{
"OpenAlex": { "id": "https://openalex.org/A5054011745", "orcid": "https://orcid.org/0000-0003-2358-2712", "display_name": "Zicheng Yu", "display_name_alternatives": [ "Zicheng Yu", "Ziyan Yu", "Z. C. Yu", "Z. Yu" ], "works_count": 280, "cited_by_count": 16166, "summary_stats": { "2yr_mean_citedness": 8.363636363636363, "h_index": 58, "i10_index": 133 }, "ids": { "openalex": "https://openalex.org/A5054011745", "orcid": "https://orcid.org/0000-0003-2358-2712" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I184983240", "ror": "https://ror.org/02rkvz144", "display_name": "Northeast Normal University", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I184983240" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018 ] }, { "institution": { "id": "https://openalex.org/I186143895", "ror": "https://ror.org/012afjb06", "display_name": "Lehigh University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I186143895" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I19820366", "ror": "https://ror.org/034t30j35", "display_name": "Chinese Academy of Sciences", "country_code": "CN", "type": "government", "lineage": [ "https://openalex.org/I19820366" ] }, "years": [ 2024, 2023 ] }, { "institution": { "id": "https://openalex.org/I4210101301", "ror": "https://ror.org/01a9z1q73", "display_name": "Northeast Institute of Geography and Agroecology", "country_code": "CN", "type": "facility", "lineage": [ "https://openalex.org/I19820366", "https://openalex.org/I4210101301" ] }, "years": [ 2024, 2023 ] }, { "institution": { "id": "https://openalex.org/I177739611", "ror": "https://ror.org/05bhmhz54", "display_name": "Yangtze University", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I177739611" ] }, "years": [ 2024 ] }, { "institution": { "id": "https://openalex.org/I4210163172", "ror": "https://ror.org/04rnwed46", "display_name": "Environmental Earth Sciences", "country_code": "AU", "type": "other", "lineage": [ "https://openalex.org/I4210163172" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I165143802", "ror": "https://ror.org/00rqy9422", "display_name": "University of Queensland", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I165143802" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I23923803", "ror": "https://ror.org/03yghzc09", "display_name": "University of Exeter", "country_code": "GB", "type": "education", "lineage": [ "https://openalex.org/I23923803" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I4210086166", "ror": "https://ror.org/00pxc7m47", "display_name": "Shenzhen Bioeasy Biotechnology (China)", "country_code": "CN", "type": "company", "lineage": [ "https://openalex.org/I4210086166" ] }, "years": [ 2022 ] }, { "institution": { "id": "https://openalex.org/I4210166402", "ror": "https://ror.org/05cqn9380", "display_name": "Yangpu Hospital of Tongji University", "country_code": "CN", "type": "healthcare", "lineage": [ "https://openalex.org/I4210166402" ] }, "years": [ 2022 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I184983240", "ror": "https://ror.org/02rkvz144", "display_name": "Northeast Normal University", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I184983240" ] } ], "topics": [ { "id": "https://openalex.org/T10017", "display_name": "Climate Change and Paleoclimatology", "count": 116, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "count": 80, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10779", "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "count": 56, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 37, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "count": 16, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10087", "display_name": "Radiocarbon Dating and Agricultural Origins", "count": 14, "subfield": { "id": "https://openalex.org/subfields/1911", "display_name": "Paleontology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10421", "display_name": "Human Evolution and Behavioral Modernity", "count": 13, "subfield": { "id": "https://openalex.org/subfields/3314", "display_name": "Anthropology" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T12073", "display_name": "Application of Stable Isotopes in Trophic Ecology", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10965", "display_name": "Sedimentary Processes in Earth's Geology", "count": 9, "subfield": { "id": "https://openalex.org/subfields/1904", "display_name": "Earth-Surface Processes" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 8, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13193", "display_name": "Geological Evolution of the Arctic Region", "count": 6, "subfield": { "id": "https://openalex.org/subfields/1907", "display_name": "Geology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10398", "display_name": "Stable Isotope Analysis of Groundwater and Precipitation", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1906", "display_name": "Geochemistry and Petrology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12618", "display_name": "Diversity and Conservation of Vascular Plants in Central Europe", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12180", "display_name": "Microbial Diversity in Antarctic Ecosystems", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11836", "display_name": "Diversity and Evolution of Bryophytes", "count": 3, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12533", "display_name": "Cellular Response to Osmotic Stress and Metabolism", "count": 2, "subfield": { "id": "https://openalex.org/subfields/1307", "display_name": "Cell Biology" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11448", "display_name": "Face Recognition and Analysis Techniques", "count": 2, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10255", "display_name": "Oceanic Modeling and Circulation Studies", "count": 2, "subfield": { "id": "https://openalex.org/subfields/1910", "display_name": "Oceanography" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10713", "display_name": "Developments and Applications of Concrete-Filled Steel Tubes", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "value": 0.000658, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10779", "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "value": 0.0004669, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "value": 0.0002194, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "value": 0.0002069, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10017", "display_name": "Climate Change and Paleoclimatology", "value": 0.0001788, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10421", "display_name": "Human Evolution and Behavioral Modernity", "value": 8.49e-05, "subfield": { "id": "https://openalex.org/subfields/3314", "display_name": "Anthropology" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T10087", "display_name": "Radiocarbon Dating and Agricultural Origins", "value": 6.04e-05, "subfield": { "id": "https://openalex.org/subfields/1911", "display_name": "Paleontology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12073", "display_name": "Application of