Item talk:Q254870
From geokb
{
"USGS Publications Warehouse": { "@context": "https://schema.org", "@type": "Article", "additionalType": "Journal Article", "name": "On selecting a prior for the precision parameter of Dirichlet process mixture models", "identifier": [ { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse IndexID", "value": "70036925", "url": "https://pubs.usgs.gov/publication/70036925" }, { "@type": "PropertyValue", "propertyID": "USGS Publications Warehouse Internal ID", "value": 70036925 }, { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.jspi.2009.03.009", "url": "https://doi.org/10.1016/j.jspi.2009.03.009" }, { "@type": "PropertyValue", "propertyID": "ISSN", "value": "03783758" } ], "journal": { "@type": "Periodical", "name": "Journal of Statistical Planning and Inference", "volumeNumber": "139", "issueNumber": "9" }, "inLanguage": "en", "isPartOf": [ { "@type": "CreativeWorkSeries", "name": "Journal of Statistical Planning and Inference" } ], "datePublished": "2009", "dateModified": "2012-03-12", "abstract": "In hierarchical mixture models the Dirichlet process is used to specify latent patterns of heterogeneity, particularly when the distribution of latent parameters is thought to be clustered (multimodal). The parameters of a Dirichlet process include a precision parameter ?? and a base probability measure G0. In problems where ?? is unknown and must be estimated, inferences about the level of clustering can be sensitive to the choice of prior assumed for ??. In this paper an approach is developed for computing a prior for the precision parameter ?? that can be used in the presence or absence of prior information about the level of clustering. This approach is illustrated in an analysis of counts of stream fishes. The results of this fully Bayesian analysis are compared with an empirical Bayes analysis of the same data and with a Bayesian analysis based on an alternative commonly used prior.", "publisher": { "@type": "Organization", "name": "U.S. Geological Survey" }, "author": [ { "@type": "Person", "name": "Dorazio, R.M.", "givenName": "R.M.", "familyName": "Dorazio", "identifier": { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0003-2663-0468", "url": "https://orcid.org/0000-0003-2663-0468" } } ] }, "OpenAlex": { "_id": "https://openalex.org/w1986430351", "abstract_inverted_index": { "In": [ 0, 45, 72 ], "hierarchical": [ 1 ], "mixture": [ 2 ], "models": [ 3 ], "the": [ 4, 17, 57, 65, 84, 93, 101, 132 ], "Dirichlet": [ 5, 32 ], "process": [ 6, 33 ], "is": [ 7, 22, 49, 77, 107 ], "used": [ 8, 91, 145 ], "to": [ 9, 24, 64 ], "specify": [ 10 ], "latent": [ 11, 20 ], "patterns": [ 12 ], "of": [ 13, 19, 30, 59, 67, 97, 103, 112, 114, 119, 131 ], "heterogeneity,": [ 14 ], "particularly": [ 15 ], "when": [ 16 ], "distribution": [ 18 ], "parameters": [ 21, 29 ], "thought": [ 23 ], "be": [ 25, 53, 62, 90 ], "clustered": [ 26 ], "(multimodal).": [ 27 ], "The": [ 28, 117 ], "a": [ 31, 35, 40, 81, 137 ], "include": [ 34 ], "precision": [ 36, 85 ], "parameter": [ 37, 86 ], "\u03b1": [ 38, 48, 87 ], "and": [ 39, 51, 135 ], "base": [ 41 ], "probability": [ 42 ], "measure": [ 43 ], "G0.": [ 44 ], "problems": [ 46 ], "where": [ 47 ], "unknown": [ 50 ], "must": [ 52 ], "estimated,": [ 54 ], "inferences": [ 55 ], "about": [ 56, 100 ], "level": [ 58, 102 ], "clustering": [ 60 ], "can": [ 61, 89 ], "sensitive": [ 63 ], "choice": [ 66 ], "prior": [ 68, 82, 98 ], "assumed": [ 69 ], "for": [ 70, 79, 83 ], "\u03b1.": [ 71 ], "this": [ 73, 120 ], "paper": [ 74 ], "an": [ 75, 110, 127, 142 ], "approach": [ 76, 106 ], "developed": [ 78 ], "computing": [ 80 ], "that": [ 88 ], "in": [ 92, 