Item talk:Q250939

Add topic
There are no discussions on this page.

{

 "USGS Publications Warehouse": {
   "@context": "https://schema.org",
   "@type": "Article",
   "additionalType": "Journal Article",
   "name": "Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data",
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse IndexID",
       "value": "70034296",
       "url": "https://pubs.usgs.gov/publication/70034296"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "USGS Publications Warehouse Internal ID",
       "value": 70034296
     },
     {
       "@type": "PropertyValue",
       "propertyID": "DOI",
       "value": "10.1016/j.rse.2011.03.001",
       "url": "https://doi.org/10.1016/j.rse.2011.03.001"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "ISSN",
       "value": "00344257"
     }
   ],
   "journal": {
     "@type": "Periodical",
     "name": "Remote Sensing of Environment",
     "volumeNumber": "115",
     "issueNumber": "8"
   },
   "inLanguage": "en",
   "isPartOf": [
     {
       "@type": "CreativeWorkSeries",
       "name": "Remote Sensing of Environment"
     }
   ],
   "datePublished": "2011",
   "dateModified": "2018-02-23",
   "abstract": "Many forestry and earth science applications require spatially detailed forest height data sets. Among the various remote sensing technologies, lidar offers the most potential for obtaining reliable height measurement. However, existing and planned spaceborne lidar systems do not have the capability to produce spatially contiguous, fine resolution forest height maps over large areas. This paper describes a Landsat\u2013lidar fusion approach for modeling the height of young forests by integrating historical Landsat observations with lidar data acquired by the Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation (ICESat) satellite. In this approach, \u201cyoung\u201d forests refer to forests reestablished following recent disturbances mapped using Landsat time-series stacks (LTSS) and a vegetation change tracker (VCT) algorithm. The GLAS lidar data is used to retrieve forest height at sample locations represented by the footprints of the lidar data. These samples are used to establish relationships between lidar-based forest height measurements and LTSS\u2013VCT disturbance products. The height of \u201cyoung\u201d forest is then mapped based on the derived relationships and the LTSS\u2013VCT disturbance products. This approach was developed and tested over the state of Mississippi. Of the various models evaluated, a regression tree model predicting forest height from age since disturbance and three cumulative indices produced by the LTSS\u2013VCT method yielded the lowest cross validation error. The R2 and root mean square difference (RMSD) between predicted and GLAS-based height measurements were 0.91 and 1.97\u00a0m, respectively. Predictions of this model had much higher errors than indicated by cross validation analysis when evaluated using field plot data collected through the Forest Inventory and Analysis Program of USDA Forest Service. Much of these errors were due to a lack of separation between stand clearing and non-stand clearing disturbances in current LTSS\u2013VCT products and difficulty in deriving reliable forest height measurements using GLAS samples when terrain relief was present within their footprints. In addition, a systematic underestimation of about 5\u00a0m by the developed model was also observed, half of which could be explained by forest growth that occurred between field measurement year and model target year. The remaining difference suggests that tree height measurements derived using waveform lidar data could be significantly underestimated, especially for young pine forests. Options for improving the height modeling approach developed in this study were discussed.",
   "description": "13 p.",
   "publisher": {
     "@type": "Organization",
     "name": "Elsevier"
   },
   "author": [
     {
       "@type": "Person",
       "name": "Goward, Samuel N.",
       "givenName": "Samuel N.",
       "familyName": "Goward"
     },
     {
       "@type": "Person",
       "name": "Masek, Jeffery G.",
       "givenName": "Jeffery G.",
       "familyName": "Masek"
     },
     {
       "@type": "Person",
       "name": "Sun, Guoqing",
       "givenName": "Guoqing",
       "familyName": "Sun"
     },
     {
       "@type": "Person",
       "name": "Zhu, Zhiliang zzhu@usgs.gov",
       "givenName": "Zhiliang",
