{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "Machine learning and data augmentation approach for identification of rare earth element potential in Indiana Coals, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70232385", "url": "https://pubs.usgs.gov/publication/70232385" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70232385 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.coal.2022.104054", "url": "https://doi.org/10.1016/j.coal.2022.104054" } ], "journal": { "@type": "Periodical", "name": "International Journal of Coal Geology", "volumeNumber": "259", "issueNumber": null }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "International Journal of Coal Geology" } ], "datePublished": "2022", "dateModified": "2022-07-01", "abstract": "Rare earth elements and yttrium (REYs) are critical elements and valuable commodities due to their limited availability and high demand in a wide range of applications and especially in high-technology products. The increased demand and geopolitical pressures motivate the search for alternative sources of REYs, and coal, coal waste, and coal ash are considered as new sources for these critical elements. This research evaluates the REY potential of coals from Indiana (USA). However, although coal data revealed REY potential, it suffered from sparse samples with complete REY measurements. Therefore, we explore the applicability of machine learning (ML) models and data augmentation techniques to demonstrate their applicability to evaluate REY potential in Indiana, and other areas in coal basins, using selected coal parameters (Al2O3, Fe2O3, C, Ash, S, P, Mo, Zn, and As contents) as covariates (indicators). Due to the relatively small sample size with complete REY data in the Indiana Coal Database, two data augmentation techniques (Random Over-Sampling Examples and Synthetic Minority Over-Sampling Technique) were used. Four machine learning algorithms (linear discriminate analysis, support vector machine, random forest, and artificial neural networks) were applied for modeling REY potential as a classification problem. The results show that application of Synthetic Minority Over-Sampling Technique prior to development of the support vector machine (SVM) models generated the best REY classification with an accuracy of 95%. The encouraging results based on Indiana coal data may suggest that a similar approach can be used for other coal basins for screening the locations with REY potential. Those locations then can be targeted for more detailed geochemical surveys to identify most promising areas and evaluate overall REY resources.", "description": "104054, 14 p.", "publisher": { "@type": "Organization", "name": "Elsevier" }, "author": [ { "@type": "Person", "name": "Karacan, C. \u00d6zgen", "givenName": "C. \u00d6zgen", "familyName": "Karacan", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-0947-8241", "url": "https://orcid.org/0000-0002-0947-8241" }, "affiliation": [ { "@type": "Organization", "name": "Eastern Energy Resources Science Center", "url": "https://www.usgs.gov/centers/geology-energy-and-minerals-science-center" } ] }, { "@type": "Person", "name": "Drobniak, Agnieszka", "givenName": "Agnieszka", "familyName": "Drobniak", "affiliation": [ { "@type": "Organization", "name": "IU and Indiana Geological Survey" } ] }, { "@type": "Person", "name": "Mastalerz, Maria", "givenName": "Maria", "familyName": "Mastalerz", "affiliation": [ { "@type": "Organization", "name": "IU and Indiana Geological Survey" } ] }, { "@type": "Person", "name": "Chatterjee, Snahamoy", "givenName": "Snahamoy", "familyName": "Chatterjee", "affiliation": [ { "@type": "Organization", "name": "Michigan Technological university" } ] } ], "funder": [ { "@type": "Organization", "name": "Geology, Energy & Minerals Science Center", "url": "https://www.usgs.gov/centers/geology-energy-and-minerals-science-center" } ], "spatialCoverage": [ { "@type": "Place", "additionalType": "country", "name": "United States", "url": "https://geonames.org/4074035" }, { "@type": "Place", "additionalType": "state", "name": "Indiana" }, { "@type": "Place", "geo": [ { "@type": "GeoShape", "additionalProperty": { "@type": "PropertyValue", "name": "GeoJSON", "value": { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {}, "geometry": { "type": "Polygon", "coordinates": [ [ [ -87.56103515625, 40.49709237269567 ], [ -87.5390625, 39.35129035526705 ], [ -87.56103515625, 38.839707613545144 ], [ -87.86865234374999, 38.06539235133249 ], [ -88.11035156249999, 37.90953361677018 ], [ -88.154296875, 37.77071473849609 ], [ -87.451171875, 37.92686760148135 ], [ -87.099609375, 37.87485339352928 ], [ -86.81396484375, 38.048091067457236 ], [ -86.572265625, 37.89219554724437 ], [ -86.396484375, 38.11727165830543 ], [ -86.63818359375, 38.95940879245423 ], [ -86.8359375, 40.111688665595956 ], [ -87.03369140625, 40.463666324587685 ], [ -87.56103515625, 40.49709237269567 ] ] ] } } ] } } }, { "@type": "GeoCoordinates", "latitude": 38.98499306239879, "longitude": -87.161450599234 } ] } ] }, "OpenAlex": { "_id": "https://openalex.org/w4283274505", "abstract_inverted_index": { "Rare": [ 0 ], "earth": [ 1 ], "elements": [ 2, 8 ], "and": [ 3, 9, 17, 26, 34, 45, 49, 98, 112, 130, 159, 178, 266 ], "yttrium": [ 4 ], "(REYs)": [ 5 ], "are": [ 6, 52 ], "critical": [ 7, 59 ], "valuable": [ 10 ], "commodities": [ 11 ], "due": [ 12 ], "to": [ 13, 102, 106, 137, 203, 261 ], "their": [ 14, 104 ], "limited": [ 15 ], "availability": [ 16 ], "high": [ 18 ], "demand": [ 19, 33 ], "in": [ 20, 28, 110, 115, 147 ], "a": [ 21, 189, 233 ], "wide": [ 22 ], "range": [ 23 ], "of": [ 24, 43, 67, 93, 197, 205, 220 ], "applications": [ 25 ], "especially": [ 27 ], "high-technology": [ 29 ], "products.": [ 30 ], "The": [ 31, 192, 222 ], "increased": [ 32 ], "geopolitical": [ 35 ], "pressures": [ 36 ], "motivate": [ 37 ], "the": [ 38, 64, 91, 138, 148, 206, 213, 245 ], "search": [ 39 ], "for": [ 40, 57, 184, 239, 243, 256 ], "alternative": [ 41 ], "sources": [ 42, 56 ], "REYs,": [ 44 ], "coal,": [ 46 ], "coal": [ 47, 50, 74, 116, 120, 228, 241 ], "waste,": [ 48 ], "ash": [ 51 ], "considered": [ 53 ], "as": [ 54, 133, 188 ], "new": [ 55 ], "these": [ 58 ], "elements.": [ 60 ], "This": [ 61 ], "research": [ 62 ], "evaluates": [ 63 ], "REY": [ 65, 77, 86, 108, 145, 186, 215, 248, 269 ], "potential": [ 66, 109, 187 ], "coals": [ 68 ], "from": [ 69, 81 ], "Indiana": [ 70, 149, 227 ], "(USA).": [ 71 ], "However,": [ 72 ], "although": [ 73 ], "data": [ 75, 99, 146, 153, 229 ], "revealed": [ 76 ], "potential,": [ 78 ], "it": [ 79 ], "suffered": [ 80 ], "sparse": [ 82 ], "samples": [ 83 ], "with": [ 84, 143, 217, 247 ], "complete": [ 85, 144 ], "measurements.": [ 87 ], "Therefore,": [ 88 ], "we": [ 89 ], "explore": [ 90 ], "applicability": [ 92, 105 ], "machine": [ 94, 167, 209 ], "learning": [ 95, 168 ], "(ML)": [ 96 ], "models": [ 97, 211 ], "augmentation": [ 100, 154 ], "techniques": [ 101, 155 ], "demonstrate": [ 103 ], "evaluate": [ 107, 267 ], "Indiana,": [ 111 ], "other": [ 113, 240 ], "areas": [ 114, 265 ], "basins,": [ 117 ], "using": [ 118 ], "selected": [ 119 ], "parameters": [ 121 ], "(Al2O3,": [ 122 ], "Fe2O3,": [ 123 ], "C,": [ 124 ], "Ash,": [ 125 ], "S,": [ 126 ], "P,": [ 127 ], "Mo,": [ 128 ], "Zn,": [ 129 ], "As": [ 131 ], "contents)": [ 132 ], "covariates": [ 134 ], "(indicators).": [ 135 ], "Due": [ 136 ], "relatively": [ 139 ], "small": [ 140 ], "sample": [ 141 ], "size": [ 142 ], "Coal": [ 150 ], "Database,": [ 151 ], "two": [ 152 ], "(Random": [ 156 ], "Over-Sampling": [ 157, 162, 200 ], "Examples": [ 158 ], "Synthetic": [ 160, 198 ], "Minority": [ 161, 199 ], "Technique)": [ 163 ], "were": [ 164, 182 ], "used.": [ 165 ], "Four": [ 166 ], "algorithms": [ 169 ], "(linear": [ 170 ], "discriminate": [ 171 ], "analysis,": [ 172 ], "support": [ 173, 207 ], "vector": [ 174, 208 ], "machine,": [ 175 ], "random": [ 176 ], "forest,": [ 177 ], "artificial": [ 179 ], "neural": [ 180 ], "networks)": [ 181 ], "applied": [ 183 ], "modeling": [ 185 ], "classification": [ 190, 216 ], "problem.": [ 191 ], "results": [ 193, 224 ], "show": [ 194 ], "that": [ 195, 232 ], "application": [ 196 ], "Technique": [ 201 ], "prior": [ 202 ], "development": [ 204 ], "(SVM)": [ 210 ], "generated": [ 212 ], "best": [ 214 ], "an": [ 218 ], "accuracy": [ 219 ], "95%.": [ 221 ], "encouraging": [ 223 ], "based": [ 225 ], "on": [ 226 ], "may": [ 230 ], "suggest": [ 231 ], "similar": [ 234 ], "approach": [ 235 ], "can": [ 236, 253 ], "be": [ 237, 254 ], "used": [ 238 ], "basins": [ 242 ], "screening": [ 244 ], "locations": [ 246, 251 ], "potential.": [ 249 ], "Those": [ 250 ], "then": [ 252 ], "targeted": [ 255 ], "more": [ 257 ], "detailed": [ 258 ], "geochemical": [ 259 ], "surveys": [ 260 ], "identify": [ 262 ], "most": [ 263 ], "promising": [ 264 ], "overall": [ 268 ], "resources.": [ 270 ] }, "apc_list": { "value": 4270, "currency": "USD", "value_usd": 4270, "provenance": "doaj" }, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5069004224", "display_name": "Snehamoy Chatterjee", "orcid": "https://orcid.org/0000-0002-0103-1824" }, "institutions": [ { "id": "https://openalex.org/I11957088", "display_name": "Michigan Technological University", "ror": "https://ror.org/0036rpn28", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I11957088" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Snehamoy Chatterjee", "raw_affiliation_strings": [ "Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA" ], "affiliations": [ { "raw_affiliation_string": "Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA", "institution_ids": [ "https://openalex.org/I11957088" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5067882066", "display_name": "Mar\u00eda Mastalerz", "orcid": "https://orcid.org/0000-0002-9890-6788" }, "institutions": [ { "id": "https://openalex.org/I4210101670", "display_name": "Indiana Geological and Water Survey", "ror": "https://ror.org/00pnhtk88", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I4210101670", "https://openalex.org/I4210119109", "https://openalex.org/I592451" ] }, { "id": "https://openalex.org/I4210119109", "display_name": "Indiana University Bloomington", "ror": "https://ror.org/02k40bc56", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I4210119109", "https://openalex.org/I592451" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Maria Mastalerz", "raw_affiliation_strings": [ "Indiana University, Indiana Geological and Water Survey, 1001 East 10th Street, Bloomington, IN 47405, USA" ], "affiliations": [ { "raw_affiliation_string": "Indiana University, Indiana Geological and Water Survey, 1001 East 10th Street, Bloomington, IN 47405, USA", "institution_ids": [ "https://openalex.org/I4210101670", "https://openalex.org/I4210119109" ] } ] }, { "author_position": "middle", "author": { "id": "https://openalex.org/A5069028693", "display_name": "Agnieszka Drobniak", "orcid": "https://orcid.org/0000-0003-2610-1128" }, "institutions": [ { "id": "https://openalex.org/I4210101670", "display_name": "Indiana Geological and Water Survey", "ror": "https://ror.org/00pnhtk88", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I4210101670", "https://openalex.org/I4210119109", "https://openalex.org/I592451" ] }, { "id": "https://openalex.org/I4210119109", "display_name": "Indiana University Bloomington", "ror": "https://ror.org/02k40bc56", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I4210119109", "https://openalex.org/I592451" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "Agnieszka Drobniak", "raw_affiliation_strings": [ "Indiana University, Indiana Geological and Water Survey, 1001 East 10th Street, Bloomington, IN 47405, USA" ], "affiliations": [ { "raw_affiliation_string": "Indiana University, Indiana Geological and Water Survey, 1001 East 10th Street, Bloomington, IN 47405, USA", "institution_ids": [ "https://openalex.org/I4210101670", "https://openalex.org/I4210119109" ] } ] }, { "author_position": "last", "author": { "id": "https://openalex.org/A5086772514", "display_name": "C. \u00d6zgen Karacan", "orcid": "https://orcid.org/0000-0002-0947-8241" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": false, "raw_author_name": "C. \u00d6zgen