Item talk:Q140776

From geokb

{

 "OpenAlex": {
   "id": "https://openalex.org/A5087668203",
   "orcid": "https://orcid.org/0000-0003-3104-7656",
   "display_name": "Francesca Bovolo",
   "display_name_alternatives": [
     "Francesca Bovolo",
     "F. Bovolo",
     "Bovolo Francesca"
   ],
   "works_count": 298,
   "cited_by_count": 8579,
   "summary_stats": {
     "2yr_mean_citedness": 5.066666666666666,
     "h_index": 49,
     "i10_index": 118
   },
   "ids": {
     "openalex": "https://openalex.org/A5087668203",
     "orcid": "https://orcid.org/0000-0003-3104-7656",
     "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=9943212600&partnerID=MN8TOARS"
   },
   "affiliations": [
     {
       "institution": {
         "id": "https://openalex.org/I2277624104",
         "ror": "https://ror.org/01j33xk10",
         "display_name": "Fondazione Bruno Kessler",
         "country_code": "IT",
         "type": "facility",
         "lineage": [
           "https://openalex.org/I2277624104"
         ]
       },
       "years": [
         2024,
         2023,
         2022,
         2021,
         2020,
         2019,
         2018,
         2017,
         2016,
         2015
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I193223587",
         "ror": "https://ror.org/05trd4x28",
         "display_name": "University of Trento",
         "country_code": "IT",
         "type": "education",
         "lineage": [
           "https://openalex.org/I193223587"
         ]
       },
       "years": [
         2023,
         2022,
         2021,
         2019,
         2016,
         2014,
         2013,
         2012,
         2011,
         2010
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I1286329397",
         "ror": "https://ror.org/035a68863",
         "display_name": "United States Geological Survey",
         "country_code": "US",
         "type": "government",
         "lineage": [
           "https://openalex.org/I1286329397",
           "https://openalex.org/I1335927249"
         ]
       },
       "years": [
         2022
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I62916508",
         "ror": "https://ror.org/02kkvpp62",
         "display_name": "Technical University of Munich",
         "country_code": "DE",
         "type": "education",
         "lineage": [
           "https://openalex.org/I62916508"
         ]
       },
       "years": [
         2022
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I1289461252",
         "ror": "https://ror.org/00cwrns71",
         "display_name": "Indian Space Research Organisation",
         "country_code": "IN",
         "type": "government",
         "lineage": [
           "https://openalex.org/I1289461252",
           "https://openalex.org/I3148377317"
         ]
       },
       "years": [
         2021
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I4210142152",
         "ror": "https://ror.org/04fa4r544",
         "display_name": "ORCID",
         "country_code": "US",
         "type": "nonprofit",
         "lineage": [
           "https://openalex.org/I4210142152"
         ]
       },
       "years": [
         2020
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I4210133125",
         "ror": "https://ror.org/033y26782",
         "display_name": "Mitsubishi Electric (Japan)",
         "country_code": "JP",
         "type": "company",
         "lineage": [
           "https://openalex.org/I1306287861",
           "https://openalex.org/I4210133125"
         ]
       },
       "years": [
         2019
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I20529979",
         "ror": "https://ror.org/02x73b849",
         "display_name": "University of Electro-Communications",
         "country_code": "JP",
         "type": "education",
         "lineage": [
           "https://openalex.org/I20529979"
         ]
       },
       "years": [
         2019
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I201537933",
         "ror": "https://ror.org/01dq60k83",
         "display_name": "Tohoku University",
         "country_code": "JP",
         "type": "education",
         "lineage": [
           "https://openalex.org/I201537933"
         ]
       },
       "years": [
         2019
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I165522056",
         "ror": "https://ror.org/01pa62v70",
         "display_name": "Tokyo Denki University",
         "country_code": "JP",
         "type": "education",
         "lineage": [
           "https://openalex.org/I165522056"
         ]
       },
       "years": [
         2019
       ]
     }
   ],
   "last_known_institutions": [
     {
       "id": "https://openalex.org/I2277624104",
       "ror": "https://ror.org/01j33xk10",
       "display_name": "Fondazione Bruno Kessler",
       "country_code": "IT",
