{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "CreativeWork", "additionalType": "Conference Paper", "name": "Spectroscopic remote sensing for material identification, vegetation characterization, and mapping", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70159021", "url": "https://pubs.usgs.gov/publication/70159021" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70159021 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1117/12.919121", "url": "https://doi.org/10.1117/12.919121" } ], "inLanguage": "en", "datePublished": "2012", "dateModified": "2021-10-27", "abstract": "Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.", "description": "839014", "publisher": { "@type": "Organization", "name": "SPIE" }, "editor": [ { "@type": "Person", "name": "Shen, Sylvia S.", "givenName": "Sylvia S.", "familyName": "Shen" }, { "@type": "Person", "name": "Lewis, Paul E.", "givenName": "Paul E.", "familyName": "Lewis" } ], "author": [ { "@type": "Person", "name": "Kokaly, Raymond F. raymond@usgs.gov", "givenName": "Raymond F.", "familyName": "Kokaly", "email": "raymond@usgs.gov", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-0276-7101", "url": "https://orcid.org/0000-0003-0276-7101" }, "affiliation": [ { "@type": "Organization", "name": "Crustal Geophysics and Geochemistry Science Center", "url": "https://www.usgs.gov/centers/geology-energy-and-minerals-science-center" } ] } ], "funder": [ { "@type": "Organization", "name": "Crustal Geophysics and Geochemistry Science Center", "url": "https://www.usgs.gov/centers/geology-energy-and-minerals-science-center" } ] }, "OpenAlex": { "abstract_inverted_index": { "Identifying": [ 0 ], "materials": [ 1, 25, 66, 250 ], "by": [ 2, 212, 217 ], "measuring": [ 3 ], "and": [ 4, 20, 37, 64, 82, 122, 135, 145, 183, 245 ], "analyzing": [ 5 ], "their": [ 6 ], "reflectance": [ 7, 72 ], "spectra": [ 8, 134, 137 ], "has": [ 9, 200 ], "been": [ 10, 202 ], "an": [ 11, 75 ], "important": [ 12 ], "procedure": [ 13 ], "in": [ 14, 74, 96, 131, 163, 188, 209, 223, 251 ], "analytical": [ 15 ], "chemistry": [ 16 ], "for": [ 17, 42, 98, 243 ], "decades.": [ 18 ], "Airborne": [ 19 ], "space-based": [ 21 ], "imaging": [ 22, 252 ], "spectrometers": [ 23 ], "allow": [ 24 ], "to": [ 26, 49, 103, 125, 171, 185, 204, 240 ], "be": [ 27 ], "mapped": [ 28 ], "across": [ 29 ], "the": [ 30, 43, 52, 92, 104, 107, 136, 180, 189, 193, 213, 219, 234, 247 ], "landscape.": [ 31 ], "With": [ 32 ], "many": [ 33 ], "existing": [ 34 ], "airborne": [ 35 ], "sensors": [ 36, 40 ], "new": [ 38 ], "satellite-borne": [ 39 ], "planned": [ 41 ], "future,": [ 44 ], "robust": [ 45 ], "methods": [ 46 ], "are": [ 47, 148 ], "needed": [ 48 ], "fully": [ 50 ], "exploit": [ 51 ], "information": [ 53 ], "content": [ 54 ], "of": [ 55, 62, 71, 91, 117, 161, 175, 192, 236, 249 ], "hyperspectral": [ 56 ], "remote": [ 57, 241 ], "sensing": [ 58, 242 ], "data.": [ 59, 254 ], "A": [ 60 ], "method": [ 61 ], "identifying": [ 63, 244 ], "mapping": [ 65, 246 ], "using": [ 67 ], "spectral": [ 68 ], "feature": [ 69 ], "analyses": [ 70 ], "data": [ 73, 197 ], "expert-system": [ 76 ], "framework": [ 77 ], "called": [ 78 ], "MICA": [ 79, 87, 118, 153, 199 ], "(Material": [ 80 ], "Identification": [ 81 ], "Characterization": [ 83 ], "Algorithm)": [ 84 ], "is": [ 85, 88 ], "described.": [ 86 ], "a": [ 89, 151, 166, 173, 237 ], "module": [ 90 ], "PRISM": [ 93 ], "(Processing": [ 94 ], "Routines": [ 95 ], "IDL": [ 97 ], "Spectroscopic": [ 99 ], "Measurements)": [ 100 ], "software,": [ 101 ], "available": [ 102 ], "public": [ 105 ], "from": [ 106, 226 ], "U.S.": [ 108 ], "Geological": [ 109 ], "Survey": [ 110 ], "(USGS)": [ 111 ], "at": [ 112 ], "http://pubs.usgs.gov/of/2011/1155/.": [ 113 ], "The": [ 114, 140 ], "core": [ 115 ], "concepts": [ 116 ], "include": [ 119 ], "continuum": [ 120 ], "removal": [ 121 ], "linear": [ 123 ], "regression": [ 124 ], "compare": [ 126 ], "key": [ 127 ], "diagnostic": [ 128, 143 ], "absorption": [ 129, 221 ], "features": [ 130, 222 ], "reference": [ 132, 141 ], "laboratory/field": [ 133 ], "being": [ 138 ], "analyzed.": [ 139 ], "spectra,": [ 142 ], "features,": [ 144 ], "threshold": [ 146 ], "constraints": [ 147 ], "defined": [ 149 ], "within": [ 150 ], "user-developed": [ 152 ], "command": [ 154 ], "file": [ 155 ], "(MCF).": [ 156 ], "Building": [ 157 ], "on": [ 