Karacan", "raw_affiliation_strings": [ "U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, USA" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] } ], "best_oa_location": null, "biblio": { "volume": "259", "issue": null, "first_page": "104054", "last_page": "104054" }, "citation_normalized_percentile": { "value": 0.999449, "is_in_top_1_percent": true, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W4283274505", "cited_by_count": 20, "cited_by_percentile_year": { "min": 96, "max": 97 }, "concepts": [ { "id": "https://openalex.org/C518851703", "wikidata": "https://www.wikidata.org/wiki/Q24489", "display_name": "Coal", "level": 2, "score": 0.8046652 }, { "id": "https://openalex.org/C12267149", "wikidata": "https://www.wikidata.org/wiki/Q282453", "display_name": "Support vector machine", "level": 2, "score": 0.6750537 }, { "id": "https://openalex.org/C140779682", "wikidata": "https://www.wikidata.org/wiki/Q210868", "display_name": "Sampling (signal processing)", "level": 3, "score": 0.6095262 }, { "id": "https://openalex.org/C169258074", "wikidata": "https://www.wikidata.org/wiki/Q245748", "display_name": "Random forest", "level": 2, "score": 0.48635036 }, { "id": "https://openalex.org/C116834253", "wikidata": "https://www.wikidata.org/wiki/Q2039217", "display_name": "Identification (biology)", "level": 2, "score": 0.4460604 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 0.43601504 }, { "id": "https://openalex.org/C16674752", "wikidata": "https://www.wikidata.org/wiki/Q1370637", "display_name": "Mining engineering", "level": 1, "score": 0.41085416 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.40175748 }, { "id": "https://openalex.org/C119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 0.38222793 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.34637654 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 0.34212878 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 0.2785442 }, { "id": "https://openalex.org/C548081761", "wikidata": "https://www.wikidata.org/wiki/Q180388", "display_name": "Waste management", "level": 1, "score": 0.14246768 }, { "id": "https://openalex.org/C106131492", "wikidata": "https://www.wikidata.org/wiki/Q3072260", "display_name": "Filter (signal processing)", "level": 2, "score": 0.07770279 }, { "id": "https://openalex.org/C31972630", "wikidata": "https://www.wikidata.org/wiki/Q844240", "display_name": "Computer vision", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C59822182", "wikidata": "https://www.wikidata.org/wiki/Q441", "display_name": "Botany", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 0.0 } ], "corresponding_author_ids": [ "https://openalex.org/A5069004224" ], "corresponding_institution_ids": [ "https://openalex.org/I11957088" ], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2024, "cited_by_count": 7 }, { "year": 2023, "cited_by_count": 10 }, { "year": 2022, "cited_by_count": 3 } ], "created_date": "2022-06-23", "datasets": [], "display_name": "Machine learning and data augmentation approach for identification of rare earth element potential in Indiana Coals, USA", "doi": "https://doi.org/10.1016/j.coal.2022.104054", "fwci": 3.736, "grants": [ { "funder": "https://openalex.org/F4320332183", "funder_display_name": "U.S. Geological Survey", "award_id": null } ], "has_fulltext": false, "id": "https://openalex.org/W4283274505", "ids": { "openalex": "https://openalex.org/W4283274505", "doi": "https://doi.org/10.1016/j.coal.2022.104054" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 4, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/rare-earth-elements", "display_name": "Rare Earth Elements", "score": 0.559701 }, { "id": "https://openalex.org/keywords/identification", "display_name": "Identification (biology)", "score": 0.4460604 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.coal.2022.104054", "pdf_url": null, "source": { "id": "https://openalex.org/S6747076", "display_name": "International Journal of Coal Geology", "issn_l": "0166-5162", "issn": [ "0166-5162", "1872-7840" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W4283274505/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.coal.2022.104054", "pdf_url": null, "source": { "id": "https://openalex.org/S6747076", "display_name": "International Journal of Coal Geology", "issn_l": "0166-5162", "issn": [ "0166-5162", "1872-7840" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T12218", "display_name": "Geochemistry and Utilization of Coal and Coal Byproducts", "score": 0.9991, "subfield": { "id": "https://openalex.org/subfields/1906", "display_name": "Geochemistry and Petrology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2022-07-01", "publication_year": 2022, "referenced_works": [ "https://openalex.org/W1514205146", "https://openalex.org/W1847890728", "https://openalex.org/W1938500889", "https://openalex.org/W1996313924", "https://openalex.org/W2008018897", "https://openalex.org/W2043621358", "https://openalex.org/W2064848794", "https://openalex.org/W2076063933", "https://openalex.org/W2081487307", "https://openalex.org/W2087576375", "https://openalex.org/W2089974228", "https://openalex.org/W2117190680", "https://openalex.org/W2123737232", "https://openalex.org/W2133797531", "https://openalex.org/W2143043751", "https://openalex.org/W2148143831", "https://openalex.org/W2155344811", "https://openalex.org/W2155632266", "https://openalex.org/W2161318198", "https://openalex.org/W2202768944", "https://openalex.org/W2293118840", "https://openalex.org/W2315953709", "https://openalex.org/W232876404", "https://openalex.org/W2333623170", "https://openalex.org/W2342348073", "https://openalex.org/W2407212869", "https://openalex.org/W2469045433", "https://openalex.org/W2474664182", "https://openalex.org/W2593493687", "https://openalex.org/W2709073124", "https://openalex.org/W2741951152", "https://openalex.org/W2765728423", "https://openalex.org/W2791315675", "https://openalex.org/W2796182481", "https://openalex.org/W2797589065", "https://openalex.org/W2802502226", "https://openalex.org/W2889473071", "https://openalex.org/W2965478925", "https://openalex.org/W2982482961", "https://openalex.org/W2983869424", "https://openalex.org/W2984932389", "https://openalex.org/W2991264163", "https://openalex.org/W2997674406", "https://openalex.org/W3092683462", "https://openalex.org/W3145013517", "https://openalex.org/W3164653223", "https://openalex.org/W3202833193", "https://openalex.org/W4206220007", "https://openalex.org/W4232678018", "https://openalex.org/W4244218679", "https://openalex.org/W4254068940" ], "referenced_works_count": 51, "related_works": [ "https://openalex.org/W4386259002", "https://openalex.org/W4224941037", "https://openalex.org/W4200112873", "https://openalex.org/W3193043704", "https://openalex.org/W3171520305", "https://openalex.org/W3135818052", "https://openalex.org/W2982754647", "https://openalex.org/W2955796858", "https://openalex.org/W2004826645", "https://openalex.org/W1546989560" ], "sustainable_development_goals": [ { "id": "https://metadata.un.org/sdg/16", "display_name": "Peace, justice, and strong institutions", "score": 0.57 } ], "title": "Machine learning and data augmentation approach for identification of rare earth element potential in Indiana Coals, USA", "topics": [ { "id": "https://openalex.org/T12218", "display_name": "Geochemistry and Utilization of Coal and Coal Byproducts", "score": 0.9991, "subfield": { "id": "https://openalex.org/subfields/1906", "display_name": "Geochemistry and Petrology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "score": 0.9958, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10946", "display_name": "Sources and Effects of Ionizing Radiation on Human Health", "score": 0.9787, "subfield": { "id": "https://openalex.org/subfields/3614", "display_name": "Radiological and Ultrasound Technology" }, "field": { "id": "https://openalex.org/fields/36", "display_name": "Health Professions" }, "domain": { "id": "https://openalex.org/domains/4", "display_name": "Health Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-11T14:02:12.214795", "versions": [] }
}