Item talk:Q140776
From geokb
{
"OpenAlex": { "id": "https://openalex.org/A5087668203", "orcid": "https://orcid.org/0000-0003-3104-7656", "display_name": "Francesca Bovolo", "display_name_alternatives": [ "Francesca Bovolo", "F. Bovolo", "Bovolo Francesca" ], "works_count": 298, "cited_by_count": 8579, "summary_stats": { "2yr_mean_citedness": 5.066666666666666, "h_index": 49, "i10_index": 118 }, "ids": { "openalex": "https://openalex.org/A5087668203", "orcid": "https://orcid.org/0000-0003-3104-7656", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=9943212600&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I2277624104", "ror": "https://ror.org/01j33xk10", "display_name": "Fondazione Bruno Kessler", "country_code": "IT", "type": "facility", "lineage": [ "https://openalex.org/I2277624104" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I193223587", "ror": "https://ror.org/05trd4x28", "display_name": "University of Trento", "country_code": "IT", "type": "education", "lineage": [ "https://openalex.org/I193223587" ] }, "years": [ 2023, 2022, 2021, 2019, 2016, 2014, 2013, 2012, 2011, 2010 ] }, { "institution": { "id": "https://openalex.org/I1286329397", "ror": "https://ror.org/035a68863", "display_name": "United States Geological Survey", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] }, "years": [ 2022 ] }, { "institution": { "id": "https://openalex.org/I62916508", "ror": "https://ror.org/02kkvpp62", "display_name": "Technical University of Munich", "country_code": "DE", "type": "education", "lineage": [ "https://openalex.org/I62916508" ] }, "years": [ 2022 ] }, { "institution": { "id": "https://openalex.org/I1289461252", "ror": "https://ror.org/00cwrns71", "display_name": "Indian Space Research Organisation", "country_code": "IN", "type": "government", "lineage": [ "https://openalex.org/I1289461252", "https://openalex.org/I3148377317" ] }, "years": [ 2021 ] }, { "institution": { "id": "https://openalex.org/I4210142152", "ror": "https://ror.org/04fa4r544", "display_name": "ORCID", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210142152" ] }, "years": [ 2020 ] }, { "institution": { "id": "https://openalex.org/I4210133125", "ror": "https://ror.org/033y26782", "display_name": "Mitsubishi Electric (Japan)", "country_code": "JP", "type": "company", "lineage": [ "https://openalex.org/I1306287861", "https://openalex.org/I4210133125" ] }, "years": [ 2019 ] }, { "institution": { "id": "https://openalex.org/I20529979", "ror": "https://ror.org/02x73b849", "display_name": "University of Electro-Communications", "country_code": "JP", "type": "education", "lineage": [ "https://openalex.org/I20529979" ] }, "years": [ 2019 ] }, { "institution": { "id": "https://openalex.org/I201537933", "ror": "https://ror.org/01dq60k83", "display_name": "Tohoku University", "country_code": "JP", "type": "education", "lineage": [ "https://openalex.org/I201537933" ] }, "years": [ 2019 ] }, { "institution": { "id": "https://openalex.org/I165522056", "ror": "https://ror.org/01pa62v70", "display_name": "Tokyo Denki University", "country_code": "JP", "type": "education", "lineage": [ "https://openalex.org/I165522056" ] }, "years": [ 2019 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I2277624104", "ror": "https://ror.org/01j33xk10", "display_name": "Fondazione Bruno Kessler", "country_code": "IT", "type": "facility", "lineage": [ "https://openalex.org/I2277624104" ] } ], "topics": [ { "id": "https://openalex.org/T10689", "display_name": "Hyperspectral Image Analysis and Classification", "count": 168, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13890", "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "count": 101, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "count": 85, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11659", "display_name": "Multispectral and Hyperspectral Image Fusion", "count": 28, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "count": 24, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "count": 23, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10801", "display_name": "Synthetic Aperture Radar Interferometry", "count": 21, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10640", "display_name": "Chemometrics in Analytical Chemistry and Food Technology", "count": 18, "subfield": { "id": "https://openalex.org/subfields/1602", "display_name": "Analytical Chemistry" }, "field": { "id": "https://openalex.org/fields/16", "display_name": "Chemistry" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11609", "display_name": "Applications of Ground-Penetrating Radar in Geoscience and Engineering", "count": 15, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 14, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13282", "display_name": "Automatic Road Extraction from Remote Sensing Images", "count": 13, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10032", "display_name": "Marine Biogeochemistry and Ecosystem Dynamics", "count": 12, "subfield": { "id": "https://openalex.org/subfields/1910", "display_name": "Oceanography" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10406", "display_name": "Exploration and Study of Mars", "count": 12, "subfield": { "id": "https://openalex.org/subfields/3103", "display_name": "Astronomy and Astrophysics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10824", "display_name": "Shape Matching and Object Recognition", "count": 11, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10688", "display_name": "Image Denoising Techniques and Algorithms", "count": 10, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "count": 9, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10627", "display_name": "Image Feature Retrieval and Recognition Techniques", "count": 9, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10535", "display_name": "Landslide Hazards and Risk Assessment", "count": 9, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10052", "display_name": "Image Segmentation Techniques", "count": 8, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11757", "display_name": "High-Resolution Seismic Noise Tomography", "count": 8, "subfield": { "id": "https://openalex.org/subfields/1908", "display_name": "Geophysics" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10325", "display_name": "Formation and Evolution of the Solar System", "count": 8, "subfield": { "id": "https://openalex.org/subfields/3103", "display_name": "Astronomy and Astrophysics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11880", "display_name": "Estimation of Forest Biomass and Carbon Stocks", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12205", "display_name": "Clustering of Time Series Data and Algorithms", "count": 6, "subfield": { "id": "https://openalex.org/subfields/1711", "display_name": "Signal Processing" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11512", "display_name": "Anomaly Detection in High-Dimensional Data", "count": 6, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14249", "display_name": "On-line Monitoring of Wastewater Quality", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2311", "display_name": "Industrial and Manufacturing Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T10689", "display_name": "Hyperspectral