Stable Isotopes in Trophic Ecology", "value": 5.46e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12533", "display_name": "Cellular Response to Osmotic Stress and Metabolism", "value": 5.23e-05, "subfield": { "id": "https://openalex.org/subfields/1307", "display_name": "Cell Biology" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10398", "display_name": "Stable Isotope Analysis of Groundwater and Precipitation", "value": 3.95e-05, "subfield": { "id": "https://openalex.org/subfields/1906", "display_name": "Geochemistry and Petrology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12180", "display_name": "Microbial Diversity in Antarctic Ecosystems", "value": 3.53e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10965", "display_name": "Sedimentary Processes in Earth's Geology", "value": 3.43e-05, "subfield": { "id": "https://openalex.org/subfields/1904", "display_name": "Earth-Surface Processes" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11836", "display_name": "Diversity and Evolution of Bryophytes", "value": 3.32e-05, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "value": 3.14e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14329", "display_name": "Climate Change and Environmental Science", "value": 3.01e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 2.99e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13377", "display_name": "Anticipating Critical Transitions in Ecosystems", "value": 2.95e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11807", "display_name": "Assessment and Enhancement of Infrastructure Resilience", "value": 2.64e-05, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12368", "display_name": "Application of Grey System Theory in Forecasting", "value": 2.59e-05, "subfield": { "id": "https://openalex.org/subfields/1803", "display_name": "Management Science and Operations Research" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T11448", "display_name": "Face Recognition and Analysis Techniques", "value": 2.34e-05, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13193", "display_name": "Geological Evolution of the Arctic Region", "value": 2.22e-05, "subfield": { "id": "https://openalex.org/subfields/1907", "display_name": "Geology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "value": 2.07e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "value": 2.06e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11943", "display_name": "Adverse Drug Reactions and Pharmacovigilance", "value": 1.99e-05, "subfield": { "id": "https://openalex.org/subfields/3005", "display_name": "Toxicology" }, "field": { "id": "https://openalex.org/fields/30", "display_name": "Pharmacology, Toxicology and Pharmaceutics" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10775", "display_name": "Generative Adversarial Networks in Image Processing", "value": 1.76e-05, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 94.3 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 93.6 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 92.5 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 88.6 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 81.1 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 81.1 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 75.7 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 65.7 }, { "id": "https://openalex.org/C100970517", "wikidata": "https://www.wikidata.org/wiki/Q52107", "display_name": "Physical geography", "level": 1, "score": 65.4 }, { "id": "https://openalex.org/C151730666", "wikidata": "https://www.wikidata.org/wiki/Q7205", "display_name": "Paleontology", "level": 1, "score": 60.0 }, { "id": "https://openalex.org/C53657456", "wikidata": "https://www.wikidata.org/wiki/Q184624", "display_name": "Peat", "level": 2, "score": 52.5 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 48.9 }, { "id": "https://openalex.org/C132651083", "wikidata": "https://www.wikidata.org/wiki/Q7942", "display_name": "Climate change", "level": 2, "score": 47.9 }, { "id": "https://openalex.org/C49204034", "wikidata": "https://www.wikidata.org/wiki/Q52139", "display_name": "Climatology", "level": 1, "score": 45.7 }, { "id": "https://openalex.org/C140345934", "wikidata": "https://www.wikidata.org/wiki/Q25445", "display_name": "Holocene", "level": 2, "score": 45.4 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 32.1 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 30.0 }, { "id": "https://openalex.org/C185592680", "wikidata": "https://www.wikidata.org/wiki/Q2329", "display_name": "Chemistry", "level": 0, "score": 27.9 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 27.5 }, { "id": "https://openalex.org/C110872660", "wikidata": "https://www.wikidata.org/wiki/Q37813", "display_name": "Ecosystem", "level": 2, "score": 26.4 }, { "id": "https://openalex.org/C192562407", "wikidata": "https://www.wikidata.org/wiki/Q228736", "display_name": "Materials science", "level": 0, "score": 25.7 }, { "id": "https://openalex.org/C114793014", "wikidata": "https://www.wikidata.org/wiki/Q52109", "display_name": "Geomorphology", "level": 1, "score": 25.4 }, { "id": "https://openalex.org/C159985019", "wikidata": "https://www.wikidata.org/wiki/Q181790", "display_name": "Composite material", "level": 1, "score": 23.2 }, { "id": "https://openalex.org/C153294291", "wikidata": "https://www.wikidata.org/wiki/Q25261", "display_name": "Meteorology", "level": 1, "score": 22.9 }, { "id": "https://openalex.org/C178790620", "wikidata": "https://www.wikidata.org/wiki/Q11351", "display_name": "Organic chemistry", "level": 1, "score": 20.4 } ], "counts_by_year": [ { "year": 2024, "works_count": 11, "cited_by_count": 1702 }, { "year": 2023, "works_count": 11, "cited_by_count": 2287 }, { "year": 2022, "works_count": 11, "cited_by_count": 2452 }, { "year": 2021, "works_count": 11, "cited_by_count": 2170 }, { "year": 2020, "works_count": 14, "cited_by_count": 1637 }, { "year": 2019, "works_count": 19, "cited_by_count": 1309 }, { "year": 2018, "works_count": 16, "cited_by_count": 1099 }, { "year": 2017, "works_count": 23, "cited_by_count": 997 }, { "year": 2016, "works_count": 17, "cited_by_count": 967 }, { "year": 2015, "works_count": 2, "cited_by_count": 902 }, { "year": 2014, "works_count": 22, "cited_by_count": 966 }, { "year": 2013, "works_count": 19, "cited_by_count": 723 }, { "year": 2012, "works_count": 17, "cited_by_count": 596 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5054011745", "updated_date": "2024-08-21T21:17:37.561228", "created_date": "2023-07-21", "_id": "https://openalex.org/A5054011745" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0003-2358-2712", "mainEntityOfPage": "https://orcid.org/0000-0003-2358-2712", "givenName": "Zicheng", "familyName": "Yu", "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2022.107449", "name": "Anthropogenic warming reduces the carbon accumulation of Tibetan Plateau peatlands", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2022.107449" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85125540825" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.16060", "name": "Global