Item talk:Q326810

Add topic
Revision as of 13:53, 4 September 2024 by Sky (talk | contribs) (cached Datacite source for DOI)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

{

 "id": "10.5066/p9avgrh8",
 "attributes": {
   "doi": "10.5066/p9avgrh8",
   "identifiers": [],
   "creators": [
     {
       "name": "Dahal, Devendra",
       "nameType": "Personal",
       "givenName": "Devendra",
       "familyName": "Dahal",
       "affiliation": [],
       "nameIdentifiers": [
         {
           "schemeUri": "https://orcid.org",
           "nameIdentifier": "https://orcid.org/0000-0001-9594-1249",
           "nameIdentifierScheme": "ORCID"
         }
       ]
     },
     {
       "name": "Pastick, Neal J.",
       "nameType": "Personal",
       "givenName": "Neal J.",
       "familyName": "Pastick",
       "affiliation": [],
       "nameIdentifiers": [
         {
           "schemeUri": "https://orcid.org",
           "nameIdentifier": "https://orcid.org/0000-0002-4321-6739",
           "nameIdentifierScheme": "ORCID"
         }
       ]
     },
     {
       "name": "Boyte, Stephen P",
       "nameType": "Personal",
       "givenName": "Stephen P",
       "familyName": "Boyte",
       "affiliation": [],
       "nameIdentifiers": [
         {
           "schemeUri": "https://orcid.org",
           "nameIdentifier": "https://orcid.org/0000-0002-5462-3225",
           "nameIdentifierScheme": "ORCID"
         }
       ]
     },
     {
       "name": "Parajuli, Sujan",
       "nameType": "Personal",
       "givenName": "Sujan",
       "familyName": "Parajuli",
       "affiliation": [],
       "nameIdentifiers": [
         {
           "schemeUri": "https://orcid.org",
           "nameIdentifier": "https://orcid.org/0000-0002-1652-3063",
           "nameIdentifierScheme": "ORCID"
         }
       ]
     },
     {
       "name": "Oimoen, Michael J",
       "nameType": "Personal",
       "givenName": "Michael J",
       "familyName": "Oimoen",
       "affiliation": [],
       "nameIdentifiers": [
         {
           "schemeUri": "https://orcid.org",
           "nameIdentifier": "https://orcid.org/0000-0003-3611-6227",
           "nameIdentifierScheme": "ORCID"
         }
       ]
     }
   ],
   "titles": [
     {
       "title": "Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, May 2021, v1"
     }
   ],
   "publisher": "U.S. Geological Survey",
   "container": {},
   "publicationYear": 2021,
   "subjects": [
     {
       "subject": "Land Use Change"
     }
   ],
   "contributors": [],
   "dates": [
     {
       "date": "2021",
       "dateType": "Issued"
     }
   ],
   "language": null,
   "types": {
     "ris": "DATA",
     "bibtex": "misc",
     "citeproc": "dataset",
     "schemaOrg": "Dataset",
     "resourceType": "Dataset",
     "resourceTypeGeneral": "Dataset"
   },
   "relatedIdentifiers": [
     {
       "relationType": "IsCitedBy",
       "relatedIdentifier": "10.3390/rs14040807",
       "relatedIdentifierType": "DOI"
     }
   ],
   "relatedItems": [],
   "sizes": [],
   "formats": [],
   "version": null,
   "rightsList": [],
   "descriptions": [
     {
       "description": "This dataset provides early estimates of 2021 exotic annual grasses (EAG) fractional cover predicted on May 3rd. We develop and release EAG fractional cover map with an emphasis on cheatgrass (Bromus tectrorum) but it also includes number of other species, i.e., Bromus arvensis L., Bromus briziformis, Bromus catharticus Vahl, Bromus commutatus, Bromus diandrus, Bromus hordeaceus L., Bromus japonicus, Bromus madritensis L., Bromus racemosus, Bromus rubens L., Bromus secalinus L., Bromus texensis (Shear) Hitchc., and medusahead (Taeniatherum caput-medusae. The dataset was generated leveraging field observations from Bureau of Land Management (BLM) Assessment, Inventory, and Monitoring data (AIM) plots; Harmonized Landsat and Sentinel-2 (HLS) based Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI); other relevant environmental, vegetation, remotely sensed, and geophysical drivers; and artificial intelligence/machine learning techniques. A total 17,536 AIM plots from years 2016 - 2019 were used to train an ensemble of five-fold regression models using a cross-validation approach (each observation was used as test data once) that developed EAG fractional cover maps. The geographic coverage includes arid and semi-arid rangelands in the western U.S.",
       "descriptionType": "Abstract"
     }
   ],
   "geoLocations": [],
   "fundingReferences": [],
   "url": "https://www.sciencebase.gov/catalog/item/6091af4bd34e791692e16886",
   "contentUrl": null,
   "metadataVersion": 1,
   "schemaVersion": "http://datacite.org/schema/kernel-4",
   "source": "mds",
   "isActive": true,
   "state": "findable",
   "reason": null,
   "viewCount": 0,
   "downloadCount": 0,
   "referenceCount": 1,
   "citationCount": 0,
   "partCount": 0,
   "partOfCount": 0,
   "versionCount": 0,
   "versionOfCount": 0,
   "created": "2021-05-12T14:10:33Z",
   "registered": "2021-05-12T14:10:34Z",
   "published": null,
   "updated": "2022-02-10T18:59:32Z"
 },
 "relationships": {
   "client": {
     "data": {
       "id": "usgs.prod",
       "type": "clients"
     }
   }
 },
 "type": "dois"

}

Return to "Q326810" page.