Image Analysis and Classification", "value": 0.0014307, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "value": 0.0005959, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13282", "display_name": "Automatic Road Extraction from Remote Sensing Images", "value": 0.0004827, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13890", "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "value": 0.000353, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10801", "display_name": "Synthetic Aperture Radar Interferometry", "value": 0.0003024, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11659", "display_name": "Multispectral and Hyperspectral Image Fusion", "value": 0.0002952, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "value": 0.0001322, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10640", "display_name": "Chemometrics in Analytical Chemistry and Food Technology", "value": 7.47e-05, "subfield": { "id": "https://openalex.org/subfields/1602", "display_name": "Analytical Chemistry" }, "field": { "id": "https://openalex.org/fields/16", "display_name": "Chemistry" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11609", "display_name": "Applications of Ground-Penetrating Radar in Geoscience and Engineering", "value": 7.16e-05, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12205", "display_name": "Clustering of Time Series Data and Algorithms", "value": 6.84e-05, "subfield": { "id": "https://openalex.org/subfields/1711", "display_name": "Signal Processing" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11819", "display_name": "Digital Epidemiology and Disease Surveillance", "value": 6.06e-05, "subfield": { "id": "https://openalex.org/subfields/2713", "display_name": "Epidemiology" }, "field": { "id": "https://openalex.org/fields/27", "display_name": "Medicine" }, "domain": { "id": "https://openalex.org/domains/4", "display_name": "Health Sciences" } }, { "id": "https://openalex.org/T10824", "display_name": "Shape Matching and Object Recognition", "value": 5.76e-05, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "value": 5.49e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "value": 5.21e-05, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10032", "display_name": "Marine Biogeochemistry and Ecosystem Dynamics", "value": 5.17e-05, "subfield": { "id": "https://openalex.org/subfields/1910", "display_name": "Oceanography" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10052", "display_name": "Image Segmentation Techniques", "value": 5.08e-05, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "value": 4.55e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10688", "display_name": "Image Denoising Techniques and Algorithms", "value": 4.42e-05, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11038", "display_name": "Synthetic Aperture Radar (SAR) Technology and Applications", "value": 3.93e-05, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "value": 3.9e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10627", "display_name": "Image Feature Retrieval and Recognition Techniques", "value": 3.78e-05, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10406", "display_name": "Exploration and Study of Mars", "value": 3.52e-05, "subfield": { "id": "https://openalex.org/subfields/3103", "display_name": "Astronomy and Astrophysics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13018", "display_name": "Machine Learning for Earthquake Early Warning Systems", "value": 3.48e-05, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "value": 3.45e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11512", "display_name": "Anomaly Detection in High-Dimensional Data", "value": 3.33e-05, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 95.0 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 89.3 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 88.9 }, { "id": "https://openalex.org/C62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 84.2 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 81.2 }, { "id": "https://openalex.org/C31972630", "wikidata": "https://www.wikidata.org/wiki/Q844240", "display_name": "Computer vision", "level": 1, "score": 71.5 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 65.1 }, { "id": "https://openalex.org/C15744967", "wikidata": "https://www.wikidata.org/wiki/Q9418", "display_name": "Psychology", "level": 0, "score": 56.0 }, { "id": "https://openalex.org/C153180895", "wikidata": "https://www.wikidata.org/wiki/Q7148389", "display_name": "Pattern recognition (psychology)", "level": 2, "score": 55.4 }, { "id": "https://openalex.org/C180747234", "wikidata": "https://www.wikidata.org/wiki/Q23373", "display_name": "Cognitive psychology", "level": 1, "score": 55.4 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 51.0 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 43.0 }, { "id": "https://openalex.org/C203595873", "wikidata": "https://www.wikidata.org/wiki/Q25389927", "display_name": "Change detection", "level": 2, "score": 42.6 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 41.9 }, { "id": "https://openalex.org/C119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 41.3 }, { "id": "https://openalex.org/C120665830", "wikidata": "https://www.wikidata.org/wiki/Q14620", "display_name": "Optics", "level": 1, "score": 40.9 }, { "id": "https://openalex.org/C115961682", "wikidata": "https://www.wikidata.org/wiki/Q860623", "display_name": "Image (mathematics)", "level": 2, "score": 31.2 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 29.5 }, { "id": "https://openalex.org/C146978453", "wikidata": "https://www.wikidata.org/wiki/Q3798668", "display_name": "Aerospace engineering", "level": 1, "score": 26.8 }, { "id": "https://openalex.org/C62520636", "wikidata": "https://www.wikidata.org/wiki/Q944", "display_name": "Quantum mechanics", "level": 1, "score": 24.5 }, { "id": "https://openalex.org/C1276947", "wikidata": "https://www.wikidata.org/wiki/Q333", "display_name": "Astronomy", "level": 1, "score": 21.8 }, { "id": "https://openalex.org/C151730666", "wikidata": "https://www.wikidata.org/wiki/Q7205", "display_name": "Paleontology", "level": 1, "score": 21.5 }, { "id": "https://openalex.org/C199360897", "wikidata": "https://www.wikidata.org/wiki/Q9143", "display_name": "Programming language", "level": 1, "score": 21.5 }, { "id": "https://openalex.org/C138885662", "wikidata": "https://www.wikidata.org/wiki/Q5891", "display_name": "Philosophy", "level": 0, "score": 21.1 }, { "id": "https://openalex.org/C76155785", "wikidata": "https://www.wikidata.org/wiki/Q418", "display_name": "Telecommunications", "level": 1, "score": 20.1 } ], "counts_by_year": [ { "year": 2024, "works_count": 11, "cited_by_count": 659 }, { "year": 2023, "works_count": 20, "cited_by_count": 1188 }, { "year": 2022, "works_count": 30, "cited_by_count": 1519 }, { "year": 2021, "works_count": 30, "cited_by_count": 1093 }, { "year": 2020, "works_count": 24, "cited_by_count": 664 }, { "year": 2019, "works_count": 31, "cited_by_count": 670 }, { "year": 2018, "works_count": 15, "cited_by_count": 530 }, { "year": 2017, "works_count": 22, "cited_by_count": 449 }, { "year": 2016, "works_count": 