maps of soil temperature", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85123931737" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.16060" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021gb007057", "name": "Latitude, Elevation, and Mean Annual Temperature Predict Peat Organic Matter Chemistry at a Global Scale", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021gb007057" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85125150794" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15671", "name": "Anthropogenic disturbances caused declines in the wetland area and carbon pool in China during the last four decades", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85106229984" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15671" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-021-00991-1", "name": "Author Correction: Expert assessment of future vulnerability of the global peatland carbon sink (Nature Climate Change, (2021), 11, 1, (70-77), 10.1038/s41558-020-00944-0)", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-021-00991-1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85099838453" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2020.106687", "name": "Environmental controls over Holocene carbon accumulation in Distichia muscoides-dominated peatlands in the eastern Andes of Colombia", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85096204491" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2020.106687" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-020-00944-0", "name": "Expert assessment of future vulnerability of the global peatland carbon sink", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-020-00944-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85097253356" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41561-021-00769-2", "name": "No support for carbon storage of >1,000 GtC in northern peatlands", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85109410668" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41561-021-00769-2" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41561-021-00790-5", "name": "Past abrupt changes, tipping points and cascading impacts in the Earth system", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41561-021-00790-5" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85111686549" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.scib.2020.11.016", "name": "Possible obliquity-forced warmth in southern Asia during the last glacial stage", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85098153541" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scib.2020.11.016" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/fee.2296", "name": "Reconciling carbon-cycle processes from ecosystem to global scales", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85100142222" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/fee.2296" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.scitotenv.2020.143990", "name": "The elemental enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in response to changes in East Asian monsoon and human activity since 20,000 cal yr BP", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2020.143990" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85097569969" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2020.106679", "name": "Ecological response of a glacier-fed peatland to late Holocene climate and glacier changes on subantarctic South Georgia", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2020.106679" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85095440896" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.gca.2020.03.034", "name": "Environmental controls on the carbon and water (H and O) isotopes in peatland Sphagnum mosses", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2020.03.034" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85082875151" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1126/sciadv.aay6193", "name": "Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85084940267" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/sciadv.aay6193" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2020.125169", "name": "Holocence peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85086568343" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2020.125169" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1073/pnas.1916387117", "name": "Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.1916387117" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85090074321" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2019jg005230", "name": "Modeling Holocene Peatland Carbon Accumulation in North America", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019jg005230" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85096495819" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.catena.2020.104525", "name": "Peatland development and carbon dynamics since the Last Glacial Maximum in the Hengduan Mountains Region", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85080932636" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.catena.2020.104525" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11104-019-04350-0", "name": "Resource competition and allelopathy in two peat mosses: implication for niche differentiation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11104-019-04350-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85075375713" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/feart.2020.00307", "name": "Temperature-Dependent Oxygen Isotope Fractionation in Plant Cellulose Biosynthesis Revealed by a Global Dataset of Peat Mosses", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/feart.2020.00307" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85089238890" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-17-47-2020", "name": "The capacity of northern peatlands for long-term carbon sequestration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-17-47-2020" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85077588751" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/atmos11050514", "name": "The influence of synoptic weather types and moisture transport pathways on precipitation isotopes in Southern Patagonia", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85085943457" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/atmos11050514" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00382-020-05159-9", "name": "Western Pacific Ocean influences on monsoon precipitation in the southwestern Chinese Loess Plateau since the mid-Holocene", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00382-020-05159-9" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85079367808" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2019.03.034", "name": "A 13,000-year peatland palaeohydrological response to the ENSO-related Asian monsoon precipitation changes in the middle Yangtze