       "familyName": "Zhu",
       "email": "zzhu@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0002-6860-6936",
         "url": "https://orcid.org/0000-0002-6860-6936"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "National Climate Change and Wildlife Science Center",
           "url": null
         },
         {
           "@type": "Organization",
           "name": "Office of the AD Climate and Land-Use Change",
           "url": "https://www.usgs.gov/mission-areas/ecosystems"
         },
         {
           "@type": "Organization",
           "name": "Land Change Science",
           "url": "https://www.usgs.gov/ecosystems/land-change-science-program"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Rollins, Matthew G.",
       "givenName": "Matthew G.",
       "familyName": "Rollins"
     },
     {
       "@type": "Person",
       "name": "Toney, Chris",
       "givenName": "Chris",
       "familyName": "Toney"
     },
     {
       "@type": "Person",
       "name": "Huang, Chengquan",
       "givenName": "Chengquan",
       "familyName": "Huang",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0003-0055-9798",
         "url": "https://orcid.org/0000-0003-0055-9798"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Department of Geographical Sciences, University of Maryland, College Park, MD, 20742"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Shi, Hua hshi@usgs.gov",
       "givenName": "Hua",
       "familyName": "Shi",
       "email": "hshi@usgs.gov",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ORCID",
         "value": "0000-0001-7013-1565",
         "url": "https://orcid.org/0000-0001-7013-1565"
       },
       "affiliation": [
         {
           "@type": "Organization",
           "name": "Earth Resources Observation and Science (EROS) Center",
           "url": "https://www.usgs.gov/centers/eros"
         },
         {
           "@type": "Organization",
           "name": "Earth Resources Observation and Science (EROS) Center (Geography)",
           "url": "https://www.usgs.gov/centers/eros"
         }
       ]
     },
     {
       "@type": "Person",
       "name": "Li, Ainong",
       "givenName": "Ainong",
       "familyName": "Li"
     }
   ],
   "funder": [
     {
       "@type": "Organization",
       "name": "Earth Resources Observation and Science (EROS) Center",
       "url": "https://www.usgs.gov/centers/eros"
     }
   ]
 },
 "OpenAlex": {
   "abstract_inverted_index": {
     "Many": [
       0
     ],
     "forestry": [
       1
     ],
     "and": [
       2,
       31,
       88,
       111,
       151,
       168,
       177,
       200,
       217,
       225,
       231,
       260,
       281,
       289,
       339
     ],
     "earth": [
       3
     ],
     "science": [
       4
     ],
     "applications": [
       5
     ],
     "require": [
       6
     ],
     "spatially": [
       7,
       43
     ],
     "detailed": [
       8
     ],
     "forest": [
       9,
       47,
       126,
       148,
       159,
       194,
       294,
       331
     ],
     "height": [
       10,
       27,
       48,
       63,
       127,
       149,
       156,
       195,
       227,
       295,
       349,
       369
     ],
     "data": [
       11,
       74,
       121,
       254,
       355
     ],
     "sets.": [
       12
     ],
     "Among": [
       13
     ],
     "the": [
       14,
       21,
       39,
       62,
       77,
       85,
       133,
       136,
       165,
       169,
       180,
       185,
       206,
       210,
       257,
       318,
       368
     ],
     "various": [
       15,
       186
     ],
     "remote": [
       16
     ],
     "sensing": [
       17
     ],
     "technologies,": [
       18
     ],
     "lidar": [
       19,
       34,
       73,
       120,
       137,
       354
     ],
     "offers": [
       20
     ],
     "most": [
       22
     ],
     "potential": [
       23
     ],
     "for": [
       24,
       60,
       361,
       366
     ],
     "obtaining": [
       25
     ],
     "reliable": [
       26,
       293
     ],
     "measurement.": [
       28
     ],
     "However,": [
       29
     ],
     "existing": [
       30
     ],
     "planned": [
       32
     ],
     "spaceborne": [
       33
     ],
     "systems": [
       35
     ],
     "do": [
       36
     ],
     "not": [
       37
     ],
     "have": [
       38
     ],
     "capability": [
       40
     ],
     "to": [