7, "cited_by_count": 447 }, { "year": 2015, "works_count": 18, "cited_by_count": 342 }, { "year": 2014, "works_count": 11, "cited_by_count": 284 }, { "year": 2013, "works_count": 16, "cited_by_count": 267 }, { "year": 2012, "works_count": 13, "cited_by_count": 204 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5087668203", "updated_date": "2024-08-21T05:44:00.564708", "created_date": "2023-07-21", "_id": "https://openalex.org/A5087668203" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0003-3104-7656", "mainEntityOfPage": "https://orcid.org/0000-0003-3104-7656", "givenName": "Francesca", "familyName": "Bovolo", "alumniOf": [ { "@type": "Organization", "name": "Universit\u00e0 degli Studi di Trento", "alternateName": "Dipartimento di Ingegneria e Scienza dell'Informazione", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "201805" } }, { "@type": "Organization", "name": "Universit\u00e0 degli Studi di Trento", "alternateName": "Dipartimento di Ingegneria e Scienza dell'Informazione", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "19034" } } ], "affiliation": [ { "@type": "Organization", "name": "Fondazione Bruno Kessler", "alternateName": "Center for Information and Communication Technology", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "18466" } }, { "@type": "Organization", "name": "Universit\u00e0 degli Studi di Trento", "alternateName": "Dipartimento di Ingegneria e Scianza dell'Informazione", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "19034" } } ], "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11214-024-01089-8", "name": "Characterization of the Surfaces and Near-Surface Atmospheres of Ganymede, Europa and Callisto by JUICE", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11214-024-01089-8" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/mgrs.2024.3383652", "name": "2023 GRSS Awards Presented at the IGARSS Night 2023 \u201cSpace and Magic\u201d [Conference Reports]", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/mgrs.2024.3383652" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2024.3359819", "name": "Multiannual Change Detection Using a Weakly Supervised 3-D CNN in HR SITS", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2024.3359819" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2024.3431631", "name": "Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2024.3431631" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2024.3438465", "name": "Multiscale Hierarchical Losses to Preserve Hidden-Layer Features for Unsupervised Change Detection", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2024.3438465" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2024.3378576", "name": "Super-Resolution of Radargrams With a Generative Deep Learning Model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2024.3378576" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs15184639", "name": "Remote Sensing and Deep Learning to Understand Noisy OpenStreetMap", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs15184639" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431161.2023.2255350", "name": "Enhancing suspended sediment concentration retrieval by integrating thermal infrared and optical bands of Landsat-8 and machine learning algorithms", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2023.2255350" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/mgrs.2023.3303685", "name": "IGARSS 2023 in Pasadena, California: Impressions of the First Days [Conference Reports]", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/mgrs.2023.3303685" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.36227/techrxiv.23987301", "name": "An Unsupervised Framework for Radar Sounder Signal Segmentation Based on Enhanced Self-supervised Transformers", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.36227/techrxiv.23987301" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.36227/techrxiv.23987301.v1", "name": "An Unsupervised Framework for Radar Sounder Signal Segmentation Based on Enhanced Self-supervised Transformers", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.36227/techrxiv.23987301.v1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ophoto.2023.100031", "name": "Towards global scale segmentation with OpenStreetMap and remote sensing", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ophoto.2023.100031" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2023.3243396", "name": "A Dual-Branch Deep Learning Architecture for Multisensor and Multitemporal Remote Sensing Semantic Segmentation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2023.3243396" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2023.3252939", "name": "A Weakly Supervised Transfer Learning Approach for Radar Sounder Data Segmentation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2023.3252939" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2023.3266929", "name": "Deep-Learning-Based Retrieval of an Orange Band Sensitive to Cyanobacteria for Landsat-8/9 and Sentinel-2", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2023.3266929" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2023.3333811", "name": "FMPR-Net: False Matching Point Removal Network for Very-High-Resolution Satellite Image Registration", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2023.3333811" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/mgrs.2022.3222705", "name": "Awards Presented at the IGARSS 2022 Banquet [Conference Reports]", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/mgrs.2022.3222705" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs14184596", "name": "Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs14184596" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/mgrs.2022.3198313", "name": "IGARSS 2022 in Kuala Lumpur, Malaysia: Impressions of the First Days [Conference Reports]", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/mgrs.2022.3198313" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2021.3125773", "name": "A Deep Learning Architecture for Semantic Segmentation of Radar Sounder Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2021.3125773" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2021.3081101", "name": "A Nonconvex Framework for Sparse Unmixing Incorporating the Group Structure of the Spectral Library", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2021.3081101" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2021.3110280", "name": "A System for Burned Area Detection on Multispectral Imagery", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2021.3110280" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2021.3119047", "name": "An Approach to the Assessment of Detectability of Subsurface Targets in Polar Ice From Satellite Radar Sounders", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2021.3119047" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2021.3062753", "name": "An Unsupervised Fuzzy System for the Automatic Detection of Candidate Lava Tubes in Radar Sounder Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2021.3062753" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2022.3164547", "name": "Automatic Large-Scale Precise Mapping and Monitoring of