Valley", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2019.03.034" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85063915914" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.polar.2018.11.001", "name": "Intron length polymorphism of \u03b2-tubulin genes in Deschampsia antarctica \u00c9. Desv. across the western coast of the Antarctic Peninsula", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85061546418" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.polar.2018.11.001" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quaint.2019.11.017", "name": "Late Holocene vegetation and climate changes in the Great Hinggan Mountains, northeast China", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85075440447" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quaint.2019.11.017" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/geosciences9070282", "name": "Regional climate change recorded in moss oxygen and carbon isotopes from a late holocene peat archive in the western antarctic peninsula", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85069669031" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/geosciences9070282" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00382-019-04813-1", "name": "Temperature influence on peatland carbon accumulation over the last century in Northeast China", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00382-019-04813-1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85066486063" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.earscirev.2019.03.005", "name": "Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.earscirev.2019.03.005" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85063377380" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1073/pnas.1813305116", "name": "Widespread global peatland establishment and persistence over the last 130,000 y", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85062870461" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.1813305116" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/cp-14-473-2018", "name": "Arctic hydroclimate variability during the last 2000 years: Current understanding and research challenges", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85045236055" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/cp-14-473-2018" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1130/g40187.1", "name": "Centennial-scale dynamics of the Southern Hemisphere Westerly Winds across the Drake Passage over the past two millennia", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/g40187.1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85054134201" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.gloplacha.2017.12.023", "name": "Commentary: H. Harde: \u201cScrutinizing the carbon cycle and CO2 residence time in the atmosphere\u201d. Global and Planetary Change 152 (2017), 19\u201326.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gloplacha.2017.12.023" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85044755501" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41561-018-0196-3", "name": "Erratum to: Palaeoclimate constraints on the impact of 2 \u00b0C anthropogenic warming and beyond (Nature Geoscience, (2018), 11, 7, (474-485), 10.1038/s41561-018-0146-0)", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41561-018-0196-3" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85050229963" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-018-0271-1", "name": "Latitudinal limits to the predicted increase of the peatland carbon sink with warming", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85053496549" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-018-0271-1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41561-018-0146-0", "name": "Palaeoclimate constraints on the impact of 2 \u00b0c anthropogenic warming and beyond", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41561-018-0146-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85048956902" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2017.10.033", "name": "Peatbank response to late Holocene temperature and hydroclimate change in the western Antarctic Peninsula", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85044952475" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2017.10.033" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/lno.10771", "name": "Temporal-spatial pattern of organic carbon sequestration by Chinese lakes since 1850", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/lno.10771" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85039733228" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/sdata.2017.88", "name": "A global multiproxy database for temperature reconstructions of the Common Era", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85020476894" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/sdata.2017.88" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/cp-13-1355-2017", "name": "Climatic history of the northeastern United States during the past 3000 years", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85031679846" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/cp-13-1355-2017" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1073/pnas.1613889114", "name": "Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85013135227" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.1613889114" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.earscirev.2016.12.001", "name": "Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.earscirev.2016.12.001" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85007018003" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1130/g38309.1", "name": "Millennial-scale hydroclimate variations in southwest China linked to tropical Indian Ocean since the Last Glacial Maximum", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85017559864" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/g38309.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41598-017-12479-0", "name": "Peatland ecosystem processes in the maritime antarctic during warm climates", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85030112069" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41598-017-12479-0" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quageo.2015.10.003", "name": "A comparison of radiocarbon ages derived from bulk peat and selected plant macrofossils in basal peat cores from circum-arctic peatlands", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84946811315" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quageo.2015.10.003" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2015.10.021", "name": "Holocene climate changes in eastern Beringia (NW North America) \u2013 A systematic review of multi-proxy evidence", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2015.10.021" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84937048309" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.chemgeo.2016.07.024", "name": "Holocene climate controls on water isotopic variations on the northeastern