       41,
       99,
       124,
       143,
       273
     ],
     "produce": [
       42
     ],
     "contiguous,": [
       44
     ],
     "fine": [
       45
     ],
     "resolution": [
       46
     ],
     "maps": [
       49
     ],
     "over": [
       50,
       179
     ],
     "large": [
       51
     ],
     "areas.": [
       52
     ],
     "This": [
       53,
       173
     ],
     "paper": [
       54
     ],
     "describes": [
       55
     ],
     "a": [
       56,
       112,
       189,
       274,
       310
     ],
     "Landsat-lidar": [
       57
     ],
     "fusion": [
       58
     ],
     "approach": [
       59,
       174,
       371
     ],
     "modeling": [
       61,
       370
     ],
     "of": [
       64,
       135,
       157,
       182,
       236,
       263,
       268,
       276,
       313,
       325
     ],
     "young": [
       96,
       158
     ],
     "forests": [
       66,
       97,
       100
     ],
     "by": [
       67,
       76,
       132,
       205,
       245,
       317,
       330
     ],
     "integrating": [
       68
     ],
     "historical": [
       69
     ],
     "Landsat": [
       70,
       107
     ],
     "observations": [
       71
     ],
     "with": [
       72
     ],
     "acquired": [
       75
     ],
     "Geoscience": [
       78
     ],
     "Laser": [
       79
     ],
     "Altimeter": [
       80
     ],
     "System": [
       81
     ],
     "(GLAS)": [
       82
     ],
     "instrument": [
       83
     ],
     "onboard": [
       84
     ],
     "Ice,": [
       86
     ],
     "Cloud,": [
       87
     ],
     "land": [
       89
     ],
     "Elevation": [
       90
     ],
     "(ICESat)": [
       91
     ],
     "satellite.": [
       92
     ],
     "In": [
       93,
       308
     ],
     "this": [
       94,
       237,
       374
     ],
     "approach,": [
       95
     ],
     "refer": [
       98
     ],
     "reestablished": [
       101
     ],
     "following": [
       102
     ],
     "recent": [
       103
     ],
     "disturbances": [
       104,
       284
     ],
     "mapped": [
       105,
       162
     ],
     "using": [
       106,
       251,
       297,
       352
     ],
     "time-series": [
       108
     ],
     "stacks": [
       109
     ],
     "(LTSS)": [
       110
     ],
     "vegetation": [
       113
     ],
     "change": [
       114
     ],
     "tracker": [
       115
     ],
     "(VCT)": [
       116
     ],
     "algorithm.": [
       117
     ],
     "The": [
       118,
       155,
       215,
       343
     ],
     "GLAS": [
       119,
       298
     ],
     "is": [
       122,
       160
     ],
     "used": [
       123,
       142
     ],
     "retrieve": [
       125
     ],
     "at": [
       128
     ],
     "sample": [
       129
     ],
     "locations": [
       130
     ],
     "represented": [
       131
     ],
     "footprints": [
       134
     ],
     "data.": [
       138
     ],
     "These": [
       139
     ],
     "samples": [
       140,
       299
     ],
     "are": [
       141
     ],
     "establish": [
       144
     ],
     "relationships": [
       145,
       167
     ],
     "between": [
       146,
       223,
       278,
       335
     ],
     "lidar-based": [
       147
     ],
     "measurements": [
       150,
       228,
       296,
       350
     ],
     "LTSS-VCT": [
       152,
       170,
       207,
       287
     ],
     "disturbance": [
       153,
       171,
       199
     ],
     "products.": [
       154,
       172
     ],
     "then": [
       161
     ],
     "based": [
       163
     ],
     "on": [
       164
     ],
     "derived": [
       166,
       351
     ],
     "was": [
       175,
       303,
       321
     ],
     "developed": [
       176,
       319,
       372
     ],
     "tested": [
       178
     ],
     "state": [
       181
     ],
     "Mississippi.": [
       183
     ],
     "Of": [
       184
     ],
     "models": [
       187
     ],
     "evaluated,": [
       188
     ],
     "regression": [
       190
     ],
     "tree": [
       191,
       348
     ],
     "model": [
       192,
       238,
       320,
       340
     ],
     "predicting": [
       193
     ],
     "from": [
       196
     ],
     "age": [
       197
     ],
     "since": [
       198
     ],
     "three": [
       201
     ],
     "cumulative": [
       202
     ],