Agricultural Fields at Country Level With Sentinel-2 SITS", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2022.3164547" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2020.3043822", "name": "Change Detection in Image Time-Series Using Unsupervised LSTM", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2020.3043822" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2021.3067096", "name": "Deep Reinforcement Learning for Band Selection in Hyperspectral Image Classification", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2021.3067096" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2022.3200985", "name": "Detecting Changes by Learning No Changes: Data-Enclosing-Ball Minimizing Autoencoders for One-Class Change Detection in Multispectral Imagery", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2022.3200985" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2022.3140594", "name": "Editorial Foreword to the Special Issue on Recent Advances in Multitemporal Remote-Sensing Data Processing", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2022.3140594" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2022.3187179", "name": "River Bathymetry Retrieval From Landsat-9 Images Based on Neural Networks and Comparison to SuperDove and Sentinel-2", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2022.3187179" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2022.3180761", "name": "TransSounder: A Hybrid TransUNet-TransFuse Architectural Framework for Semantic Segmentation of Radar Sounder Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2022.3180761" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2022.3140404", "name": "Unsupervised Change Detection Using Convolutional-Autoencoder Multiresolution Features", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2022.3140404" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2022.3163404", "name": "Void-Volume-Based Stem Geometric Modeling and Branch-Knot Localization in Terrestrial Laser Scanning Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2022.3163404" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/w13223286", "name": "Sentinel-2 Reveals Abrupt Increment of Total Suspended Matter While Ever Given Ship Blocked the Suez Canal", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/w13223286" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.36227/techrxiv.16870633", "name": "TransSounder: A Hybrid TransUNet-TransFuse Architectural Framework for Semantic Segmentation of Radar Sounder Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.36227/techrxiv.16870633" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.36227/techrxiv.16870633.v1", "name": "TransSounder: A Hybrid TransUNet-TransFuse Architectural Framework for Semantic Segmentation of Radar Sounder Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.36227/techrxiv.16870633.v1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs13122381", "name": "Inter-Comparison of Methods for Chlorophyll-a Retrieval: Sentinel-2 Time-Series Analysis in Italian Lakes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs13122381" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2020.3012343", "name": "A Crown Quantization-Based Approach to Tree-Species Classification Using High-Density Airborne Laser Scanning Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2020.3012343" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2020.2990284", "name": "Unsupervised Deep Transfer Learning-Based Change Detection for HR Multispectral Images", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2020.2990284" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2020.2985340", "name": "Semisupervised Change Detection Using Graph Convolutional Network", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2020.2985340" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2020.2980429", "name": "A Novel Dual-Alternating Direction Method of Multipliers for Spectral Unmixing", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2020.2980429" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2020.3000296", "name": "Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2020.3000296" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2021.3119358", "name": "A General Framework for Change Detection Using Multimodal Remote Sensing Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2021.3119358" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/mgrs.2021.3063465", "name": "Change Detection From Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/mgrs.2021.3063465" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/978-3-030-68787-8_42", "name": "Self-supervised Pre-training Enhances Change Detection in Sentinel-2 Imagery", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/978-3-030-68787-8_42" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2020.2990640", "name": "Unsupervised Deep Joint Segmentation of Multitemporal High-Resolution Images", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2020.2990640" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2019.2958262", "name": "An Unsupervised Approach to Change Detection in Built-Up Areas by Multitemporal PolSAR Images", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2019.2958262" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2020.2969026", "name": "Snow Cover Estimation Underneath the Clouds Based on Multitemporal Correlation Analysis in Historical Time-Series Imagery", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2020.2969026" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2020.2966865", "name": "A Novel Framework Based on Polarimetric Change Vectors for Unsupervised Multiclass Change Detection in Dual-Pol Intensity SAR Images", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2020.2966865" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2019.2953652", "name": "A Method for the Analysis of Small Crop Fields in Sentinel-2 Dense Time Series", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2019.2953652" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2020.3026838", "name": "An Approach to Unsupervised Detection of Fully and Partially Destroyed Buildings in Multitemporal VHR SAR Images", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2020.3026838" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2019.2929422", "name": "Distributed Radar Sounder: A Novel Concept for Subsurface Investigations Using Sensors in Formation Flight", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2019.2929422" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2019.2933251", "name": "Novel Spectra-Derived Features for Empirical Retrieval of Water Quality Parameters: Demonstrations for OLI, MSI, and OLCI Sensors", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2019.2933251" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2019.2924684", "name": "Fast and Robust Matching for Multimodal Remote Sensing Image Registration", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2019.2924684" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2019.2914397", "name": "Generation of Homogeneous VHR Time Series by Nonparametric Regression of Multisensor Bitemporal