Tibetan Plateau", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84982685119" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.chemgeo.2016.07.024" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jqs.2871", "name": "Measurements of hydrogen, oxygen and carbon isotope variability in Sphagnum moss along a micro-topographical gradient in a southern Patagonian peatland", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jqs.2871" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84975247247" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2016jg003452", "name": "Quantifying peat carbon accumulation in Alaska using a process-based biogeochemistry model", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2016jg003452" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84983354705" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-13-6305-2016", "name": "Quantifying soil carbon accumulation in Alaskan terrestrial ecosystems during the last 15\u011d\u20ac-000 years", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-13-6305-2016" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84998814334" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2016gl069380", "name": "Transformations of landscape and peat-forming ecosystems in response to late Holocene climate change in the western Antarctic Peninsula", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84978378757" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2016gl069380" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13055", "name": "Carbon accumulation and sequestration of lakes in China during the Holocene", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13055" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84946771846" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0959683614538073", "name": "A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907145200" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0959683614538073" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0959683614538075", "name": "Continental fens in western Canada as effective carbon sinks during the Holocene", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0959683614538075" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907145346" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-11-6573-2014", "name": "Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84914133323" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-11-6573-2014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2013.12.019", "name": "Evaluating CO2 and CH4 dynamics of Alaskan ecosystems during the Holocene Thermal Maximum", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84892885925" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2013.12.019" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0959683614540730", "name": "Holocene peatland carbon dynamics in the circum-Arctic region: An introduction", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907140990" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0959683614540730" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0959683614538077", "name": "Holocene peatland initiation, lateral expansion, and carbon dynamics in the Zoige Basin of the eastern Tibetan Plateau", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0959683614538077" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907148107" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.earscirev.2013.11.003", "name": "Peatland initiation and carbon accumulation in China over the last 50,000years", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.earscirev.2013.11.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84896951933" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11434-014-0611-0", "name": "Vegetation and climate change during Marine Isotope Stage 3 in China", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11434-014-0611-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84910009736" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10021-012-9592-5", "name": "A 2200-Year Record of Permafrost Dynamics and Carbon Cycling in a Collapse-Scar Bog, Interior Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84872836983" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-012-9592-5" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/essd-5-393-2013", "name": "A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84893023778" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/essd-5-393-2013" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-10-929-2013", "name": "Climate-related changes in peatland carbon accumulation during the last millennium", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-10-929-2013" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84874421728" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/gbc.20025", "name": "Evidence for elevated emissions from high-latitude wetlands contributing to high atmospheric CH4 concentration in the early Holocene", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880096664" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/gbc.20025" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2013.02.023", "name": "Holocene peatland carbon dynamics in Patagonia", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2013.02.023" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84876344923" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.yqres.2013.05.001", "name": "Holocene temperature fluctuations in the northern Tibetan Plateau", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.yqres.2013.05.001" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879499501" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2012.12.013", "name": "Hydrology-mediated differential response of carbon accumulation to late Holocene climate change at two peatlands in Southcentral Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2012.12.013" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873264759" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2012.11.019", "name": "Lateglacial and Holocene climate, disturbance and permafrost peatland dynamics on the Seward Peninsula, western Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84872585241" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2012.11.019" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-10-753-2013", "name": "Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter-comparison project (WETCHIMP)", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-10-753-2013" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84970046060" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-6-617-2013", "name": "Present state of global wetland extent and wetland methane modelling: Methodology of a model inter-comparison project (WETCHIMP)", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-6-617-2013" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84970046693" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jgrg.20029", "name": "Quantifying landscape morphology influence on peatland lateral