     "indices": [
       203
     ],
     "produced": [
       204
     ],
     "method": [
       208
     ],
     "yielded": [
       209
     ],
     "lowest": [
       211
     ],
     "cross": [
       212,
       246
     ],
     "validation": [
       213,
       247
     ],
     "error.": [
       214
     ],
     "R(2)": [
       216
     ],
     "root": [
       218
     ],
     "mean": [
       219
     ],
     "square": [
       220
     ],
     "difference": [
       221,
       345
     ],
     "(RMSD)": [
       222
     ],
     "predicted": [
       224
     ],
     "GLAS-based": [
       226
     ],
     "were": [
       229,
       271,
       376
     ],
     "0.91": [
       230
     ],
     "1.97": [
       232
     ],
     "m,": [
       233
     ],
     "respectively.": [
       234
     ],
     "Predictions": [
       235
     ],
     "had": [
       239
     ],
     "much": [
       240
     ],
     "higher": [
       241
     ],
     "errors": [
       242,
       270
     ],
     "than": [
       243
     ],
     "indicated": [
       244
     ],
     "analysis": [
       248
     ],
     "when": [
       249,
       300
     ],
     "evaluated": [
       250
     ],
     "field": [
       252,
       336
     ],
     "plot": [
       253
     ],
     "collected": [
       255
     ],
     "through": [
       256
     ],
     "Forest": [
       258,
       265
     ],
     "Inventory": [
       259
     ],
     "Analysis": [
       261
     ],
     "Program": [
       262
     ],
     "USDA": [
       264
     ],
     "Service.": [
       266
     ],
     "Much": [
       267
     ],
     "these": [
       269
     ],
     "due": [
       272
     ],
     "lack": [
       275
     ],
     "separation": [
       277
     ],
     "stand": [
       279
     ],
     "clearing": [
       280,
       283
     ],
     "non-stand": [
       282
     ],
     "in": [
       285,
       291,
       373
     ],
     "current": [
       286
     ],
     "products": [
       288
     ],
     "difficulty": [
       290
     ],
     "deriving": [
       292
     ],
     "terrain": [
       301
     ],
     "relief": [
       302
     ],
     "present": [
       304
     ],
     "within": [
       305
     ],
     "their": [
       306
     ],
     "footprints.": [
       307
     ],
     "addition,": [
       309
     ],
     "systematic": [
       311
     ],
     "underestimation": [
       312
     ],
     "about": [
       314
     ],
     "5": [
       315
     ],
     "m": [
       316
     ],
     "also": [
       322
     ],
     "observed,": [
       323
     ],
     "half": [
       324
     ],
     "which": [
       326
     ],
     "could": [
       327,
       356
     ],
     "be": [
       328,
       357
     ],
     "explained": [
       329
     ],
     "growth": [
       332
     ],
     "that": [
       333,
       347
     ],
     "occurred": [
       334
     ],
     "measurement": [
       337
     ],
     "year": [
       338
     ],
     "target": [
       341
     ],
     "year.": [
       342
     ],
     "remaining": [
       344
     ],
     "suggests": [
       346
     ],
     "waveform": [
       353
     ],
     "significantly": [
       358
     ],
     "underestimated,": [
       359
     ],
     "especially": [
       360
     ],
     "pine": [
       363
     ],
     "forests.": [
       364
     ],
     "Options": [
       365
     ],
     "improving": [
       367
     ],
     "study": [
       375
     ],
     "discussed.": [
       377
     ],
     "(C)": [
       378
     ],
     "2011": [
       379
     ],
     "Elsevier": [
       380
     ],
     "Inc.": [
       381
     ],
     "All": [
       382
     ],
     "rights": [
       383
     ],
     "reserved.": [
       384
     ]
   },
   "apc_list": {
     "value": 4070,
     "currency": "USD",
     "value_usd": 4070,
     "provenance": "doaj"
   },
   "apc_paid": null,
   "authorships": [
     {
       "author_position": "first",
       "author": {
         "id": "https://openalex.org/A5019197462",
         "display_name": "Ainong Li",
         "orcid": "https://orcid.org/0000-0002-4543-5118"
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Ainong Li",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5088514864",
         "display_name": "Chengquan Huang",
         "orcid": "https://orcid.org/0000-0003-0055-9798"
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Chengquan Huang",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5101891404",