Images", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2019.2914397" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2019.2896385", "name": "An Approach to Multiple Change Detection in VHR Optical Images Based on Iterative Clustering and Adaptive Thresholding", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2019.2896385" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2019.2894339", "name": "A Novel Change Detection Method for Multitemporal Hyperspectral Images Based on Binary Hyperspectral Change Vectors", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2019.2894339" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/mgrs.2019.2898520", "name": "A Review of Change Detection in Multitemporal Hyperspectral Images: Current Techniques, Applications, and Challenges", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/mgrs.2019.2898520" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2018.2886643", "name": "Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2018.2886643" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/mgrs.2018.2890023", "name": "Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/mgrs.2018.2890023" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2018.2865014", "name": "A Local Projection-Based Approach to Individual Tree Detection and 3-D Crown Delineation in Multistoried Coniferous Forests Using High-Density Airborne LiDAR Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2018.2865014" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2018.2854930", "name": "Compensating Earth Ionosphere Phase Distortion in Spaceborne VHF Radar Sounders for Subsurface Investigations", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2018.2854930" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2017.2752282", "name": "A Novel Technique Based on Deep Learning and a Synthetic Target Database for Classification of Urban Areas in PolSAR Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2017.2752282" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2017.2656152", "name": "An Internal Crown Geometric Model for Conifer Species Classification With High-Density LiDAR Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2017.2656152" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2017.2655941", "name": "Segmentation-Based Fine Registration of Very High Resolution Multitemporal Images", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2017.2655941" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2015.2389520", "name": "A Novel Graph-Matching-Based Approach for Domain Adaptation in Classification of Remote Sensing Image Pair", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84922758050" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2015.2389520" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2014.2360833", "name": "A new self-training-based unsupervised satellite image classification technique using cluster ensemble strategy", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2014.2360833" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84910053472" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2014.2381645", "name": "An Adaptive Semisupervised Approach to the Detection of User-Defined Recurrent Changes in Image Time Series", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84921301218" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2014.2381645" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2015.2445632", "name": "An Approach to Fine Coregistration between Very High Resolution Multispectral Images Based on Registration Noise Distribution", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2015.2445632" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84941218087" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2014.2363548", "name": "Building change detection in multitemporal very high resolution SAR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2014.2363548" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84921032920" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2014.2321277", "name": "Hierarchical unsupervised change detection in multitemporal hyperspectral images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84906782734" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2014.2321277" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2015.2396686", "name": "Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84925121216" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2015.2396686" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2014.6946631", "name": "A novel circular approach to change detection in pair of images extracted from image time series", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84911396125" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2014.6946631" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2014.6946706", "name": "A novel neural approach for unsupervised change detection using SOM clustering for pseudo-training set selection followed by CSOM classifier", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84911401280" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2014.6946706" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2014.6947531", "name": "A novel sequential spectral change vector analysis for representing and detecting multiple changes in hyperspectral images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84911408889" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2014.6947531" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.2068171", "name": "Change detection in Very High Resolution multisensor optical images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.2068171" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923039912" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2014.2330808", "name": "Concurrent self-organizing maps for supervised/unsupervised change detection in remote sensing images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2014.2330808" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84908018605" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2014.6946668", "name": "Detection of specific changes in image time series by an adaptive change vector analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2014.6946668" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84911440557" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2014.6946945", "name": "Rapid and accurate damage detection in built-up areas combining stripmap and spotlight SAR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2014.6946945" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84911441701" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.optlastec.2013.10.003", "name": "Spatio-contextual fuzzy clustering with Markov random field model for change detection in remotely sensed images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.optlastec.2013.10.