expansion using ground-penetrating radar (GPR) and peat core analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jgrg.20029" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880123523" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2012jg001978", "name": "Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2012jg001978" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880129916" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.palaeo.2013.09.009", "name": "Recent increase in peatland carbon accumulation in a thermokarst lake basin in Southwestern Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84885219508" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.palaeo.2013.09.009" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/grl.50744", "name": "Surface vegetation patterning controls carbon accumulation in peatlands", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/grl.50744" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84886130692" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/cp-9-1287-2013", "name": "Transient simulations of the carbon and nitrogen dynamics in northern peatlands: From the Last Glacial Maximum to the 21st century", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84883651539" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/cp-9-1287-2013" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-9-2737-2012", "name": "Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84864587774" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-9-2737-2012" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10933-012-9603-8", "name": "Late Holocene change in climate and atmospheric circulation inferred from geochemical records at Kepler Lake, south-central Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10933-012-9603-8" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84861582428" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0959683611429834", "name": "Multidisciplinary studies in environmental archaeology with particular reference to China: An introduction to the Special Issue", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0959683611429834" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84861795961" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.palaeo.2012.06.028", "name": "Multiple early Holocene climate oscillations at Silver Lake, New Jersey and their possible linkage with outburst floods", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.palaeo.2012.06.028" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84864532331" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-9-4071-2012", "name": "Northern peatland carbon stocks and dynamics: A review", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-9-4071-2012" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84867946941" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2012eo030009", "name": "Peatlands as a model ecosystem of soil carbon dynamics: Reply to Comment on \"peatlands and their role in the global carbon cycle\"", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84856339404" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2012eo030009" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bgd-9-11577-2012", "name": "Present state of global wetland extent and wetland methane modelling: Conclusions from a model intercomparison project (WETCHIMP)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873807100" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bgd-9-11577-2012" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.earscirev.2012.03.001", "name": "Vegetation response to Holocene climate change in East Asian monsoon-margin region", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84861698412" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.earscirev.2012.03.001" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0959683610386982", "name": "Holocene carbon flux histories of the world's peatlands: Global carbon-cycle implications", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0959683610386982" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79954489356" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2011.02.006", "name": "Holocene vegetation and climate histories in the eastern Tibetan Plateau: Controls by insolation-driven temperature or monsoon-derived precipitation changes?", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2011.02.006" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79955717801" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2011eo120001", "name": "Peatlands and their role in the global carbon cycle", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79954557711" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011eo120001" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.yqres.2011.01.003", "name": "Response of a warm temperate peatland to Holocene climate change in northeastern Pennsylvania", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79955473620" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.yqres.2011.01.003" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.palaeo.2010.08.008", "name": "A 2700-year high resolution pollen record of climate change from varved Sugan Lake in the Qaidam Basin, northeastern Tibetan Plateau", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77957771426" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.palaeo.2010.08.008" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2010gl043584", "name": "Global peatland dynamics since the Last Glacial Maximum", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954675500" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010gl043584" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0959683610365932", "name": "Hemlock (Tsuga canadensis) declines at 9800 and 5300 cal. yr BP caused by Holocene climatic shifts in northeastern North America", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0959683610365932" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77956083818" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2010.03.018", "name": "Holocene climate trend, variability, and shift documented by lacustrine stable-isotope record in the northeastern United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954816558" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2010.03.018" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10933-010-9469-6", "name": "Holocene millennial-scale climate variations documented by multiple lake-level proxies in sediment cores from Hurleg Lake, Northwest China", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10933-010-9469-6" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78049261845" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.yqres.2008.11.007", "name": "Late Holocene vegetation and climate oscillations in the Qaidam Basin of the northeastern Tibetan Plateau", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.yqres.2008.11.007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-70849107059" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2010gl043133", "name": "Major