         "display_name": "Guoqing Sun",
         "orcid": "https://orcid.org/0000-0002-5388-6402"
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Guoqing Sun",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5026396636",
         "display_name": "Hua Shi",
         "orcid": "https://orcid.org/0000-0001-7013-1565"
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Hua Shi",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5077563168",
         "display_name": "Chris Toney",
         "orcid": null
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Chris Toney",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5084035201",
         "display_name": "Zhiliang Zhu",
         "orcid": "https://orcid.org/0000-0002-6860-6936"
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Zhiliang Zhu",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5089569974",
         "display_name": "Matthew G. Rollins",
         "orcid": null
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Matthew G. Rollins",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "middle",
       "author": {
         "id": "https://openalex.org/A5032844416",
         "display_name": "Samuel N. Goward",
         "orcid": "https://orcid.org/0000-0002-3076-2546"
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Samuel N. Goward",
       "raw_affiliation_strings": [],
       "affiliations": []
     },
     {
       "author_position": "last",
       "author": {
         "id": "https://openalex.org/A5013151081",
         "display_name": "Jeffrey G. Masek",
         "orcid": null
       },
       "institutions": [],
       "countries": [],
       "is_corresponding": false,
       "raw_author_name": "Jeffrey G. Masek",
       "raw_affiliation_strings": [],
       "affiliations": []
     }
   ],
   "best_oa_location": null,
   "biblio": {
     "volume": "115",
     "issue": "8",
     "first_page": "1837",
     "last_page": "1849"
   },
   "citation_normalized_percentile": {
     "value": 0.889619,
     "is_in_top_1_percent": false,
     "is_in_top_10_percent": false
   },
   "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2157986460",
   "cited_by_count": 39,
   "cited_by_percentile_year": {
     "min": 94,
     "max": 95
   },
   "concepts": [
     {
       "id": "https://openalex.org/C62649853",
       "wikidata": "https://www.wikidata.org/wiki/Q199687",
       "display_name": "Remote sensing",
       "level": 1,
       "score": 0.8547876
     },
     {
       "id": "https://openalex.org/C39432304",
       "wikidata": "https://www.wikidata.org/wiki/Q188847",
       "display_name": "Environmental science",
       "level": 0,
       "score": 0.3915441
     },
     {
       "id": "https://openalex.org/C127313418",
       "wikidata": "https://www.wikidata.org/wiki/Q1069",
       "display_name": "Geology",
       "level": 0,
       "score": 0.38473743
     },
     {
       "id": "https://openalex.org/C205649164",
       "wikidata": "https://www.wikidata.org/wiki/Q1071",
       "display_name": "Geography",
       "level": 0,
       "score": 0.3253445
     }
   ],
   "corresponding_author_ids": [],
   "corresponding_institution_ids": [],
   "countries_distinct_count": 0,
   "counts_by_year": [
     {
       "year": 2023,
       "cited_by_count": 2
     },
     {
       "year": 2022,
       "cited_by_count": 3
     },
     {
       "year": 2021,
       "cited_by_count": 1
     },
     {
       "year": 2020,
       "cited_by_count": 2
     },
     {
       "year": 2019,
       "cited_by_count": 2
     },
     {
       "year": 2018,
       "cited_by_count": 2
     },
     {
       "year": 2017,
       "cited_by_count": 3
     },
     {
       "year": 2016,
       "cited_by_count": 7
     },
     {
       "year": 2015,
       "cited_by_count": 3
     },
     {
       "year": 2014,
       "cited_by_count": 7
     },
     {
       "year": 2013,
       "cited_by_count": 3
     },
     {
       "year": 2012,
       "cited_by_count": 4
     }
   ],
   "created_date": "2016-06-24",
   "datasets": [],
   "display_name": "Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data",
   "doi": "https://doi.org/10.1016/j.rse.2011.03.001",
   "fulltext_origin": "ngrams",
   "fwci": 3.455,
   "grants": [],
   "has_fulltext": true,
   "id": "https://openalex.org/W2157986460",
   "ids": {
     "openalex": "https://openalex.org/W2157986460",
     "doi": "https://doi.org/10.1016/j.rse.2011.03.001",
     "mag": "2157986460"
