{
"USGS Staff Profile": { "@context": "https://schema.org", "@type": "Person", "dateModified": "2024-09-21T07:58:02.959242", "name": "Sarah E Janssen", "identifier": [ { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-4432-3154" } ], "jobTitle": "Research Chemist", "hasOccupation": [ { "@type": "OrganizationalRole", "startDate": "2024-09-21T07:58:02.970346", "affiliatedOrganization": { "@type": "Organization", "name": "Upper Midwest Water Science Center", "url": "https://www.usgs.gov/centers/upper-midwest-water-science-center" }, "roleName": "Research Chemist" }, { "@type": "OrganizationalRole", "startDate": "2024-09-21T07:58:02.970350", "affiliatedOrganization": { "@type": "Organization", "name": "Mercury Research Laboratory", "url": "https://www.usgs.gov/labs/mercury-research-laboratory" }, "roleName": "Mercury Research Laboratory Team Lead" } ], "description": [ { "@type": "TextObject", "additionalType": "short description", "abstract": "Research Chemist with the Upper Midwest Water Science Center" }, { "@type": "TextObject", "additionalType": "staff profile page introductory statement", "abstract": "Sarah Janssen is an isotope geochemist working in the Mercury Research Lab (MRL) located within the Upper Midwest Water Science Center." }, { "@type": "TextObject", "additionalType": "personal statement", "abstract": "She has a PhD in environmental chemistry from Rutgers University and a bachelor\u2019s in chemistry fromUniversity of the Sciences in Philadelphia. Her work focuses on the application of stable isotope techniques for understanding sources and transformations of mercury (Hg) in the environment. Her research interests include Hg cycling in contaminated ecosystems, the investigation of microbial Hg transformations using stable isotopes, and development of analytical methods to improve Hg isotope measurements.Current ProjectsMercury Cycling and Source Identification in the St Louis River Estuary MN/WI (collaboration with US EPA and Minnesota Pollution Control Agency)Mercury Isotope Fractionation during Microbial Uptake and Transformations of Hg (collaboration with Rutgers University and University of Ottawa)Method Development for the Pre-concentration of Waters and Low Concentration Environmental Samples for Mercury Isotopic Analysis" } ], "email": "sjanssen@usgs.gov", "url": "https://www.usgs.gov/staff-profiles/sarah-e-janssen", "affiliation": [], "hasCredential": [ { "@type": "EducationalOccupationalCredential", "name": "Ph.D. 2016, Environmental Chemistry, Rutgers University, New Brunswick, NJ" }, { "@type": "EducationalOccupationalCredential", "name": "B.S. 2011, Chemistry, University of the Sciences, Philadelphia, PA" } ], "knowsAbout": [ { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "mercury cycling" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "stable isotope geochemistry" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "contaminated sites" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "bioaccumulation" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "aquatic ecosystems" } ], "memberOf": { "@type": "OrganizationalRole", "name": "staff member", "member": { "@type": "Organization", "name": "U.S. Geological Survey" }, "startDate": "2024-09-21T07:58:02.959251" } }, "ORCID": { "@context": "http://schema.org", "@id": "https://orcid.org/0000-0003-4432-3154", "@reverse": { "creator": [ { "@id": "https://doi.org/10.3133/sir20245011", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/sir20245011" }, "name": "A conceptual site model of contaminant transport pathways from the Bremerton Naval Complex to Sinclair Inlet, Washington, 2011\u201321" }, { "@id": "https://doi.org/10.3133/cir1521", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/cir1521" }, "name": "Integrated science for the study of microplastics in the environment\u2014A strategic science vision for the U.S. Geological Survey" }, { "@id": "https://doi.org/10.1021/acsearthspacechem.3c00154", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acsearthspacechem.3c00154" }, "name": "Competition between Dissolved Organic Matter and Freshwater Plankton Control Methylmercury Isotope Fractionation during Uptake and Photochemical Demethylation" }, { "@id": "https://doi.org/10.1021/acs.estlett.3c00450", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.estlett.3c00450" }, "name": "Mercury Isotope Values in Shoreline Spiders Reveal the Transfer of Aquatic Mercury Sources to Terrestrial Food Webs" }, { "@id": "https://doi.org/10.1029/2022jd038276", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022jd038276" }, "name": "National\u2010Scale Assessment of Total Gaseous Mercury Isotopes Across the United States" }, { "@id": "https://doi.org/10.1021/acs.estlett.3c00009", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.estlett.3c00009" }, "name": "Can Preserved Museum Specimens Be Used to Reconstruct Fish Mercury Burden and Sources through Time?" }, { "@id": "https://doi.org/10.1016/j.scitotenv.2022.156031", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2022.156031" }, "name": "Decadal trends of mercury cycling and bioaccumulation within Everglades National