shifts in multidecadal moisture variability in the Mid-Atlantic region during the last 240 years", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010gl043133" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77952152954" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1073/pnas.0911387107", "name": "Rapid deglacial and early Holocene expansion of peatlands in Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.0911387107" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77952134008" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.chemgeo.2010.02.026", "name": "Tree-ring width and \u03b413C records of industrial stress and recovery in Pennsylvania and New Jersey forests: Implications for CO2 uptake by temperate forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.chemgeo.2010.02.026" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77952291710" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.palaeo.2010.05.020", "name": "Vegetation history, climate change and human activities over the last 6200years on the Liupan Mountains in the southwestern Loess Plateau in central China", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954214882" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.palaeo.2010.05.020" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quaint.2008.07.019", "name": "Holocene climate variability in arid Asia: Nature and mechanisms", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quaint.2008.07.019" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-58149141764" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2009gl040951", "name": "Possible orographic and solar controls of Late Holocene centennial-scale moisture oscillations in the northeastern Tibetan Plateau", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2009gl040951" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-72049099036" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10584-009-9604-4", "name": "Possible solar forcing of 400-year wet-dry climate cycles in northwestern China", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-71349083861" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10584-009-9604-4" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quaint.2007.12.002", "name": "Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-58149137343" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quaint.2007.12.002" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.earscirev.2009.10.007", "name": "Vegetation response to Holocene climate change in monsoon-influenced region of China", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.earscirev.2009.10.007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954219663" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.gca.2008.06.026", "name": "Complex trajectories of aquatic and terrestrial ecosystem shifts caused by multiple human-induced environmental stresses", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2008.06.026" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-49349086744" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2007.10.017", "name": "Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2007.10.017" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-39149125810" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jaridenv.2008.06.016", "name": "Holocene vegetation and climate change from a lake sediment record in the Tengger Sandy Desert, northwest China", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-50049109952" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jaridenv.2008.06.016" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2007.11.020", "name": "INTegration of Ice-core, MArine, and TErrestrial records (INTIMATE): refining the record of the Last Glacial-Interglacial Transition", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-38949106152" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2007.11.020" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2007.02.020", "name": "Lateglacial and early Holocene climate oscillations in the Matanuska Valley, south-central Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-38949187927" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2007.02.020" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.gloplacha.2007.12.003", "name": "Sensitive response of desert vegetation to moisture change based on a near-annual resolution pollen record from Gahai Lake in the Qaidam Basin, northwest China", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gloplacha.2007.12.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-42649136212" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2007.09.016", "name": "Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2007.09.016" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-39049155379" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s1571-0866(07)09006-9", "name": "Holocene vegetation and climate changes from fossil pollen records in arid and semi-arid China", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34249110669" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s1571-0866(07)09006-9" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.revpalbo.2006.12.002", "name": "Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, northwest China", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.revpalbo.2006.12.002" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34249020847" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1017/s0033822200042661", "name": "Late holocene natural and human-induced environmental change reconstructed from peat records in eastern central China", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1017/s0033822200042661" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-58549102470" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.yqres.2006.08.006", "name": "Rapid response of forested vegetation to multiple climatic oscillations during the last deglaciation in the northeastern United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33846918450" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.yqres.2006.08.006" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0959683606069386", "name": "Sensitive moisture response to Holocene millennial-scale climate variations in the Mid-Atlantic region, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34548086216" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0959683606069386" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.epsl.2006.03.052", "name": "A 14,000-year environmental change history revealed by mineral magnetic data from White Lake, New Jersey, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33646913837" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.epsl.2006.03.052" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10021-006-0174-2", "name": "Holocene carbon accumulation of fen peatlands in boreal western Canada: A complex ecosystem response to climate variation and