Item talk:Q44512

Add topic
Revision as of 12:39, 20 October 2023 by Sky (talk | contribs) (Updated person data cache with ORCID information)

orcid:

 activities:
   works:
     group:
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3390/rs15194894
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.3390/rs15194894
           external-id-value: 10.3390/rs15194894
       last-modified-date:
         value: 1697242138600
       work-summary:
       - created-date:
           value: 1696873829176
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs15194894
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs15194894
             external-id-value: 10.3390/rs15194894
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1696873829176
         path: /0000-0002-1201-5459/work/144002947
         publication-date:
           day:
             value: 09
           month:
             value: '10'
           year:
             value: '2023'
         put-code: 144002947
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\
               \ California\u2019s Water Savings"
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.3390/rs15194894
         visibility: public
       - created-date:
           value: 1697242138600
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs15194894
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs15194894
             external-id-value: 10.3390/rs15194894
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1697242138600
         path: /0000-0002-1201-5459/work/144390823
         publication-date:
           day: null
           month:
             value: '10'
           year:
             value: '2023'
         put-code: 144390823
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: APP-WRQOUAK78G5F7GMD
             uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
           source-name:
             value: Multidisciplinary Digital Publishing Institute
           source-orcid: null
         title:
           subtitle: null
           title:
             value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\
               \ California\u2019s Water Savings"
           translated-title: null
         type: journal-article
         url:
           value: https://www.mdpi.com/2072-4292/15/19/4894
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1109/jstars.2022.3204223
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.1109/JSTARS.2022.3204223
           external-id-value: 10.1109/JSTARS.2022.3204223
       last-modified-date:
         value: 1663789139405
       work-summary:
       - created-date:
           value: 1662416891548
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1109/jstars.2022.3204223
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1109/JSTARS.2022.3204223
             external-id-value: 10.1109/JSTARS.2022.3204223
         journal-title:
           value: IEEE Journal of Selected Topics in Applied Earth Observations and
             Remote Sensing
         last-modified-date:
           value: 1663789139405
         path: /0000-0002-1201-5459/work/118486022
         publication-date:
           day: null
           month: null
           year:
             value: '2022'
         put-code: 118486022
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: New Generation Hyperspectral Data From DESIS Compared to High
               Spatial Resolution PlanetScope Data for Crop Type Classification
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.1109/JSTARS.2022.3204223
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1080/17538947.2019.1651912
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.1080/17538947.2019.1651912
           external-id-value: 10.1080/17538947.2019.1651912
       last-modified-date:
         value: 1653785800639
       work-summary:
       - created-date:
           value: 1567059364554
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/17538947.2019.1651912
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1080/17538947.2019.1651912
             external-id-value: 10.1080/17538947.2019.1651912
         journal-title:
           value: International Journal of Digital Earth
         last-modified-date:
           value: 1653785800639
         path: /0000-0002-1201-5459/work/61031898
         publication-date:
           day:
             value: '02'
           month:
             value: 08
           year:
             value: '2020'
         put-code: 61031898
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: A meta-analysis of global crop water productivity of three leading
               world crops (wheat, corn, and rice) in the irrigated areas over three
               decades
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.1080/17538947.2019.1651912
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3390/rs10122027
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.3390/rs10122027
           external-id-value: 10.3390/rs10122027
       last-modified-date:
         value: 1653670258289
       work-summary:
       - created-date:
           value: 1545098572555
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs10122027
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs10122027
             external-id-value: 10.3390/rs10122027
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1653670258289
         path: /0000-0002-1201-5459/work/51757003
         publication-date:
           day: null
           month:
             value: '12'
           year:
             value: '2018'
         put-code: 51757003
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: APP-WRQOUAK78G5F7GMD
             uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
           source-name:
             value: Multidisciplinary Digital Publishing Institute
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Accuracies Achieved in Classifying Five Leading World Crop Types
               and their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral
               Narrowbands on Google Earth Engine
           translated-title: null
         type: journal-article
         url:
           value: http://www.mdpi.com/2072-4292/10/12/2027
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1002/ece3.2876
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.1002/ece3.2876
           external-id-value: 10.1002/ece3.2876
       last-modified-date:
         value: 1694969845426
       work-summary:
       - created-date:
           value: 1493088947662
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1002/ece3.2876
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1002/ece3.2876
             external-id-value: 10.1002/ece3.2876
         journal-title:
           value: Ecology and Evolution
         last-modified-date:
           value: 1694969845426
         path: /0000-0002-1201-5459/work/32121770
         publication-date:
           day: null
           month:
             value: '05'
           year:
             value: '2017'
         put-code: 32121770
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: "Correlating species and spectral diversities using hyperspectral\
               \ remote sensing in early\u2010successional fields"
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.1002/ece3.2876
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1080/01431161.2016.1259682
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url: null
           external-id-value: 10.1080/01431161.2016.1259682
       last-modified-date:
         value: 1653495522174
       work-summary:
       - created-date:
           value: 1493137923542
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/01431161.2016.1259682
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url: null
             external-id-value: 10.1080/01431161.2016.1259682
         journal-title:
           value: International Journal of Remote Sensing
         last-modified-date:
           value: 1653495522174
         path: /0000-0002-1201-5459/work/32141180
         publication-date:
           day: null
           month:
             value: '11'
           year:
             value: '2016'
         put-code: 32141180
         source:
           assertion-origin-client-id: null
           assertion-origin-name:
             value: Itiya Aneece
           assertion-origin-orcid:
             host: orcid.org
             path: 0000-0002-1201-5459
             uri: https://orcid.org/0000-0002-1201-5459
           source-client-id:
             host: orcid.org
             path: 0000-0002-3054-1567
             uri: https://orcid.org/client/0000-0002-3054-1567
           source-name:
             value: Crossref Metadata Search
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Identifying invasive plant species using field spectroscopy in
               the VNIR region in successional systems of north-central Virginia
           translated-title: null
         type: journal-article
         url: null
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1080/00091383.2016.1198186
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url: null
           external-id-value: 10.1080/00091383.2016.1198186
       last-modified-date:
         value: 1653495521648
       work-summary:
       - created-date:
           value: 1493137885069
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/00091383.2016.1198186
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url: null
             external-id-value: 10.1080/00091383.2016.1198186
         journal-title:
           value: 'Change: The Magazine of Higher Learning'
         last-modified-date:
           value: 1653495521648
         path: /0000-0002-1201-5459/work/32141087
         publication-date:
           day:
             value: '03'
           month:
             value: '07'
           year:
             value: '2016'
         put-code: 32141087
         source:
           assertion-origin-client-id: null
           assertion-origin-name:
             value: Itiya Aneece
           assertion-origin-orcid:
             host: orcid.org
             path: 0000-0002-1201-5459
             uri: https://orcid.org/0000-0002-1201-5459
           source-client-id:
             host: orcid.org
             path: 0000-0002-3054-1567
             uri: https://orcid.org/client/0000-0002-3054-1567
           source-name:
             value: Crossref Metadata Search
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Does the Document Matter? The Evolving Role of Syllabi in Higher
               Education
           translated-title: null
         type: journal-article
         url: null
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3390/rs71215850
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url: null
           external-id-value: 10.3390/rs71215850
       last-modified-date:
         value: 1653495522052
       work-summary:
       - created-date:
           value: 1493137919087
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs71215850
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url: null
             external-id-value: 10.3390/rs71215850
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1653495522052
         path: /0000-0002-1201-5459/work/32141160
         publication-date:
           day: null
           month: null
           year:
             value: '2015'
         put-code: 32141160
         source:
           assertion-origin-client-id: null
           assertion-origin-name:
             value: Itiya Aneece
           assertion-origin-orcid:
             host: orcid.org
             path: 0000-0002-1201-5459
             uri: https://orcid.org/0000-0002-1201-5459
           source-client-id:
             host: orcid.org
             path: 0000-0002-3054-1567
             uri: https://orcid.org/client/0000-0002-3054-1567
           source-name:
             value: Crossref Metadata Search
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Distinguishing Early Successional Plant Communities Using Ground-Level
               Hyperspectral Data
           translated-title: null
         type: journal-article
         url: null
         visibility: public
     last-modified-date:
       value: 1697242138600
     path: /0000-0002-1201-5459/works
 history:
   claimed: true
   completion-date: null
   creation-method: MEMBER_REFERRED
   deactivation-date: null
   last-modified-date:
     value: 1697242138593
   source: null
   submission-date:
     value: 1441381610857
   verified-email: true
   verified-primary-email: true
 person:
   name:
     created-date:
       value: 1460757225450
     credit-name: null
     family-name:
       value: Aneece
     given-names:
       value: Itiya
     last-modified-date:
       value: 1460757225450
     path: 0000-0002-1201-5459
     source: null
     visibility: public