Park" }, { "@id": "https://doi.org/10.1002/etc.5458", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/etc.5458" }, "name": "Elevated mercury concentrations and isotope signatures (N, C, Hg) in yellowfin tuna (\n Thunnus albacares\n ) from the Gal\u00e1pagos Marine Reserve and waters off Ecuador" }, { "@id": "https://doi.org/10.1021/acsestwater.1c00285", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acsestwater.1c00285" }, "name": "Methylmercury Stable Isotopes: New Insights on Assessing Aquatic Food Web Bioaccumulation in Legacy Impacted Regions" }, { "@id": "https://doi.org/10.1021/acs.estlett.2c00096", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.estlett.2c00096" }, "name": "Using Carbon, Nitrogen, and Mercury Isotope Values to Distinguish Mercury Sources to Alaskan Lake Trout" }, { "@id": "https://doi.org/10.1021/acs.est.2c00052", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.est.2c00052" }, "name": "Response to Comment on \u201cMercury Isotope Fractionation by Internal Demethylation and Biomineralization Reactions in Seabirds: Implications for Environmental Mercury Science\u201d: Principles and Limitations of Source Tracing and Process Tracing with Stable Isotope Signatures" }, { "@id": "https://doi.org/10.3133/ofr20221051", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr20221051" }, "name": "Assessment of mercury in sediments and waters of Grubers Grove Bay, Wisconsin" }, { "@id": "https://doi.org/10.1039/d2em00214k", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1039/d2em00214k" }, "name": "Tracing the sources and depositional history of mercury to coastal northeastern U.S. lakes" }, { "@id": "https://doi.org/10.1021/acs.est.1c04388", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.est.1c04388" }, "name": "Mercury Isotope Fractionation by Internal Demethylation and Biomineralization Reactions in Seabirds: Implications for Environmental Mercury Science" }, { "@id": "https://doi.org/10.1128/aem.00678-21", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1128/aem.00678-21" }, "name": "Stable Isotope Fractionation Reveals Similar Atomic-Level Controls during Aerobic and Anaerobic Microbial Hg Transformation Pathways" }, { "@id": "https://doi.org/10.1016/j.scitotenv.2021.146284", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2021.146284" }, "name": "Examining historical mercury sources in the Saint Louis River estuary: How legacy contamination influences biological mercury levels in Great Lakes coastal regions" }, { "@id": "https://doi.org/10.1021/acsearthspacechem.1c00051", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acsearthspacechem.1c00051" }, "name": "Isotope Fractionation from In Vivo Methylmercury Detoxification in Waterbirds" }, { "@id": "https://doi.org/10.1016/j.jhazmat.2020.124097", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhazmat.2020.124097" }, "name": "The influence of legacy contamination on the transport and bioaccumulation of mercury within the Mobile River Basin" }, { "@id": "https://doi.org/10.1002/ieam.4308", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ieam.4308" }, "name": "Insights into Mercury Source Identification and Bioaccumulation Using Stable Isotope Approaches in the Hannibal Pool of the Ohio River, USA" }, { "@id": "https://doi.org/10.1021/acs.est.0c05435", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.est.0c05435" }, "name": "Mercury Methylation Genes Identified across Diverse Anaerobic Microbial Guilds in a Eutrophic Sulfate-Enriched Lake" }, { "@id": "https://doi.org/10.1021/acs.estlett.0c00409", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.estlett.0c00409" }, "name": "Tracing the Uptake of Hg(II) in an Iron-Reducing Bacterium Using Mercury Stable Isotopes" }, { "@id": "https://doi.org/10.1021/acs.est.0c00579", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.est.0c00579" }, "name": "Resolving Atmospheric Mercury Loading and Source Trends from Isotopic Records of Remote North American Lake Sediments" }, { "@id": "https://doi.org/10.1007/s10661-020-8237-y", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10661-020-8237-y" }, "name": "Mercury, cadmium, copper, arsenic, and selenium measurements in the feathers of adult eastern brown pelicans (Pelecanus occidentalis carolinensis) and chicks in multiple breeding grounds in the northern Gulf of Mexico" }, { "@id": "https://doi.org/10.1016/j.scitotenv.2019.136031", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2019.136031" }, "name": "The assessment and remediation of mercury contaminated sites: A review of current approaches" }, { "@id": "https://doi.org/10.1007/s00216-019-02277-0", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00216-019-02277-0" }, "name": "Isolation of methylmercury using distillation and anion-exchange chromatography for isotopic analyses in natural matrices" }, { "@id": "https://doi.org/10.1021/acs.est.9b03394", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.est.9b03394" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85071786657" } ], "name": "Chemical and Physical Controls on Mercury Source Signatures in Stream Fish from the Northeastern United States" }, { "@id": "https://doi.org/10.1021/acs.estlett.8b00592", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85059383265" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.estlett.8b00592" } ], "name": "Mercury