Modeling habitat of the desert tortoise (Gopherus agassizii) in the Mojave and parts of the Sonoran Deserts of California, Nevada, Utah, and Arizona
Habitat modeling is an important tool used to simulate the potential distribution of a species for a variety of basic and applied questions. The desert tortoise (Gopherus agassizii) is a federally listed threatened species in the Mojave Desert and parts of the Sonoran Desert of California, Nevada, Utah, and Arizona. Land managers in this region require reliable information about the potential distribution of desert tortoise habitat to plan conservation efforts, guide monitoring activities, monitor changes in the amount and quality of habitat available, minimize and mitigate disturbances, and ultimately to assess the status of the tortoise and its habitat toward recovery of the species. By applying information from the literature and our knowledge or assumptions of environmental variables that could potentially explain variability in the quality of desert tortoise habitat, we developed a quantitative habitat model for the desert tortoise using an extensive set of field-collected presence data. Sixteen environmental data layers were converted into a grid covering the study area and merged with the desert tortoise presence data that we gathered for input into the Maxent habitat-modeling algorithm. This model provides output of the statistical probability of habitat potential that can be used to map potential areas of desert tortoise habitat. This type of analysis, while robust in its predictions of habitat, does not account for anthropogenic changes that may have altered habitat with relatively high potential into areas with lower potential.
Table of Contents
- Abstract
- Introduction
- Purpose and Scope
- Background
- Methods
- Results
- Acknowledgments
- References Cited