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84888291051" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2013.6723575", "name": "A 4-dimensional approach to image time series visualization and analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2013.6723575" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84894280066" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2012.2223219", "name": "A hierarchical approach to change detection in very high resolution SAR images for surveillance applications", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2012.2223219" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84875743687" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jproc.2012.2197169", "name": "A novel framework for the design of change-detection systems for very-high-resolution remote sensing images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84874545870" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jproc.2012.2197169" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2013.6721285", "name": "A novel hierarchical method for change detection in multitemporal hyperspectral images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84894230540" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2013.6721285" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2013.6723199", "name": "A novel multitemporal detector for primitive extraction from VHR SAR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84894228934" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2013.6723199" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2012.2222340", "name": "Change detection in VHR images based on morphological attribute profiles", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873988083" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2012.2222340" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tip.2013.2259838", "name": "Classification of time series of multispectral images with limited training data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tip.2013.2259838" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879064950" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2013.6723569", "name": "Detection of changed buildings in multitemporal Very High Resolution SAR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2013.6723569" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84894227862" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2013.2251802", "name": "Introduction to the special issue on analysis of multitemporal remote sensing data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2013.2251802" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84875681758" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2013.6723686", "name": "RIME: Radar for Icy moon Exploration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2013.6723686" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84894277122" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2013.6723696", "name": "Sequential cascade classification of image time series by exploiting multiple pairwise change detection", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2013.6723696" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84894226133" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2012.2195727", "name": "Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84871725096" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2012.2195727" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2011.2171493", "name": "A framework for automatic and unsupervised detection of multiple changes in Multitemporal Images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84861340870" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2011.2171493" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.974661", "name": "A novel approach to building change detection in very high resolution SAR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84875642669" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.974661" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2011.2174154", "name": "A novel domain adaptation bayesian classifier for updating land-cover maps with class differences in source and target domains", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2011.2174154" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84862996106" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2012.6351110", "name": "A novel hierarchical approach to change detection with very high resolution SAR images for surveillance applications", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2012.6351110" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873186794" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2012.6351613", "name": "A novel system for classification of image time series with limited ground reference data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2012.6351613" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873120912" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2011.2168534", "name": "Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2011.2168534" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84860338492" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2012.6352359", "name": "Development and validation of multitemporal image analysis methodologies for multirisk monitoring of critical structures and infrastructures", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873207889" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2012.6352359" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2012.6351934", "name": "Discovering single classes in remote sensing images with active learning", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873153002" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2012.6351934" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tywrrs.2012.6381123", "name": "Freight traffic surveillance in VHR SAR images by multiscale information extraction", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tywrrs.2012.6381123" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84872028779" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/siu.2012.6204814", "name": "Low-cost updating of land-cover maps by classifiying multitemporal remote sensing images | Arazi-\u00f6rt\u00fcs\u00fc haritalarinin \u00e7ok zamanli uzaktan algilama g\u00f6r\u00fcnt\u00fclerini siniflandirarak d\u00fc\u015f\u00fck maliyetli g\u00fcncellenmesi", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84863474814" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/siu.2012.6204814" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jag.2011.10.013", "name": "Supervised change detection in VHR images using contextual information and support vector machines", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jag.2011.10.013" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84863479380" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2012.6350981", "name": "Target-driven change detection based on data transformation and similarity measures", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873113068" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2012.6350981" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/whispers.2012.6874245", "name": "Unsupervised hierarchical spectral analysis for change detection in hyperspectral images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/whispers.2012.6874245" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84906539411" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.898596", "name": "A