Isotopes Reveal an Ontogenetic Shift in Habitat Use by Walleye in Lower Green Bay of Lake Michigan" }, { "@id": "https://doi.org/10.1073/pnas.1907484116", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85075258213" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.1907484116" } ], "name": "Mercury source changes and food web shifts alter contamination signatures of predatory fish from Lake Michigan" }, { "@id": "https://doi.org/10.1016/j.aca.2018.12.026", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.aca.2018.12.026" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85059159985" } ], "name": "Rapid pre-concentration of mercury in solids and water for isotopic analysis" }, { "@id": "https://doi.org/10.1016/j.jhazmat.2019.04.074", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85064924592" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhazmat.2019.04.074" } ], "name": "Tracking legacy mercury in the Hackensack River estuary using mercury stable isotopes" }, { "@id": "https://doi.org/10.1021/acs.est.7b06120", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.est.7b06120" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85043469732" } ], "name": "Factors Affecting Mercury Stable Isotopic Distribution in Piscivorous Fish of the Laurentian Great Lakes" }, { "@id": "https://doi.org/10.1007/s00284-016-1133-6", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00284-016-1133-6" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84987661047" } ], "name": "Co-selection of Mercury and Multiple Antibiotic Resistances in Bacteria Exposed to Mercury in the Fundulus heteroclitus Gut Microbiome" }, { "@id": "https://doi.org/10.1021/acs.est.6b00854", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/acs.est.6b00854" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84980417124" } ], "name": "Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate-Reducing Bacteria" }, { "@id": "https://doi.org/10.1016/j.chemgeo.2015.06.017", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84930957508" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.chemgeo.2015.06.017" } ], "name": "Separation of monomethylmercury from estuarine sediments for mercury isotope analysis" } ] }, "@type": "Person", "familyName": "Janssen", "givenName": "Sarah", "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "56717312200" }, "mainEntityOfPage": "https://orcid.org/0000-0003-4432-3154", "name": "Sarah E Janssen" }, "OpenAlex": { "created_date": "2023-07-21", "display_name": "Sarah E. Janssen", "display_name_alternatives": [ "S.E. Janssen", "S. Janssen", "Sarah M Janssen", "Sarah E. Janssen", "S. Jan\u00dfen", "Sarah Janssen", "Sarah Elizabeth Janssen" ], "ids": { "openalex": "https://openalex.org/A5036184756", "orcid": "https://orcid.org/0000-0003-4432-3154", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=56717312200&partnerID=MN8TOARS" }, "last_known_institutions": [ { "country_code": "US", "display_name": "United States Geological Survey", "id": "https://openalex.org/I1286329397", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ], "ror": "https://ror.org/035a68863", "type": "government" } ], "orcid": "https://orcid.org/0000-0003-4432-3154", "topics": [ { "count": 46, "display_name": "Toxicology and Environmental Impacts of Mercury Contamination", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10819", "subfield": { "display_name": "Health, Toxicology and Mutagenesis", "id": "https://openalex.org/subfields/2307" } }, { "count": 17, "display_name": "Metal-Induced Oxidative Stress and Health Effects", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10790", "subfield": { "display_name": "Health, Toxicology and Mutagenesis", "id": "https://openalex.org/subfields/2307" } }, { "count": 16, "display_name": "Application of Stable Isotopes in Trophic Ecology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12073", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 15, "display_name": "Impact of Persistent Organic Pollutants on Environment and Health", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10122", "subfield": { "display_name": "Health, Toxicology and Mutagenesis", "id": "https://openalex.org/subfields/2307" } }, { "count": 9, "display_name": "Ecology and Conservation of Marine Mammals", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10659", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 8, "display_name": "Environmental Impact of Heavy Metal Contamination", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10139", "subfield": { "display_name": "Pollution", "id": "https://openalex.org/subfields/2310" } }, { "count": 4, "display_name": "Occurrence and Health Effects of Drinking Water Disinfection By-Products", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11493", "subfield": { "display_name": "Health, Toxicology and Mutagenesis", "id": "https://openalex.org/subfields/2307" } }, { "count": 3, "display_name": "Pancreatic Islet Dysfunction and Regeneration", "domain": { "display_name": "Health