       "type": "facility",
       "lineage": [
         "https://openalex.org/I2277624104"
       ]
     }
   ],
   "topics": [
     {
       "id": "https://openalex.org/T10689",
       "display_name": "Hyperspectral Image Analysis and Classification",
       "count": 168,
       "subfield": {
         "id": "https://openalex.org/subfields/2214",
         "display_name": "Media Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13890",
       "display_name": "Applications of Remote Sensing in Geoscience and Agriculture",
       "count": 101,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10111",
       "display_name": "Remote Sensing in Vegetation Monitoring and Phenology",
       "count": 85,
       "subfield": {
         "id": "https://openalex.org/subfields/2303",
         "display_name": "Ecology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11659",
       "display_name": "Multispectral and Hyperspectral Image Fusion",
       "count": 28,
       "subfield": {
         "id": "https://openalex.org/subfields/2214",
         "display_name": "Media Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11164",
       "display_name": "Mapping Forests with Lidar Remote Sensing",
       "count": 24,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12157",
       "display_name": "Machine Learning for Mineral Prospectivity Mapping",
       "count": 23,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10801",
       "display_name": "Synthetic Aperture Radar Interferometry",
       "count": 21,
       "subfield": {
         "id": "https://openalex.org/subfields/2202",
         "display_name": "Aerospace Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10640",
       "display_name": "Chemometrics in Analytical Chemistry and Food Technology",
       "count": 18,
       "subfield": {
         "id": "https://openalex.org/subfields/1602",
         "display_name": "Analytical Chemistry"
       },
       "field": {
         "id": "https://openalex.org/fields/16",
         "display_name": "Chemistry"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11609",
       "display_name": "Applications of Ground-Penetrating Radar in Geoscience and Engineering",
       "count": 15,
       "subfield": {
         "id": "https://openalex.org/subfields/2212",
         "display_name": "Ocean Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10644",
       "display_name": "Impacts of Climate Change on Glaciers and Water Availability",
       "count": 14,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13282",
       "display_name": "Automatic Road Extraction from Remote Sensing Images",
       "count": 13,
       "subfield": {
         "id": "https://openalex.org/subfields/2212",
         "display_name": "Ocean Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10032",
       "display_name": "Marine Biogeochemistry and Ecosystem Dynamics",
       "count": 12,
       "subfield": {
         "id": "https://openalex.org/subfields/1910",
         "display_name": "Oceanography"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10406",
       "display_name": "Exploration and Study of Mars",
       "count": 12,
       "subfield": {
         "id": "https://openalex.org/subfields/3103",
         "display_name": "Astronomy and Astrophysics"
       },
       "field": {
         "id": "https://openalex.org/fields/31",
         "display_name": "Physics and Astronomy"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10824",
       "display_name": "Shape Matching and Object Recognition",
       "count": 11,
       "subfield": {
         "id": "https://openalex.org/subfields/1707",
         "display_name": "Computer Vision and Pattern Recognition"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10688",
       "display_name": "Image Denoising Techniques and Algorithms",
       "count": 10,
       "subfield": {
         "id": "https://openalex.org/subfields/1707",
         "display_name": "Computer Vision and Pattern Recognition"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10226",
       "display_name": "Global Analysis of Ecosystem Services and Land Use",
       "count": 9,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10627",
       "display_name": "Image Feature Retrieval and Recognition Techniques",
       "count": 9,
       "subfield": {
         "id": "https://openalex.org/subfields/1707",
         "display_name": "Computer Vision and Pattern Recognition"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10535",
       "display_name": "Landslide Hazards and Risk Assessment",
       "count": 9,
       "subfield": {
         "id": "https://openalex.org/subfields/2308",
         "display_name": "Management, Monitoring, Policy and Law"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10052",
       "display_name": "Image Segmentation Techniques",