change-detection-driven approach to active transfer learning for classification of image time series", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-81755167004" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.898596" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/multi-temp.2011.6005034", "name": "A multilevel approach to change detection for port surveillance with very high resolution SAR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/multi-temp.2011.6005034" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80053129947" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2011.6048934", "name": "A semantic-based multilevel approach to change detection in very high geometrical resolution multitemporal images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2011.6048934" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80955172174" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/multi-temp.2011.6005047", "name": "Active-learning based cascade classification of multitemporal images for updating land-cover maps", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80053116814" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/multi-temp.2011.6005047" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2011.6048935", "name": "An adaptive thresholding approach to multiple-change detection in multispectral images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2011.6048935" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80955145072" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/siu.2011.5929851", "name": "Detection of land-cover transitions in multitemporal images with a joint entropy based active-learning method | \u00c7ok zamanli g\u00f6r\u00fcnt\u00fclerde arazi-\u00f6rt\u00fcs\u00fc de\u01e7i\u015fimlerinin birle\u015fik entropi temelli bir aktif-\u00f6\u01e7renme y\u00f6ntemi ile algilanmasi", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79960392931" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/siu.2011.5929851" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2011.6048933", "name": "Detection of land-cover transitions in multitemporal images with active-learning based compound classification", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2011.6048933" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80955164733" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.bandl.2010.09.013", "name": "EEG decoding of semantic category reveals distributed representations for single concepts", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.bandl.2010.09.013" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79953744160" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/multi-temp.2011.6005030", "name": "Welcome message", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/multi-temp.2011.6005030" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80053114054" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2010.5653930", "name": "A conceptual framework for change detection in very high resolution remote sensing images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2010.5653930" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78650921974" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tip.2010.2045070", "name": "A context-sensitive technique robust to registration noise for change detection in VHR multispectral images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tip.2010.2045070" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77953718575" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2010.5652646", "name": "A nearly lossless 2D representation and characterization of change information in multispectral images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78650868348" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2010.5652646" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.866031", "name": "A novel approach to land-cover maps updating in complex scenarios based on multitemporal remote sensing images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78649722889" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.866031" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tip.2010.2051632", "name": "A novel technique for subpixel image classification based on support vector machine", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tip.2010.2051632" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78049290930" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.patrec.2009.07.002", "name": "A support vector domain method for change detection in multitemporal images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.patrec.2009.07.002" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77953132953" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.866032", "name": "An automatic approach to the unsupervised detection of multiple changes in multispectral images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.866032" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78649744388" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2009.2029248", "name": "Analysis of the effects of pansharpening in change detection on VHR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2009.2029248" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-75449087192" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2010.2045764", "name": "Semisupervised one-class support vector machines for classification of remote sensing data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2010.2045764" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954757586" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.866178", "name": "Study on the capabilities of morphological attribute profiles in change detection on VHR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.866178" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78649752487" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2008.2007429", "name": "A multilevel parcel-based approach to change detection in very high resolution multitemporal images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2008.2007429" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-58149483518" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2009.5417492", "name": "An adaptive multiscale random field technique for unsupervised change detection in VHR multitemporal images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2009.5417492" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77951269144" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2009.2017014", "name": "Analysis and adaptive estimation of the registration noise distribution in multitemporal VHR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-67949102000" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2009.2017014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/mlsp.2009.5306259", "name": "Supervised change detection in VHR images: A comparative analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/mlsp.2009.5306259" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77950956433" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2007.905119", "name": "A context-sensitive clustering technique based on graph-cut