Sciences", "id": "https://openalex.org/domains/4" }, "field": { "display_name": "Medicine", "id": "https://openalex.org/fields/27" }, "id": "https://openalex.org/T10839", "subfield": { "display_name": "Surgery", "id": "https://openalex.org/subfields/2746" } }, { "count": 2, "display_name": "Water Quality and Hydrogeology Research", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12773", "subfield": { "display_name": "Water Science and Technology", "id": "https://openalex.org/subfields/2312" } }, { "count": 2, "display_name": "Genetics and Pathogenesis of Type 1 Diabetes", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Biochemistry, Genetics and Molecular Biology", "id": "https://openalex.org/fields/13" }, "id": "https://openalex.org/T11171", "subfield": { "display_name": "Genetics", "id": "https://openalex.org/subfields/1311" } }, { "count": 2, "display_name": "Importance and Conservation of Freshwater Biodiversity", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10302", "subfield": { "display_name": "Nature and Landscape Conservation", "id": "https://openalex.org/subfields/2309" } }, { "count": 2, "display_name": "Marine Microbial Diversity and Biogeography", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11791", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 2, "display_name": "Impact of Hyperglycemia on Health Outcomes", "domain": { "display_name": "Health Sciences", "id": "https://openalex.org/domains/4" }, "field": { "display_name": "Medicine", "id": "https://openalex.org/fields/27" }, "id": "https://openalex.org/T11623", "subfield": { "display_name": "Endocrinology, Diabetes and Metabolism", "id": "https://openalex.org/subfields/2712" } }, { "count": 1, "display_name": "Marine Biogeochemistry and Ecosystem Dynamics", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10032", "subfield": { "display_name": "Oceanography", "id": "https://openalex.org/subfields/1910" } }, { "count": 1, "display_name": "Environmental Impact of Maritime Transportation Emissions", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12126", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 1, "display_name": "Global Economic Development and Governance", "domain": { "display_name": "Social Sciences", "id": "https://openalex.org/domains/2" }, "field": { "display_name": "Economics, Econometrics and Finance", "id": "https://openalex.org/fields/20" }, "id": "https://openalex.org/T14112", "subfield": { "display_name": "General Economics, Econometrics and Finance", "id": "https://openalex.org/subfields/2000" } }, { "count": 1, "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10995", "subfield": { "display_name": "Environmental Chemistry", "id": "https://openalex.org/subfields/2304" } }, { "count": 1, "display_name": "Management of Diabetes Mellitus and Hypoglycemia", "domain": { "display_name": "Health Sciences", "id": "https://openalex.org/domains/4" }, "field": { "display_name": "Medicine", "id": "https://openalex.org/fields/27" }, "id": "https://openalex.org/T10560", "subfield": { "display_name": "Endocrinology, Diabetes and Metabolism", "id": "https://openalex.org/subfields/2712" } }, { "count": 1, "display_name": "Management of Diabetes Mellitus and Cardiovascular Risk", "domain": { "display_name": "Health Sciences", "id": "https://openalex.org/domains/4" }, "field": { "display_name": "Medicine", "id": "https://openalex.org/fields/27" }, "id": "https://openalex.org/T10401", "subfield": { "display_name": "Endocrinology, Diabetes and Metabolism", "id": "https://openalex.org/subfields/2712" } }, { "count": 1, "display_name": "Hydrological Modeling and Water Resource Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10330", "subfield": { "display_name": "Water Science and Technology", "id": "https://openalex.org/subfields/2312" } }, { "count": 1, "display_name": "Food Security and Nutrition Research", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Agricultural and Biological Sciences", "id": "https://openalex.org/fields/11" }, "id": "https://openalex.org/T14010", "subfield": { "display_name": "Food Science", "id": "https://openalex.org/subfields/1106" } }, { "count": 1, "display_name": "Role of Selenium in Human Health and Disease", "domain": { "display_name": "Health Sciences", "id": "https://openalex.org/domains/4" }, "field": { "display_name": "Nursing", "id": "https://openalex.org/fields/29" }, "id": "https://openalex.org/T11107", "subfield": { "display_name": "Nutrition and Dietetics", "id": "https://openalex.org/subfields/2916" } }, { "count": 1, "display_name": "Laser-Induced Breakdown Spectroscopy in Material Analysis", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T11854", "subfield": { "display_name": "Mechanics of Materials", "id": "https://openalex.org/subfields/2211" } }, { "count": 1, "display_name": "Antibiotic Resistance in Aquatic Environments and Wastewater", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10419", "subfield": { "display_name": "Pollution", "id": "https://openalex.org/subfields/2310" } }, { "count": 1, "display_name": "Estimating Vehicle Fuel Consumption and Emissions", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T12095", "subfield": { "display_name": "Automotive Engineering", "id": "https://openalex.org/subfields/2203" } } ], "updated_date": "2024-05-15T15:20:11.074056" }
}