       "count": 8,
       "subfield": {
         "id": "https://openalex.org/subfields/1707",
         "display_name": "Computer Vision and Pattern Recognition"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11757",
       "display_name": "High-Resolution Seismic Noise Tomography",
       "count": 8,
       "subfield": {
         "id": "https://openalex.org/subfields/1908",
         "display_name": "Geophysics"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10325",
       "display_name": "Formation and Evolution of the Solar System",
       "count": 8,
       "subfield": {
         "id": "https://openalex.org/subfields/3103",
         "display_name": "Astronomy and Astrophysics"
       },
       "field": {
         "id": "https://openalex.org/fields/31",
         "display_name": "Physics and Astronomy"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11880",
       "display_name": "Estimation of Forest Biomass and Carbon Stocks",
       "count": 7,
       "subfield": {
         "id": "https://openalex.org/subfields/2309",
         "display_name": "Nature and Landscape Conservation"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12205",
       "display_name": "Clustering of Time Series Data and Algorithms",
       "count": 6,
       "subfield": {
         "id": "https://openalex.org/subfields/1711",
         "display_name": "Signal Processing"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11512",
       "display_name": "Anomaly Detection in High-Dimensional Data",
       "count": 6,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T14249",
       "display_name": "On-line Monitoring of Wastewater Quality",
       "count": 6,
       "subfield": {
         "id": "https://openalex.org/subfields/2311",
         "display_name": "Industrial and Manufacturing Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "topic_share": [
     {
       "id": "https://openalex.org/T10689",
       "display_name": "Hyperspectral Image Analysis and Classification",
       "value": 0.0014307,
       "subfield": {
         "id": "https://openalex.org/subfields/2214",
         "display_name": "Media Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10111",
       "display_name": "Remote Sensing in Vegetation Monitoring and Phenology",
       "value": 0.0005959,
       "subfield": {
         "id": "https://openalex.org/subfields/2303",
         "display_name": "Ecology"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13282",
       "display_name": "Automatic Road Extraction from Remote Sensing Images",
       "value": 0.0004827,
       "subfield": {
         "id": "https://openalex.org/subfields/2212",
         "display_name": "Ocean Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13890",
       "display_name": "Applications of Remote Sensing in Geoscience and Agriculture",
       "value": 0.000353,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10801",
       "display_name": "Synthetic Aperture Radar Interferometry",
       "value": 0.0003024,
       "subfield": {
         "id": "https://openalex.org/subfields/2202",
         "display_name": "Aerospace Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11659",
       "display_name": "Multispectral and Hyperspectral Image Fusion",
       "value": 0.0002952,
       "subfield": {
         "id": "https://openalex.org/subfields/2214",
         "display_name": "Media Technology"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11164",
       "display_name": "Mapping Forests with Lidar Remote Sensing",
       "value": 0.0001322,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10640",
       "display_name": "Chemometrics in Analytical Chemistry and Food Technology",
       "value": 7.47e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1602",
         "display_name": "Analytical Chemistry"
       },
       "field": {
         "id": "https://openalex.org/fields/16",
         "display_name": "Chemistry"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11609",
       "display_name": "Applications of Ground-Penetrating Radar in Geoscience and Engineering",
       "value": 7.16e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2212",
         "display_name": "Ocean Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12205",
       "display_name": "Clustering of Time Series Data and Algorithms",
       "value": 6.84e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1711",
         "display_name": "Signal Processing"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11819",
       "display_name": "Digital Epidemiology and Disease Surveillance",
       "value": 6.06e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2713",
         "display_name": "Epidemiology"
       },
       "field": {
         "id": "https://openalex.org/fields/27",
