Estimating transmissivity and storage properties from aquifer tests in the Southern Lihue Basin, Kauai, Hawaii
Three to four different analysis methods were applied to the drawdown or recovery data from five constant-rate aquifer tests of 2 to 7 days in length to estimate transmissivity of rocks in the southern Lihue basin, Kauai, Hawaii. The wells penetrate rocks of the Koloa Volcanics and the underlying Waimea Canyon Basalt. Because the wells are located far apart and in previously unexplored areas, it is difficult to accurately define the aquifer or aquifers penetrated by the wells. Therefore, the aquifer tests were analyzed using a variety of curve-matching methods and only a range of possible values of transmissivity were determined. The results of a multiple-well aquifer test are similar to a single-well aquifer test done in the same area indicating that the single-well aquifer-test results are reasonable.
The results show that transmissivity in the Lihue basin ranges over several orders of magnitude, 42 to 7,900 square feet per day, but is generally lower than reported values of transmissivity of other basaltic aquifers in Hawaii. Estimates of confined-aquifer storage coefficient range from 1.3x10-4 to 8.2x10-2. The hydraulic conductivity estimates obtained using an elliptical-equation method compare favorably with the results obtained from the generally more-accepted curvematching methods. No significant difference is apparent between the estimated transmissivity of the Koloa Volcanics and the Waimea Canyon Basalt in the study area. An analysis of the lithology penetrated by the wells indicates the transmissivity is probably controlled mainly by the stratigraphic position of the layers penetrated by the well. The range of transmissivity values estimated for the southern Lihue basin is lower than reported values from aquifer tests at wells penetrating postshield-stage or rejuvenation-stage lava flows on other Hawaiian islands. This range is one to four orders of magnitude lower than most reported values for dike-free basalt aquifers in Hawaii.