, Liam N. lschenk@usgs.gov",
       "givenName": "Liam N.",
       "familyName": "Schenk",
       "email": "lschenk@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0002-2491-0813",
         "url": "https://orcid.org/0000-0002-2491-0813"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Oregon Water Science Center",
           "url": "https://www.usgs.gov/centers/oregon-water-science-center"
         }
       ]
     }
   ],
   "funder": [
     {
       "@type": "Organization",
       "name": "Oregon Water Science Center",
       "url": "https://www.usgs.gov/centers/oregon-water-science-center"
     }
   ]
 },
 "OpenAlex": {
   "_id": "https://openalex.org/w4391157024",
   "abstract_inverted_index": {
     "Two": [
       0
     ],
     "independent": [
       1
     ],
     "machine": [
       2
     ],
     "learning": [
       3
     ],
     "techniques,": [
       4
     ],
     "boosted": [
       5
     ],
     "regression": [
       6
     ],
     "trees": [
       7
     ],
     "and": [
       8,
       18,
       26,
       68,
       81,
       89,
       94,
       98,
       111,
       118,
       132,
       185
     ],
     "artificial": [
       9
     ],
     "neural": [
       10
     ],
     "networks,": [
       11
     ],
     "were": [
       12,
       50,
       113,
       125
     ],
     "used": [
       13
     ],
     "to": [
       14,
       55,
       166,
       179
     ],
     "examine": [
       15
     ],
     "the": [
       16,
       23,
       156,
       169
     ],
     "physicochemical": [
       17
     ],
     "meteorological": [
       19,
       80
     ],
     "variables": [
       20
     ],
     "that": [
       21,
       104
     ],
     "affect": [
       22
     ],
     "seasonal": [
       24,
       106
     ],
     "growth": [
       25
     ],
     "decline": [
       27
     ],
     "of": [
       28,
       85,
       129,
       147,
       163,
       181
     ],
     "harmful": [
       29
     ],
     "algal": [
       30
     ],
     "blooms": [
       31
     ],
     "(HABs)": [
       32
     ],
     "in": [
       33,
       38,
       108
     ],
     "a": [
       34
     ],
     "shallow,": [
       35
     ],
     "hypereutrophic": [
       36
     ],
     "lake": [
       37
     ],
     "southern": [
       39
     ],
     "Oregon.": [
       40
     ],
     "High": [
       41
     ],
     "temporal": [
       42
     ],
     "resolution": [
       43
     ],
     "data": [
       44
     ],
     "collected": [
       45
     ],
     "at": [
       46
     ],
     "four": [
       47
     ],
     "monitoring": [
       48
     ],
     "locations": [
       49,
       158
     ],
     "aggregated": [
       51
     ],
     "into": [
       52
     ],
     "daily": [
       53,
       61,
       70
     ],
     "timesteps": [
       54
     ],
     "create": [
       56
     ],
     "two": [
       57
     ],
     "response": [
       58
     ],
     "variables:": [
       59
     ],
     "(1)": [
       60
     ],
     "maximum": [
       62
     ],
     "pH": [
       63
     ],
     "(pHmax),": [
       64
     ],
     "representing": [
       65,
       75
     ],
     "HAB": [
       66,
       76,
       96
     ],
     "growth,": [
       67
     ],
     "(2)": [
       69
     ],
     "minimum": [
       71
     ],
     "dissolved": [
       72
     ],
     "oxygen": [
       73
     ],
     "(DOmin),": [
       74
     ],
     "decline.": [
       77
     ],
     "Predictors": [
       78
     ],
     "included": [
       79
     ],
     "physical": [
       82
     ],
     "data,": [
       83
     ],
     "estimates": [
       84
     ],
     "external": [
       86,
       119
     ],
     "phosphorus": [
       87,
       100,
       120
     ],
     "loading,": [
       88,
       121
     ],
     "previous-year": [
       90
     ],
     "average": [
       91
     ],
     "nutrient": [
       92
     ],
     "concentrations,": [
       93
     ],
     "excluded": [
       95
     ],
     "biomass": [
       97
     ],
     "internal": [
       99
     ],
     "loading.": [
       101
     ],
     "The": [
       102,
       135,
       152