109 ], "presence": [ 94 ], "or": [ 95 ], "absence": [ 96 ], "information": [ 99 ], "clustering.": [ 104 ], "This": [ 105 ], "illustrated": [ 108 ], "analysis": [ 111, 123, 130, 139 ], "counts": [ 113 ], "stream": [ 115 ], "fishes.": [ 116 ], "results": [ 118 ], "fully": [ 121 ], "Bayesian": [ 122, 138 ], "are": [ 124 ], "compared": [ 125 ], "with": [ 126, 136 ], "empirical": [ 128 ], "Bayes": [ 129 ], "same": [ 133 ], "data": [ 134 ], "based": [ 140 ], "on": [ 141 ], "alternative": [ 143 ], "commonly": [ 144 ], "prior.": [ 146 ] }, "apc_list": { "value": 2890, "currency": "USD", "value_usd": 2890, "provenance": "doaj" }, "apc_paid": null, "authorships": [ { "author_position": "first", "author": { "id": "https://openalex.org/A5062506115", "display_name": "Robert M. Dorazio", "orcid": "https://orcid.org/0000-0003-2663-0468" }, "institutions": [ { "id": "https://openalex.org/I33213144", "display_name": "University of Florida", "ror": "https://ror.org/02y3ad647", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I33213144" ] }, { "id": "https://openalex.org/I1286329397", "display_name": "United States Geological Survey", "ror": "https://ror.org/035a68863", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] } ], "countries": [ "US" ], "is_corresponding": true, "raw_author_name": "Robert M. Dorazio", "raw_affiliation_strings": [ "Department of Statistics, University of Florida, Gainesville, FL 32611-0339, USA", "Florida Integrated Science Center, U.S. Geological Survey, Gainesville, FL 32605-3574, USA" ], "affiliations": [ { "raw_affiliation_string": "Department of Statistics, University of Florida, Gainesville, FL 32611-0339, USA", "institution_ids": [ "https://openalex.org/I33213144" ] }, { "raw_affiliation_string": "Florida Integrated Science Center, U.S. Geological Survey, Gainesville, FL 32605-3574, USA", "institution_ids": [ "https://openalex.org/I1286329397" ] } ] } ], "best_oa_location": null, "biblio": { "volume": "139", "issue": "9", "first_page": "3384", "last_page": "3390" }, "citation_normalized_percentile": { "value": 0.945986, "is_in_top_1_percent": false, "is_in_top_10_percent": true }, "cited_by_api_url": "https://api.openalex.org/works?filter=cites:W1986430351", "cited_by_count": 48, "cited_by_percentile_year": { "min": 94, "max": 95 }, "concepts": [ { "id": "https://openalex.org/C2781280628", "wikidata": "https://www.wikidata.org/wiki/Q5280766", "display_name": "Dirichlet process", "level": 3, "score": 0.8231542 }, { "id": "https://openalex.org/C141318989", "wikidata": "https://www.wikidata.org/wiki/Q5753066", "display_name": "Hierarchical Dirichlet process", "level": 4, "score": 0.7358953 }, { "id": "https://openalex.org/C169214877", "wikidata": "https://www.wikidata.org/wiki/Q981016", "display_name": "Dirichlet distribution", "level": 3, "score": 0.7102722 }, { "id": "https://openalex.org/C500882744", "wikidata": "https://www.wikidata.org/wiki/Q269236", "display_name": "Latent Dirichlet allocation", "level": 3, "score": 0.69083554 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 0.68101865 }, { "id": "https://openalex.org/C207201462", "wikidata": "https://www.wikidata.org/wiki/Q182505", "display_name": "Bayes' theorem", "level": 3, "score": 0.57820725 }, { "id": "https://openalex.org/C177769412", "wikidata": "https://www.wikidata.org/wiki/Q278090", "display_name": "Prior probability", "level": 3, "score": 0.5640391 }, { "id": "https://openalex.org/C73555534", "wikidata": "https://www.wikidata.org/wiki/Q622825", "display_name": "Cluster analysis", "level": 2, "score": 0.55005556 }, { "id": "https://openalex.org/C191413810", "wikidata": "https://www.wikidata.org/wiki/Q17100952", "display_name": "Bayesian