initialization and expectation-maximization algorithm", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-38349123042" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2007.905119" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2008.4779305", "name": "A context-sensitive technique robust to registration noise for change detection in very high resolution multispectral images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-67649826087" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2008.4779305" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2008.916643", "name": "A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2008.916643" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-45849126857" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2008.4779307", "name": "An adaptive technique based on similarity measures for change detection in very high resolution sar images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-67649763869" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2008.4779307" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.801672", "name": "An approach to change detection in time series of SAR images based on multitemporal similarity measures", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-57649140576" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.801672" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tbme.2008.923155", "name": "An automatic system for the analysis and classification of human atrial fibrillation patterns from intracardiac electrograms", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-50049125463" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tbme.2008.923155" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2008.917726", "name": "An unsupervised technique based on morphological filters for change detection in very high resolution images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-47849131596" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2008.917726" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2007.912445", "name": "Multidimensional probability density function matching for preprocessing of multitemporal remote sensing images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2007.912445" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-41549149985" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2007.895835", "name": "A Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2007.895835" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34249812110" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2006.888861", "name": "A context-sensitive technique for unsupervised change detection based on hopfield-type neural networks", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33847695328" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2006.888861" } ] }, { "@type": "CreativeWork", "name": "A multiscale change detection technique robust to registration noise", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-38149066754" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/multitemp.2007.4293035", "name": "A multiscale technique for reducing registration noise in change detection on multitemporal VHR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/multitemp.2007.4293035" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-47249155303" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2006.885408", "name": "A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33846223394" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2006.885408" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.739223", "name": "An adaptive parcel-based technique robust to registration noise for change detection in multitemporal VHR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-42449118445" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.739223" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2007.4423318", "name": "An unsupervised change detection technique based on bayesian initialization and semisupervised SVM", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-82355161179" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2007.4423318" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.737764", "name": "An unsupervised support vector method for change detection", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.737764" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-42449130099" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1049/el:20072428", "name": "Automatic selection of frequency and time intervals for classification of EEG signals", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-36949036886" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1049/el:20072428" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2006.646", "name": "A novel context-sensitive SVM for classification of remote sensing images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34948836126" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2006.646" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2006.102", "name": "A novel theoretical framework for unsupervised change detection based on CVA in polar domain", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2006.102" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34948850241" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.690710", "name": "A split-based approach to unsupervised change detection in large-size SAR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.690710" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33751399252" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/11590316_36", "name": "A context-sensitive technique based on support vector machines for image classification", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33646751287" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/11590316_36" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2005.857987", "name": "A detail-preserving scale-driven approach to change detection in multitemporal SAR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-29044447323" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2005.857987" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2005.1526442", "name": "A multilevel parcel-based approach to change detection in very high resolution multitemporal images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2005.1526442" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33745726918" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/amtrsi.2005.1469846", "name": "A wavelet-based change-detection technique for multitemporal SAR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33745231162" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/amtrsi.2005.1469846" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/icip.2005.1529838", "name": "An adaptive multiscale approach to unsupervised change detection in multitemporal SAR images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/icip.2005.1529838" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33749605486" } ] } ] }, "identifier": [ { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "9943212600" }, { "@type": "PropertyValue", "propertyID": "ResearcherID", "value": "R-7491-2017" } ] }
}