158, 179 ], "several": [ 159 ], "decades": [ 160 ], "experience": [ 162 ], "mineral": [ 164 ], "mapping,": [ 165 ], "broadly-applicable": [ 167 ], "MCF": [ 168 ], "was": [ 169 ], "developed": [ 170 ], "detect": [ 172, 205 ], "set": [ 174 ], "minerals": [ 176, 187 ], "frequently": [ 177 ], "occurring": [ 178 ], "Earth's": [ 181 ], "surface": [ 182 ], "applied": [ 184, 203 ], "map": [ 186 ], "country-wide": [ 190 ], "coverage": [ 191 ], "2007": [ 194 ], "Afghanistan": [ 195 ], "HyMap": [ 196 ], "set.": [ 198 ], "also": [ 201 ], "sub-pixel": [ 206 ], "oil": [ 207, 224 ], "contamination": [ 208 ], "marshes": [ 210 ], "impacted": [ 211 ], "Deepwater": [ 214 ], "Horizon": [ 215 ], "incident": [ 216 ], "discriminating": [ 218 ], "C-H": [ 220 ], "residues": [ 225 ], "background": [ 227 ], "vegetation.": [ 228 ], "These": [ 229 ], "two": [ 230 ], "recent": [ 231 ], "examples": [ 232 ], "demonstrate": [ 233 ], "utility": [ 235 ], "spectroscopic": [ 238 ], "approach": [ 239 ], "distributions": [ 248 ], "spectrometer": [ 253 ] }, "apc_list": null, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5059111916", "display_name": "Raymond F. Kokaly", "orcid": "https://orcid.org/0000-0003-0276-7101" }, "institutions": [ { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Raymond F. Kokaly", "raw_affiliation_strings": [ "U.S. Geological Survey, United States" ], "affiliations": [ { "raw_affiliation_string": "U.S. Geological Survey, United States", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] } ], "best_oa_location": null, "biblio": { "volume": null, "issue": null, "first_page": null, "last_page": null }, "citation_normalized_percentile": { "value": 0.920079, "is_in_top_1_percent": false, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W2045775866", "cited_by_count": 14, "cited_by_percentile_year": { "min": 87, "max": 88 }, "concepts": [ { "id": "https://openalex.org/C159078339", "wikidata": "https://www.wikidata.org/wiki/Q959005", "display_name": "Hyperspectral imaging", "level": 2, "score": 0.8217231 }, { "id": "https://openalex.org/C62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 0.73613095 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.58628994 }, { "id": "https://openalex.org/C176641082", "wikidata": "https://www.wikidata.org/wiki/Q2446767", "display_name": "Spectral signature", "level": 2, "score": 0.5771991 }, { "id": "https://openalex.org/C2780841128", "wikidata": "https://www.wikidata.org/wiki/Q5073781", "display_name": "Characterization (materials science)", "level": 2, "score": 0.5342967 }, { "id": "https://openalex.org/C2781038479", "wikidata": "https://www.wikidata.org/wiki/Q114675", "display_name": "Mica", "level": 2, "score": 0.5296763 }, { "id": "https://openalex.org/C116834253", "wikidata": "https://www.wikidata.org/wiki/Q2039217", "display_name": "Identification (biology)", "level": 2, "score": 0.45374307 }, { "id": "https://openalex.org/C183852935", "wikidata": "https://www.wikidata.org/wiki/Q6002848", "display_name": "Imaging spectrometer", "level": 3, "score": 0.42687005 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 0.38461912 }, { "id": "https://openalex.org/C33390570", "wikidata": "https://www.wikidata.org/wiki/Q188463", "display_name": "Spectrometer", "level": 2, "score": 0.30850002 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 0.3073747 }, { "id": "https://openalex.org/C120665830", "wikidata": "https://www.wikidata.org/wiki/Q14620", "display_name": "Optics", "level": 1, "score": 0.14478087 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 0.100263625 }, { "id": "https://openalex.org/C151730666", "wikidata": "https://www.wikidata.org/wiki/Q7205", "display_name": "Paleontology", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C59822182", "wikidata": "https://www.wikidata.org/wiki/Q441", "display_name": "Botany", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 0.0 } ], "corresponding_author_ids": [ "https://openalex.org/A5059111916" ], "corresponding_institution_ids": [ "https://openalex.org/I1286329397" ], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2021, "cited_by_count": 1 }, { "year": 2020, "cited_by_count": 2 }, { "year": 2019, "cited_by_count": 1 }, { "year": 2018, "cited_by_count": 1 }, { "year": 2017, "cited_by_count": 1 }, { "year": 2016, "cited_by_count": 2 }, { "year": 2015, "cited_by_count": 