disturbance", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33846525475" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-006-0174-2" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.gloplacha.2006.03.013", "name": "Power laws governing hydrology and carbon dynamics in northern peatlands", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gloplacha.2006.03.013" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33747855826" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3354/cr032209", "name": "Spatial and temporal variability of precipitation in East China from 1880 to 1999", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3354/cr032209" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33751574218" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1191/0959683603hl667ft", "name": "Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0142072006" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1191/0959683603hl667ft" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1046/j.1469-8137.2003.00678.x", "name": "Late Quaternary dynamics of tundra and forest vegetation in the southern Niagara Escarpment, Canada", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0037311766" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1469-8137.2003.00678.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1139/b03-016", "name": "Understanding Holocene peat accumulation pattern of continental fens in western Canada", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1139/b03-016" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0038792643" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1191/0959683602hl571rp", "name": "A 2100-year trace-element and stable-isotope record at decadal resolution from Rice Lake in the Northern Great Plains, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036731489" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1191/0959683602hl571rp" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1654-1103.2002.tb02057.x", "name": "Implications of floristic and environmental variation for carbon cycle dynamics in boreal forest ecosystems of central Canada", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1654-1103.2002.tb02057.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036622437" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1023/a:1021651824885", "name": "Water isotopic and hydrochemical evolution of a lake chain in the northern Great Plains and its paleoclimatic implications", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036705032" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1023/a:1021651824885" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0304-3800(01)00391-x", "name": "Modelling long-term peatland dynamics. I. Concepts, review, and proposed design", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0304-3800(01)00391-x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035891827" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0304-3800(01)00387-8", "name": "Modelling long-term peatland dynamics. II. Processes and rates as inferred from litter and peat-core data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035891840" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0304-3800(01)00387-8" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0012-8252(00)00032-5", "name": "Response of interior North America to abrupt climate oscillations in the North Atlantic region during the last deglaciation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0012-8252(00)00032-5" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035099127" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.7202/008301ar", "name": "Three amphi-Atlantic century-scale cold events during the B\u00f8lling-Aller\u00f8d warm period,Existence de trois p\u00e9riodes froides amphi-atlantiques \u00e0 \u00e9chelle s\u00e9culaire au cours de la p\u00e9riode chaude du B\u00f8lling-Aller\u00f8d", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.7202/008301ar" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035780026" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0277-3791(00)00080-9", "name": "Ecosystem response to Lateglacial and early Holocene climate oscillations in the Great Lakes region of North America", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034543799" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0277-3791(00)00080-9" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1006/qres.1999.2115", "name": "Hydrologic variation in the northern Great Plains during the last two millennia", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034092175" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1006/qres.1999.2115" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1006/qres.2000.2134", "name": "Millennial-scale rhythms in peatlands in the western interior of Canada and in the global carbon cycle", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1006/qres.2000.2134" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033904304" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1130/0091-7613(1999)027<0263:psfocs>2.3.co;2", "name": "Possible solar forcing of century-scale drought frequency in the northern Great Plains", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/0091-7613(1999)027<0263:psfocs>2.3.co;2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879885625" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1126/science.282.5397.2235", "name": "Abrupt climate oscillations during the last deglaciation in central North America", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.282.5397.2235" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0032545481" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0034-6667(96)00060-7", "name": "Late quaternary paleoecology of Thuja and Juniperus (Cupressaceae) at Crawford Lake, Ontario, Canada: Pollen, stomata and macrofossils", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030974310" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0034-6667(96)00060-7" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1130/0091-7613(1997)025<0251:mhdccb>2.3.co;2", "name": "Middle Holocene dry climate caused by change in atmospheric circulation patterns: Evidence from lake levels and stable isotopes", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/0091-7613(1997)025<0251:mhdccb>2.3.co;2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030665736" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1139/b96-194", "name": "Influences of Holocene climate and water levels on vegetation dynamics of a lakeside wetland", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0029828135" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1139/b96-194" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/095968369400400204", "name": "Holocene water levels at Rice Lake, Ontario, Canada: Sediment, pollen and plant-macrofossil evidence", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028328084" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/095968369400400204" } ] } ] }, "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "7404346665" } }
}