usgs_staff_profile:

 meta:
   status_code: 200
   timestamp: '2023-09-30T16:37:19.494687'
   url: https://www.usgs.gov/staff-profiles/itiya-p-aneece
 profile:
   abstracts: []
   affiliations: []
   education: []
   email: ianeece@usgs.gov
   expertise_terms:
   - Remote Sensing
   - Crops
   - Invasive Plant Species
   - Big Data Analysis
   - Machine Learning
   - Hyperspectral remote sensing
   - Machine learning and cloud computing
   - Crop water productivity
   honors: []
   intro_statements:
   - Itiya Aneece is currently a Research Geographer at the U.S. Geological Survey
     (USGS) in Flagstaff, AZ, USA.
   name: Itiya P Aneece
   name_qualifier: null
   orcid: 0000-0002-1201-5459
   organization_link: https://www.usgs.gov/centers/western-geographic-science-center
   organization_name: Western Geographic Science Center
   personal_statement: At the USGS, she is working with the Western Geographic Science
     Center using hyperspectral and multispectral remote sensing to study globally
     dominant agricultural crops. She is also working on a variety of projects with
     the Astrogeology Science Center. Dr. Aneece earned a PhD in Environmental Sciences
     from the University of Virginia, where she conducted her dissertation research
     on studying the impacts of invasive plant species on secondary successional
     dynamics in abandoned agricultural fields using ground-level hyperspectral remote
     sensing. She has also recently completed a Mendenhall Postdoctoral Fellowship
     within the Western Geographic Science Center, in which she studied crops using
     Hyperion hyperspectral satellite data in Google Earth Engine.
   professional_experience: []
   title: Research Geographer
Return to "Q44512" page.