     ],
     "predictors": [
       103
     ],
     "captured": [
       105,
       126
     ],
     "changes": [
       107,
       124
     ],
     "both": [
       109
     ],
     "pHmax": [
       110,
       136
     ],
     "DOmin": [
       112,
       153
     ],
     "temperature,": [
       114,
       131
     ],
     "inflows,": [
       115
     ],
     "lake-surface": [
       116
     ],
     "elevation,": [
       117
     ],
     "while": [
       122
     ],
     "short-term": [
       123
     ],
     "by": [
       127,
       176
     ],
     "measures": [
       128
     ],
     "stratification,": [
       130
     ],
     "wind": [
       133
     ],
     "speed.": [
       134
     ],
     "models": [
       137,
       154
     ],
     "had": [
       138,
       159
     ],
     "similar": [
       139
     ],
     "fits": [
       140
     ],
     "with": [
       141
     ],
     "leave-one-year-out": [
       142
     ],
     "cross-validation": [
       143
     ],
     "(LOYO-CV)": [
       144
     ],
     "R2": [
       145,
       161
     ],
     "values": [
       146,
       162
     ],
     "0.2\u20130.43": [
       148
     ],
     "(median": [
       149
     ],
     "=": [
       150
     ],
     "0.40).": [
       151
     ],
     "for": [
       155,
       168
     ],
     "deeper": [
       157
     ],
     "LOYO-CV": [
       160
     ],
     "0.27\u20130.43": [
       164
     ],
     "compared": [
       165
     ],
     "0.1\u20130.25": [
       167
     ],
     "shallower": [
       170
     ],
     "locations.": [
       171
     ],
     "Model": [
       172
     ],
     "performance": [
       173
     ],
     "was": [
       174
     ],
     "affected": [
       175
     ],
     "variability": [
       177
     ],
     "due": [
       178
     ],
     "patchiness": [
       180
     ],
     "HABs,": [
       182
     ],
     "measurement": [
       183
     ],
     "uncertainty,": [
       184
     ],
     "advection.": [
       186
     ]
   },
   "apc_list": null,
   "apc_paid": null,
   "authorships": [
     {
       "author_position": "first",
       "author": {
         "id": "https://openalex.org/A5069903615",
         "display_name": "Susan A. Wherry",
         "orcid": "https://orcid.org/0000-0002-6749-8697"
       },
       "institutions": [
         {
           "id": "https://openalex.org/I1286329397",
           "display_name": "United States Geological Survey",
           "ror": "https://ror.org/035a68863",
           "country_code": "US",
           "type": "government",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249"
           ]
         }
       ],
       "countries": [
         "US"
       ],
       "is_corresponding": false,
       "raw_author_name": "Susan A. Wherry",
       "raw_affiliation_strings": [
         "U.S. Geological Survey, 601 SW 2nd Ave Suite 1950, Portland, Oregon 97204, United States"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "U.S. Geological Survey, 601 SW 2nd Ave Suite 1950, Portland, Oregon 97204, United States",
           "institution_ids": [
             "https://openalex.org/I1286329397"
           ]
         }
       ]
     },
     {
       "author_position": "last",
       "author": {
         "id": "https://openalex.org/A5056348366",
         "display_name": "Liam N. Schenk",
         "orcid": "https://orcid.org/0000-0002-2491-0813"
       },
       "institutions": [
         {
           "id": "https://openalex.org/I1286329397",
           "display_name": "United States Geological Survey",
           "ror": "https://ror.org/035a68863",
           "country_code": "US",
           "type": "government",
           "lineage": [
             "https://openalex.org/I1286329397",
             "https://openalex.org/I1335927249"
           ]
         }
       ],
       "countries": [
         "US"
       ],
       "is_corresponding": false,
       "raw_author_name": "Liam Schenk",
       "raw_affiliation_strings": [
         "U.S. Geological Survey, 63095 Deschutes Market Rd, Bend, Oregon 97701, United States"
       ],
       "affiliations": [
         {
           "raw_affiliation_string": "U.S. Geological Survey, 63095 Deschutes Market Rd, Bend, Oregon 97701, United States",