hierarchical modeling", "level": 4, "score": 0.5380693 }, { "id": "https://openalex.org/C107673813", "wikidata": "https://www.wikidata.org/wiki/Q812534", "display_name": "Bayesian probability", "level": 2, "score": 0.53069824 }, { "id": "https://openalex.org/C61224824", "wikidata": "https://www.wikidata.org/wiki/Q2260434", "display_name": "Mixture model", "level": 2, "score": 0.49079737 }, { "id": "https://openalex.org/C142291917", "wikidata": "https://www.wikidata.org/wiki/Q4165283", "display_name": "Bayes factor", "level": 4, "score": 0.44597015 }, { "id": "https://openalex.org/C2780009758", "wikidata": "https://www.wikidata.org/wiki/Q6804172", "display_name": "Measure (data warehouse)", "level": 2, "score": 0.43524575 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 0.4079121 }, { "id": "https://openalex.org/C124101348", "wikidata": "https://www.wikidata.org/wiki/Q172491", "display_name": "Data mining", "level": 1, "score": 0.34486738 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 0.28622985 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 0.26726115 }, { "id": "https://openalex.org/C171686336", "wikidata": "https://www.wikidata.org/wiki/Q3532085", "display_name": "Topic model", "level": 2, "score": 0.16388676 }, { "id": "https://openalex.org/C134306372", "wikidata": "https://www.wikidata.org/wiki/Q7754", "display_name": "Mathematical analysis", "level": 1, "score": 0.0 }, { "id": "https://openalex.org/C182310444", "wikidata": "https://www.wikidata.org/wiki/Q1332643", "display_name": "Boundary value problem", "level": 2, "score": 0.0 } ], "corresponding_author_ids": [ "https://openalex.org/A5062506115" ], "corresponding_institution_ids": [ "https://openalex.org/I33213144", "https://openalex.org/I1286329397" ], "countries_distinct_count": 1, "counts_by_year": [ { "year": 2024, "cited_by_count": 2 }, { "year": 2021, "cited_by_count": 4 }, { "year": 2020, "cited_by_count": 4 }, { "year": 2019, "cited_by_count": 2 }, { "year": 2017, "cited_by_count": 6 }, { "year": 2016, "cited_by_count": 6 }, { "year": 2015, "cited_by_count": 2 }, { "year": 2014, "cited_by_count": 3 }, { "year": 2013, "cited_by_count": 4 }, { "year": 2012, "cited_by_count": 4 } ], "created_date": "2016-06-24", "datasets": [], "display_name": "On selecting a prior for the precision parameter of Dirichlet process mixture models", "doi": "https://doi.org/10.1016/j.jspi.2009.03.009", "fulltext_origin": "ngrams", "fwci": 5.198, "grants": [], "has_fulltext": true, "id": "https://openalex.org/W1986430351", "ids": { "openalex": "https://openalex.org/W1986430351", "doi": "https://doi.org/10.1016/j.jspi.2009.03.009", "mag": "1986430351" }, "indexed_in": [ "crossref" ], "institutions_distinct_count": 2, "is_paratext": false, "is_retracted": false, "keywords": [ { "id": "https://openalex.org/keywords/hierarchical-dirichlet-process", "display_name": "Hierarchical Dirichlet process", "score": 0.7358953 }, { "id": "https://openalex.org/keywords/dirichlet-process", "display_name": "Dirichlet Process", "score": 0.580264 }, { "id": "https://openalex.org/keywords/mixture-models", "display_name": "Mixture Models", "score": 0.533594 }, { "id": "https://openalex.org/keywords/model-selection", "display_name": "Model Selection", "score": 0.511584 }, { "id": "https://openalex.org/keywords/clustering", "display_name": "Clustering", "score": 0.506893 } ], "language": "en", "locations": [ { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.jspi.2009.03.009", "pdf_url": null, "source": { "id": "https://openalex.org/S25707077", "display_name": "Journal of Statistical Planning and Inference", "issn_l": "0378-3758", "issn": [ "0378-3758", "1873-1171" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false } ], "locations_count": 1, "mesh": [], "ngrams_url": "https://api.openalex.org/works/W1986430351/ngrams", "open_access": { "is_oa": false, "oa_status": "closed", "oa_url": null, "any_repository_has_fulltext": false }, "primary_location": { "is_oa": false, "landing_page_url": "https://doi.org/10.1016/j.jspi.2009.03.009", "pdf_url": null, "source": { "id": "https://openalex.org/S25707077", "display_name": "Journal of Statistical Planning and Inference", "issn_l": "0378-3758", "issn": [ "0378-3758", "1873-1171" ], "is_oa": false, "is_in_doaj": false, "is_core": true, "host_organization": "https://openalex.org/P4310320990", "host_organization_name": "Elsevier BV", "host_organization_lineage": [ "https://openalex.org/P4310320990" ], "host_organization_lineage_names": [ "Elsevier BV" ], "type": "journal" }, "license": null, "license_id": null, "version": null, "is_accepted": false, "is_published": false }, "primary_topic": { "id": "https://openalex.org/T11901", "display_name": "Model-Based Clustering with Mixture Models", "score": 0.9999, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, "publication_date": "2009-09-01", "publication_year": 2009, "referenced_works": [ "https://openalex.org/W1967687583", "https://openalex.org/W2013014498", "https://openalex.org/W2020213096", "https://openalex.org/W2030916954", "https://openalex.org/W2034938024", "https://openalex.org/W2044840180", "https://openalex.org/W2047054386", "https://openalex.org/W2065246942", "https://openalex.org/W2067776296", "https://openalex.org/W2069429561", "https://openalex.org/W2070047497", "https://openalex.org/W2076183121", "https://openalex.org/W2089484716", "https://openalex.org/W2091797506", "https://openalex.org/W2100123948", "https://openalex.org/W2136999619", "https://openalex.org/W2151967501", "https://openalex.org/W2156228706", "https://openalex.org/W2158266063", "https://openalex.org/W2183060819", "https://openalex.org/W2334214145", "https://openalex.org/W3104600419", "https://openalex.org/W4230306435", "https://openalex.org/W4234603045", "https://openalex.org/W4285719527", "https://openalex.org/W4388320121" ], "referenced_works_count": 26, "related_works": [ "https://openalex.org/W4381683374", "https://openalex.org/W3142820572", "https://openalex.org/W2803512450", "https://openalex.org/W2761041348", "https://openalex.org/W2059879108", "https://openalex.org/W2053306114", "https://openalex.org/W2048766621", "https://openalex.org/W2012856588", "https://openalex.org/W1989637290", "https://openalex.org/W1986430351" ], "sustainable_development_goals": [ { "score": 0.61, "id": "https://metadata.un.org/sdg/14", "display_name": "Life below water" } ], "title": "On selecting a prior for the precision parameter of Dirichlet process mixture models", "topics": [ { "id": "https://openalex.org/T11901", "display_name": "Model-Based Clustering with Mixture Models", "score": 0.9999, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10243", "display_name": "Methods for Handling Missing Data in Statistical Analysis", "score": 0.9511, "subfield": { "id": "https://openalex.org/subfields/2613", "display_name": "Statistics and Probability" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10136", "display_name": "Regularization and Variable Selection Methods", "score": 0.9253, "subfield": { "id": "https://openalex.org/subfields/2613", "display_name": "Statistics and Probability" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "type": "article", "type_crossref": "journal-article", "updated_date": "2024-08-15T04:38:56.749597", "versions": [] }
}