         "display_name": "Medicine"
       },
       "domain": {
         "id": "https://openalex.org/domains/4",
         "display_name": "Health Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10824",
       "display_name": "Shape Matching and Object Recognition",
       "value": 5.76e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1707",
         "display_name": "Computer Vision and Pattern Recognition"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10644",
       "display_name": "Impacts of Climate Change on Glaciers and Water Availability",
       "value": 5.49e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12157",
       "display_name": "Machine Learning for Mineral Prospectivity Mapping",
       "value": 5.21e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10032",
       "display_name": "Marine Biogeochemistry and Ecosystem Dynamics",
       "value": 5.17e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1910",
         "display_name": "Oceanography"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10052",
       "display_name": "Image Segmentation Techniques",
       "value": 5.08e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1707",
         "display_name": "Computer Vision and Pattern Recognition"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10226",
       "display_name": "Global Analysis of Ecosystem Services and Land Use",
       "value": 4.55e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2306",
         "display_name": "Global and Planetary Change"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10688",
       "display_name": "Image Denoising Techniques and Algorithms",
       "value": 4.42e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1707",
         "display_name": "Computer Vision and Pattern Recognition"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11038",
       "display_name": "Synthetic Aperture Radar (SAR) Technology and Applications",
       "value": 3.93e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2202",
         "display_name": "Aerospace Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11312",
       "display_name": "Remote Sensing of Soil Moisture",
       "value": 3.9e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10627",
       "display_name": "Image Feature Retrieval and Recognition Techniques",
       "value": 3.78e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1707",
         "display_name": "Computer Vision and Pattern Recognition"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10406",
       "display_name": "Exploration and Study of Mars",
       "value": 3.52e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/3103",
         "display_name": "Astronomy and Astrophysics"
       },
       "field": {
         "id": "https://openalex.org/fields/31",
         "display_name": "Physics and Astronomy"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13018",
       "display_name": "Machine Learning for Earthquake Early Warning Systems",
       "value": 3.48e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11459",
       "display_name": "Arctic Sea Ice Variability and Decline",
       "value": 3.45e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11512",
       "display_name": "Anomaly Detection in High-Dimensional Data",
       "value": 3.33e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "x_concepts": [
     {
       "id": "https://openalex.org/C41008148",
       "wikidata": "https://www.wikidata.org/wiki/Q21198",
       "display_name": "Computer science",
       "level": 0,
       "score": 95.0
     },
     {
       "id": "https://openalex.org/C205649164",
       "wikidata": "https://www.wikidata.org/wiki/Q1071",
       "display_name": "Geography",
       "level": 0,
       "score": 89.3
     },
     {
       "id": "https://openalex.org/C127313418",
       "wikidata": "https://www.wikidata.org/wiki/Q1069",
       "display_name": "Geology",
       "level": 0,
       "score": 88.9
     },
     {
       "id": "https://openalex.org/C62649853",
       "wikidata": "https://www.wikidata.org/wiki/Q199687",
       "display_name": "Remote sensing",
       "level": 1,
       "score": 84.2
     },
     {
       "id": "https://openalex.org/C154945302",
       "wikidata": "https://www.wikidata.org/wiki/Q11660",
       "display_name": "Artificial intelligence",
       "level": 1,
       "score": 81.2
     },
     {
       "id": "https://openalex.org/C31972630",
       "wikidata": "https://www.wikidata.org/wiki/Q844240",
       "display_name": "Computer vision",
       "level": 1,
       "score": 71.5
     },
     {
       "id": "https://openalex.org/C121332964",
       "wikidata": "https://www.wikidata.org/wiki/Q413",
       "display_name": "Physics",
       "level": 0,
       "score": 65.1
     },
     {