           "institution_ids": [
             "https://openalex.org/I1286329397"
           ]
         }
       ]
     }
   ],
   "best_oa_location": {
     "is_oa": true,
     "landing_page_url": "https://doi.org/10.1021/acsestwater.3c00299",
     "pdf_url": "https://pubs.acs.org/doi/pdf/10.1021/acsestwater.3c00299",
     "source": {
       "id": "https://openalex.org/S4210201235",
       "display_name": "ACS ES&T Water",
       "issn_l": "2690-0637",
       "issn": [
         "2690-0637"
       ],
       "is_oa": false,
       "is_in_doaj": false,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310320006",
       "host_organization_name": "American Chemical Society",
       "host_organization_lineage": [
         "https://openalex.org/P4310320006"
       ],
       "host_organization_lineage_names": [
         "American Chemical Society"
       ],
       "type": "journal"
     },
     "license": "cc-by",
     "license_id": "https://openalex.org/licenses/cc-by",
     "version": "publishedVersion",
     "is_accepted": true,
     "is_published": true
   },
   "biblio": {
     "volume": "4",
     "issue": "3",
     "first_page": "1073",
     "last_page": "1082"
   },
   "citation_normalized_percentile": {
     "value": 0.999834,
     "is_in_top_1_percent": true,
     "is_in_top_10_percent": true
   },
   "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W4391157024",
   "cited_by_count": 3,
   "cited_by_percentile_year": {
     "min": 97,
     "max": 98
   },
   "concepts": [
     {
       "id": "https://openalex.org/C120305227",
       "wikidata": "https://www.wikidata.org/wiki/Q326139",
       "display_name": "Algal bloom",
       "level": 4,
       "score": 0.7954076
     },
     {
       "id": "https://openalex.org/C39432304",
       "wikidata": "https://www.wikidata.org/wiki/Q188847",
       "display_name": "Environmental science",
       "level": 0,
       "score": 0.67455775
     },
     {
       "id": "https://openalex.org/C2780797713",
       "wikidata": "https://www.wikidata.org/wiki/Q625376",
       "display_name": "Water quality",
       "level": 2,
       "score": 0.6574435
     },
     {
       "id": "https://openalex.org/C186699998",
       "wikidata": "https://www.wikidata.org/wiki/Q156698",
       "display_name": "Eutrophication",
       "level": 3,
       "score": 0.5401529
     },
     {
       "id": "https://openalex.org/C76886044",
       "wikidata": "https://www.wikidata.org/wiki/Q2883300",
       "display_name": "Hydrology (agriculture)",
       "level": 2,
       "score": 0.33913904
     },
     {
       "id": "https://openalex.org/C524765639",
       "wikidata": "https://www.wikidata.org/wiki/Q1501619",
       "display_name": "Water resource management",
       "level": 1,
       "score": 0.33774537
     },
     {
       "id": "https://openalex.org/C111368507",
       "wikidata": "https://www.wikidata.org/wiki/Q43518",
       "display_name": "Oceanography",
       "level": 1,
       "score": 0.332821
     },
     {
       "id": "https://openalex.org/C127313418",
       "wikidata": "https://www.wikidata.org/wiki/Q1069",
       "display_name": "Geology",
       "level": 0,
       "score": 0.25061804
     },
     {
       "id": "https://openalex.org/C2780892065",
       "wikidata": "https://www.wikidata.org/wiki/Q184755",
       "display_name": "Phytoplankton",
       "level": 3,
       "score": 0.17450103
     },
     {
       "id": "https://openalex.org/C18903297",
       "wikidata": "https://www.wikidata.org/wiki/Q7150",
       "display_name": "Ecology",
       "level": 1,
       "score": 0.09531301
     },
     {
       "id": "https://openalex.org/C142796444",
       "wikidata": "https://www.wikidata.org/wiki/Q181394",
       "display_name": "Nutrient",
       "level": 2,
       "score": 0.0657112
     },
     {
       "id": "https://openalex.org/C187320778",
       "wikidata": "https://www.wikidata.org/wiki/Q1349130",
       "display_name": "Geotechnical engineering",
       "level": 1,
       "score": 0.051077068
     },
     {
       "id": "https://openalex.org/C86803240",
       "wikidata": "https://www.wikidata.org/wiki/Q420",
       "display_name": "Biology",