   },
   "indexed_in": [
     "crossref"
   ],
   "institutions_distinct_count": 0,
   "is_paratext": false,
   "is_retracted": false,
   "keywords": [
     {
       "id": "https://openalex.org/keywords/tree-height-estimation",
       "display_name": "Tree Height Estimation",
       "score": 0.601459
     },
     {
       "id": "https://openalex.org/keywords/tree-height-diameter-models",
       "display_name": "Tree Height-Diameter Models",
       "score": 0.590003
     },
     {
       "id": "https://openalex.org/keywords/landsat",
       "display_name": "Landsat",
       "score": 0.548138
     },
     {
       "id": "https://openalex.org/keywords/lidar-remote-sensing",
       "display_name": "Lidar Remote Sensing",
       "score": 0.547139
     },
     {
       "id": "https://openalex.org/keywords/global-forest-mapping",
       "display_name": "Global Forest Mapping",
       "score": 0.527162
     }
   ],
   "language": "en",
   "locations": [
     {
       "is_oa": false,
       "landing_page_url": "https://doi.org/10.1016/j.rse.2011.03.001",
       "pdf_url": null,
       "source": {
         "id": "https://openalex.org/S141808269",
         "display_name": "Remote Sensing of Environment",
         "issn_l": "0034-4257",
         "issn": [
           "0034-4257",
           "1879-0704"
         ],
         "is_oa": false,
         "is_in_doaj": false,
         "is_core": true,
         "host_organization": "https://openalex.org/P4310320990",
         "host_organization_name": "Elsevier BV",
         "host_organization_lineage": [
           "https://openalex.org/P4310320990"
         ],
         "host_organization_lineage_names": [
           "Elsevier BV"
         ],
         "type": "journal"
       },
       "license": null,
       "license_id": null,
       "version": null,
       "is_accepted": false,
       "is_published": false
     }
   ],
   "locations_count": 1,
   "mesh": [],
   "ngrams_url": "https://api.openalex.org/works/W2157986460/ngrams",
   "open_access": {
     "is_oa": false,
     "oa_status": "closed",
     "oa_url": null,
     "any_repository_has_fulltext": false
   },
   "primary_location": {
     "is_oa": false,
     "landing_page_url": "https://doi.org/10.1016/j.rse.2011.03.001",
     "pdf_url": null,
     "source": {
       "id": "https://openalex.org/S141808269",
       "display_name": "Remote Sensing of Environment",
       "issn_l": "0034-4257",
       "issn": [
         "0034-4257",
         "1879-0704"
       ],
       "is_oa": false,
       "is_in_doaj": false,
       "is_core": true,
       "host_organization": "https://openalex.org/P4310320990",
       "host_organization_name": "Elsevier BV",
       "host_organization_lineage": [
         "https://openalex.org/P4310320990"
       ],
       "host_organization_lineage_names": [
         "Elsevier BV"
       ],
       "type": "journal"
     },
     "license": null,
     "license_id": null,
     "version": null,
     "is_accepted": false,
     "is_published": false
   },
   "primary_topic": {
     "id": "https://openalex.org/T11164",
     "display_name": "Mapping Forests with Lidar Remote Sensing",
     "score": 1.0,
     "subfield": {
       "id": "https://openalex.org/subfields/2305",
       "display_name": "Environmental Engineering"
     },
     "field": {
       "id": "https://openalex.org/fields/23",
       "display_name": "Environmental Science"
     },
     "domain": {
       "id": "https://openalex.org/domains/3",
       "display_name": "Physical Sciences"
     }
   },
   "publication_date": "2011-08-01",
   "publication_year": 2011,
   "referenced_works": [
     "https://openalex.org/W1196916165",
     "https://openalex.org/W1481566577",
     "https://openalex.org/W1496824059",
     "https://openalex.org/W1517445134",
     "https://openalex.org/W1537113418",
     "https://openalex.org/W1571411223",
     "https://openalex.org/W1657689886",
     "https://openalex.org/W1966280301",
     "https://openalex.org/W1967131024",
     "https://openalex.org/W1967609916",
     "https://openalex.org/W1967835331",
     "https://openalex.org/W1972862434",
     "https://openalex.org/W1974776350",
     "https://openalex.org/W1979210946",
     "https://openalex.org/W1980403882",
     "https://openalex.org/W1987589500",
     "https://openalex.org/W1988713966",
     "https://openalex.org/W1990590197",
     "https://openalex.org/W1991989519",
     "https://openalex.org/W1995869471",
     "https://openalex.org/W2002257312",
