Carryover effects and climatic conditions influence the postfledging survival of greater sage-grouse
Prebreeding survival is an important life history component that affects both parental fitness and population persistence. In birds, prebreeding can be separated into pre- and postfledging periods; carryover effects from the prefledging period may influence postfledging survival. We investigated effects of body condition at fledging, and climatic variation, on postfledging survival of radio-marked greater sage-grouse (Centrocercus urophasianus) in the Great Basin Desert of the western United States. We hypothesized that body condition would influence postfledging survival as a carryover effect from the prefledging period, and we predicted that climatic variation may mediate this carryover effect or, alternatively, would act directly on survival during the postfledging period. Individual body condition had a strong positive effect on postfledging survival of juvenile females, suggesting carryover effects from the prefledging period. Females in the upper 25th percentile of body condition scores had a postfledging survival probability more than twice that (Φ = 0.51 ± 0.06 SE) of females in the bottom 25th percentile (Φ = 0.21 ± 0.05 SE). A similar effect could not be detected for males. We also found evidence for temperature and precipitation effects on monthly survival rates of both sexes. After controlling for site-level variation, postfledging survival was nearly twice as great following the coolest and wettest growing season (Φ = 0.77 ± 0.05 SE) compared with the hottest and driest growing season (Φ = 0.39 ± 0.05 SE). We found no relationships between individual body condition and temperature or precipitation, suggesting that carryover effects operated independently of background climatic variation. The temperature and precipitation effects we observed likely produced a direct effect on mortality risk during the postfledging period. Conservation actions that focus on improving prefledging habitat for sage-grouse may have indirect benefits to survival during postfledging, due to carryover effects between the two life phases.