       "level": 0,
       "score": 0.0
     }
   ],
   "corresponding_author_ids": [],
   "corresponding_institution_ids": [],
   "countries_distinct_count": 1,
   "counts_by_year": [
     {
       "year": 2024,
       "cited_by_count": 3
     }
   ],
   "created_date": "2024-01-24",
   "datasets": [],
   "display_name": "Examining the Effect of Physicochemical and Meteorological Variables on Water Quality Indicators of Harmful Algal Blooms in a Shallow Hypereutrophic Lake Using Machine Learning Techniques",
   "doi": "https://doi.org/10.1021/acsestwater.3c00299",
   "fwci": 5.566,
   "grants": [
     {
       "funder": "https://openalex.org/F4320332183",
       "funder_display_name": "U.S. Geological Survey",
       "award_id": null
     },
     {
       "funder": "https://openalex.org/F4320332411",
       "funder_display_name": "Bureau of Reclamation",
       "award_id": null
     }
   ],
   "has_fulltext": false,
   "id": "https://openalex.org/W4391157024",
   "ids": {
     "openalex": "https://openalex.org/W4391157024",
     "doi": "https://doi.org/10.1021/acsestwater.3c00299"
   },
   "indexed_in": [
     "crossref"
   ],
   "institutions_distinct_count": 1,
   "is_paratext": false,
   "is_retracted": false,
   "keywords": [
     {
       "id": "https://openalex.org/keywords/groundwater-level-forecasting",
       "display_name": "Groundwater Level Forecasting",
       "score": 0.57673
     },
     {
       "id": "https://openalex.org/keywords/harmful-algal-blooms",
       "display_name": "Harmful Algal Blooms",
       "score": 0.54099
     },
     {
       "id": "https://openalex.org/keywords/forecasting",
       "display_name": "Forecasting",
       "score": 0.531783
     },
     {
       "id": "https://openalex.org/keywords/rainfall-runoff-modeling",
       "display_name": "Rainfall-Runoff Modeling",
       "score": 0.520835
     },
     {
       "id": "https://openalex.org/keywords/habitat-fragmentation",
       "display_name": "Habitat Fragmentation",
       "score": 0.510917
     }
   ],
   "language": "en",
   "locations": [
     {
       "is_oa": true,
       "landing_page_url": "https://doi.org/10.1021/acsestwater.3c00299",
       "pdf_url": "https://pubs.acs.org/doi/pdf/10.1021/acsestwater.3c00299",
       "source": {
         "id": "https://openalex.org/S4210201235",
         "display_name": "ACS ES&T Water",
         "issn_l": "2690-0637",
         "issn": [
           "2690-0637"
         ],
         "is_oa": false,
         "is_in_doaj": false,
         "is_core": true,
         "host_organization": "https://openalex.org/P4310320006",
         "host_organization_name": "American Chemical Society",
         "host_organization_lineage": [
           "https://openalex.org/P4310320006"
         ],
         "host_organization_lineage_names": [
           "American Chemical Society"
         ],
         "type": "journal"
       },
       "license": "cc-by",
       "license_id": "https://openalex.org/licenses/cc-by",
       "version": "publishedVersion",
       "is_accepted": true,
       "is_published": true
     }
   ],
   "locations_count": 1,
   "mesh": [],
   "ngrams_url": "https://api.openalex.org/works/W4391157024/ngrams",
   "open_access": {
     "is_oa": true,
     "oa_status": "hybrid",
     "oa_url": "https://pubs.acs.org/doi/pdf/10.1021/acsestwater.3c00299",
     "any_repository_has_fulltext": false
   },
   "primary_location": {
     "is_oa": true,
     "landing_page_url": "https://doi.org/10.1021/acsestwater.3c00299",
     "pdf_url": "https://pubs.acs.org/doi/pdf/10.1021/acsestwater.3c00299",
     "source": {
       "id": "https://openalex.org/S4210201235",
       "display_name": "ACS ES&T Water",
       "issn_l": "2690-0637",
       "issn": [
         "2690-0637"
       ],
       "is_oa": false,
       "is_in_doaj": false,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310320006",
       "host_organization_name": "American Chemical Society",
       "host_organization_lineage": [
         "https://openalex.org/P4310320006"
       ],
       "host_organization_lineage_names": [
         "American Chemical Society"
       ],
       "type": "journal"
     },
     "license": "cc-by",