     "https://openalex.org/W2004874474",
     "https://openalex.org/W2008415990",
     "https://openalex.org/W2018140562",
     "https://openalex.org/W2019841126",
     "https://openalex.org/W2021793377",
     "https://openalex.org/W2030337367",
     "https://openalex.org/W2035050218",
     "https://openalex.org/W2035100408",
     "https://openalex.org/W2035685774",
     "https://openalex.org/W2039433676",
     "https://openalex.org/W2039918439",
     "https://openalex.org/W2040996383",
     "https://openalex.org/W2041402753",
     "https://openalex.org/W2050401936",
     "https://openalex.org/W2050966212",
     "https://openalex.org/W2056036936",
     "https://openalex.org/W2078073057",
     "https://openalex.org/W2078360271",
     "https://openalex.org/W2080341437",
     "https://openalex.org/W2083556343",
     "https://openalex.org/W2084557967",
     "https://openalex.org/W2086014296",
     "https://openalex.org/W2086659933",
     "https://openalex.org/W2087577415",
     "https://openalex.org/W2088524996",
     "https://openalex.org/W2095144920",
     "https://openalex.org/W2099534828",
     "https://openalex.org/W2101091751",
     "https://openalex.org/W2103818806",
     "https://openalex.org/W2118439627",
     "https://openalex.org/W2119709769",
     "https://openalex.org/W2121025662",
     "https://openalex.org/W2123689744",
     "https://openalex.org/W2127667892",
     "https://openalex.org/W2128785507",
     "https://openalex.org/W2129117679",
     "https://openalex.org/W2131408559",
     "https://openalex.org/W2133556703",
     "https://openalex.org/W2136314381",
     "https://openalex.org/W2136363079",
     "https://openalex.org/W2137341666",
     "https://openalex.org/W2140908571",
     "https://openalex.org/W2142795701",
     "https://openalex.org/W2143010534",
     "https://openalex.org/W2145167036",
     "https://openalex.org/W2149290009",
     "https://openalex.org/W2157814574",
     "https://openalex.org/W2157929592",
     "https://openalex.org/W2160203024",
     "https://openalex.org/W2161857414",
     "https://openalex.org/W2162416391",
     "https://openalex.org/W2167250466",
     "https://openalex.org/W2167468363",
     "https://openalex.org/W2168590406",
     "https://openalex.org/W2169394799",
     "https://openalex.org/W2174688722",
     "https://openalex.org/W2185372124",
     "https://openalex.org/W2187641570",
     "https://openalex.org/W2189122433",
     "https://openalex.org/W2273297058",
     "https://openalex.org/W2330820318",
     "https://openalex.org/W2334348844",
     "https://openalex.org/W2404851556",
     "https://openalex.org/W2483609610",
     "https://openalex.org/W2901894474",
     "https://openalex.org/W3085162807",
     "https://openalex.org/W313634716",
     "https://openalex.org/W3156302520",
     "https://openalex.org/W4239399690",
     "https://openalex.org/W600210939"
   ],
   "referenced_works_count": 91,
   "related_works": [
     "https://openalex.org/W4362653472",
     "https://openalex.org/W3000280057",
     "https://openalex.org/W2899084033",
     "https://openalex.org/W2245549564",
     "https://openalex.org/W2169359701",
     "https://openalex.org/W2126095845",
     "https://openalex.org/W2116047388",
     "https://openalex.org/W2037995797",
     "https://openalex.org/W2022420161",
     "https://openalex.org/W1964024921"
   ],
   "sustainable_development_goals": [
     {
       "display_name": "Life on land",
       "id": "https://metadata.un.org/sdg/15",
       "score": 0.79
     }
   ],
   "title": "Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data",
   "topics": [
     {
       "id": "https://openalex.org/T11164",
       "display_name": "Mapping Forests with Lidar Remote Sensing",
       "score": 1.0,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11880",
       "display_name": "Estimation of Forest Biomass and Carbon Stocks",
       "score": 0.9998,
       "subfield": {
         "id": "https://openalex.org/subfields/2309",
         "display_name": "Nature and Landscape Conservation"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10111",
       "display_name": "Remote Sensing in Vegetation Monitoring and Phenology",
       "score": 0.9983,
       "subfield": {
         "id": "https://openalex.org/subfields/2303",
         "display_name": "Ecology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "type": "article",
   "type_crossref": "journal-article",
   "updated_date": "2024-08-10T20:59:24.715425",
   "versions": []
 }

}

Return to "Q250939" page.