1 }, { "year": 2014, "cited_by_count": 2 }, { "year": 2012, "cited_by_count": 1 } ], "created_date": "2016-06-24", "datasets": [], "display_name": "Spectroscopic remote sensing for material identification, vegetation characterization, and mapping", "doi": "https://doi.org/10.1117/12.919121", "fulltext_origin": "ngrams", "fwci": 1.638, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W2045775866", "ids": { "openalex": "https://openalex.org/W2045775866", "doi": "https://doi.org/10.1117/12.919121", "mag": "2045775866" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 1, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/spectral-signature", "display_name": "Spectral signature", "score": 0.5771991 }, { "id": "https://openalex.org/keywords/characterization", "display_name": "Characterization (materials science)", "score": 0.5342967 }, { "id": "https://openalex.org/keywords/geological-mapping", "display_name": "Geological Mapping", "score": 0.518639 }, { "id": "https://openalex.org/keywords/hyperspectral-imaging", "display_name": "Hyperspectral Imaging", "score": 0.508448 }, { "id": "https://openalex.org/keywords/spectral-analysis", "display_name": "Spectral Analysis", "score": 0.506616 }, { "id": "https://openalex.org/keywords/fractal-modeling", "display_name": "Fractal Modeling", "score": 0.503853 }, { "id": "https://openalex.org/keywords/remote-sensing", "display_name": "Remote Sensing", "score": 0.502517 }, { "id": "https://openalex.org/keywords/identification", "display_name": "Identification (biology)", "score": 0.45374307 }, { "id": "https://openalex.org/keywords/imaging-spectrometer", "display_name": "Imaging spectrometer", "score": 0.42687005 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.1117/12.919121", "pdf_url": null, "source": { "id": "https://openalex.org/S183492911", "display_name": "Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE", "issn_l": "0277-786X", "issn": [ "0277-786X", "1996-756X" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310315543", "host_organization_name": "SPIE", "host_organization_lineage": [ "https://openalex.org/P4310315543" ], "host_organization_lineage_names": [ "SPIE" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W2045775866/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.1117/12.919121", "pdf_url": null, "source": { "id": "https://openalex.org/S183492911", "display_name": "Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE", "issn_l": "0277-786X", "issn": [ "0277-786X", "1996-756X" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310315543", "host_organization_name": "SPIE", "host_organization_lineage": [ "https://openalex.org/P4310315543" ], "host_organization_lineage_names": [ "SPIE" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "score": 0.9985, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2012-05-01", "publication_year": 2012, "referenced_works": [], "referenced_works_count": 0, "related_works": [ "https://openalex.org/W3197418586", "https://openalex.org/W3109000664", "https://openalex.org/W3000675426", "https://openalex.org/W2799746630", "https://openalex.org/W2746742660", "https://openalex.org/W2738168532", "https://openalex.org/W2561005839", "https://openalex.org/W2082586825", "https://openalex.org/W2019335219", "https://openalex.org/W1610874655" ], "sustainable_development_goals": [ { "score": 0.46, "display_name": "Peace, justice, and strong institutions", "id": "https://metadata.un.org/sdg/16" } ], "title": "Spectroscopic remote sensing for material identification, vegetation characterization, and mapping", "topics": [ { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "score": 0.9985, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10640", "display_name": "Chemometrics in Analytical Chemistry and Food Technology", "score": 0.9931, "subfield": { "id": "https://openalex.org/subfields/1602", "display_name": "Analytical Chemistry" }, "field": { "id": "https://openalex.org/fields/16", "display_name": "Chemistry" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12282", "display_name": "Comminution in Mineral Processing", "score": 0.963, "subfield": { "id": "https://openalex.org/subfields/2210", "display_name": "Mechanical Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "proceedings-article", "updated_date": "2024-08-15T01:34:01.109846", "versions": [] }
}