     "license_id": "https://openalex.org/licenses/cc-by",
     "version": "publishedVersion",
     "is_accepted": true,
     "is_published": true
   },
   "primary_topic": {
     "id": "https://openalex.org/T11490",
     "display_name": "Hydrological Modeling using Machine Learning Methods",
     "score": 0.9964,
     "subfield": {
       "id": "https://openalex.org/subfields/2305",
       "display_name": "Environmental Engineering"
     },
     "field": {
       "id": "https://openalex.org/fields/23",
       "display_name": "Environmental Science"
     },
     "domain": {
       "id": "https://openalex.org/domains/3",
       "display_name": "Physical Sciences"
     }
   },
   "publication_date": "2024-01-24",
   "publication_year": 2024,
   "referenced_works": [
     "https://openalex.org/W1503222387",
     "https://openalex.org/W1550811693",
     "https://openalex.org/W1565645420",
     "https://openalex.org/W1568924738",
     "https://openalex.org/W1569066352",
     "https://openalex.org/W1573745620",
     "https://openalex.org/W1576146757",
     "https://openalex.org/W1579582700",
     "https://openalex.org/W1678356000",
     "https://openalex.org/W17698858",
     "https://openalex.org/W1831050183",
     "https://openalex.org/W1998025025",
     "https://openalex.org/W2008827495",
     "https://openalex.org/W2009830860",
     "https://openalex.org/W2037612458",
     "https://openalex.org/W2041726263",
     "https://openalex.org/W2056116149",
     "https://openalex.org/W2075784822",
     "https://openalex.org/W2125223451",
     "https://openalex.org/W2137080700",
     "https://openalex.org/W2192001126",
     "https://openalex.org/W2583216538",
     "https://openalex.org/W2698083996",
     "https://openalex.org/W2786693279",
     "https://openalex.org/W2800928595",
     "https://openalex.org/W2892675915",
     "https://openalex.org/W2915257540",
     "https://openalex.org/W2916736730",
     "https://openalex.org/W2917403072",
     "https://openalex.org/W2996235771",
     "https://openalex.org/W3006671182",
     "https://openalex.org/W3013514343",
     "https://openalex.org/W3036217251",
     "https://openalex.org/W3082322363",
     "https://openalex.org/W3161313053",
     "https://openalex.org/W331100758",
     "https://openalex.org/W4241050900",
     "https://openalex.org/W4308624540",
     "https://openalex.org/W4312596476",
     "https://openalex.org/W4388297464",
     "https://openalex.org/W94052953"
   ],
   "referenced_works_count": 41,
   "related_works": [
     "https://openalex.org/W4386400707",
     "https://openalex.org/W36284236",
     "https://openalex.org/W3213657403",
     "https://openalex.org/W2980826214",
     "https://openalex.org/W2792760515",
     "https://openalex.org/W2774775100",
     "https://openalex.org/W2389817296",
     "https://openalex.org/W2375234534",
     "https://openalex.org/W2355375412",
     "https://openalex.org/W2009359957"
   ],
   "sustainable_development_goals": [
     {
       "id": "https://metadata.un.org/sdg/6",
       "display_name": "Clean water and sanitation",
       "score": 0.8
     }
   ],
   "title": "Examining the Effect of Physicochemical and Meteorological Variables on Water Quality Indicators of Harmful Algal Blooms in a Shallow Hypereutrophic Lake Using Machine Learning Techniques",
   "topics": [
     {
       "id": "https://openalex.org/T11490",
       "display_name": "Hydrological Modeling using Machine Learning Methods",
       "score": 0.9964,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10302",
       "display_name": "Importance and Conservation of Freshwater Biodiversity",
       "score": 0.9915,
       "subfield": {
         "id": "https://openalex.org/subfields/2309",
         "display_name": "Nature and Landscape Conservation"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10236",
       "display_name": "Eutrophication and Harmful Algal Blooms",
       "score": 0.9902,
       "subfield": {
         "id": "https://openalex.org/subfields/2304",
         "display_name": "Environmental Chemistry"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "type": "article",
   "type_crossref": "journal-article",
   "updated_date": "2024-08-09T01:14:07.548948",
   "versions": []
 }

}