       "id": "https://openalex.org/C15744967",
       "wikidata": "https://www.wikidata.org/wiki/Q9418",
       "display_name": "Psychology",
       "level": 0,
       "score": 56.0
     },
     {
       "id": "https://openalex.org/C153180895",
       "wikidata": "https://www.wikidata.org/wiki/Q7148389",
       "display_name": "Pattern recognition (psychology)",
       "level": 2,
       "score": 55.4
     },
     {
       "id": "https://openalex.org/C180747234",
       "wikidata": "https://www.wikidata.org/wiki/Q23373",
       "display_name": "Cognitive psychology",
       "level": 1,
       "score": 55.4
     },
     {
       "id": "https://openalex.org/C33923547",
       "wikidata": "https://www.wikidata.org/wiki/Q395",
       "display_name": "Mathematics",
       "level": 0,
       "score": 51.0
     },
     {
       "id": "https://openalex.org/C127413603",
       "wikidata": "https://www.wikidata.org/wiki/Q11023",
       "display_name": "Engineering",
       "level": 0,
       "score": 43.0
     },
     {
       "id": "https://openalex.org/C203595873",
       "wikidata": "https://www.wikidata.org/wiki/Q25389927",
       "display_name": "Change detection",
       "level": 2,
       "score": 42.6
     },
     {
       "id": "https://openalex.org/C86803240",
       "wikidata": "https://www.wikidata.org/wiki/Q420",
       "display_name": "Biology",
       "level": 0,
       "score": 41.9
     },
     {
       "id": "https://openalex.org/C119857082",
       "wikidata": "https://www.wikidata.org/wiki/Q2539",
       "display_name": "Machine learning",
       "level": 1,
       "score": 41.3
     },
     {
       "id": "https://openalex.org/C120665830",
       "wikidata": "https://www.wikidata.org/wiki/Q14620",
       "display_name": "Optics",
       "level": 1,
       "score": 40.9
     },
     {
       "id": "https://openalex.org/C115961682",
       "wikidata": "https://www.wikidata.org/wiki/Q860623",
       "display_name": "Image (mathematics)",
       "level": 2,
       "score": 31.2
     },
     {
       "id": "https://openalex.org/C105795698",
       "wikidata": "https://www.wikidata.org/wiki/Q12483",
       "display_name": "Statistics",
       "level": 1,
       "score": 29.5
     },
     {
       "id": "https://openalex.org/C146978453",
       "wikidata": "https://www.wikidata.org/wiki/Q3798668",
       "display_name": "Aerospace engineering",
       "level": 1,
       "score": 26.8
     },
     {
       "id": "https://openalex.org/C62520636",
       "wikidata": "https://www.wikidata.org/wiki/Q944",
       "display_name": "Quantum mechanics",
       "level": 1,
       "score": 24.5
     },
     {
       "id": "https://openalex.org/C1276947",
       "wikidata": "https://www.wikidata.org/wiki/Q333",
       "display_name": "Astronomy",
       "level": 1,
       "score": 21.8
     },
     {
       "id": "https://openalex.org/C151730666",
       "wikidata": "https://www.wikidata.org/wiki/Q7205",
       "display_name": "Paleontology",
       "level": 1,
       "score": 21.5
     },
     {
       "id": "https://openalex.org/C199360897",
       "wikidata": "https://www.wikidata.org/wiki/Q9143",
       "display_name": "Programming language",
       "level": 1,
       "score": 21.5
     },
     {
       "id": "https://openalex.org/C138885662",
       "wikidata": "https://www.wikidata.org/wiki/Q5891",
       "display_name": "Philosophy",
       "level": 0,
       "score": 21.1
     },
     {
       "id": "https://openalex.org/C76155785",
       "wikidata": "https://www.wikidata.org/wiki/Q418",
       "display_name": "Telecommunications",
       "level": 1,
       "score": 20.1
     }
   ],
   "counts_by_year": [
     {
       "year": 2024,
       "works_count": 11,
       "cited_by_count": 659
     },
     {
       "year": 2023,
       "works_count": 20,
       "cited_by_count": 1188
     },
     {
       "year": 2022,
       "works_count": 30,
       "cited_by_count": 1519
     },
     {
       "year": 2021,
       "works_count": 30,
       "cited_by_count": 1093
     },
     {
       "year": 2020,
       "works_count": 24,
       "cited_by_count": 664
     },
     {
       "year": 2019,
       "works_count": 31,
       "cited_by_count": 670
     },
     {
       "year": 2018,
       "works_count": 15,
       "cited_by_count": 530
     },
     {
       "year": 2017,
       "works_count": 22,
       "cited_by_count": 449
     },
     {
       "year": 2016,
       "works_count": 7,
       "cited_by_count": 447
     },
     {
       "year": 2015,
       "works_count": 18,
       "cited_by_count": 342
     },
     {
       "year": 2014,
       "works_count": 11,
       "cited_by_count": 284
     },
     {
       "year": 2013,
       "works_count": 16,
       "cited_by_count": 267
     },
     {
       "year": 2012,
       "works_count": 13,
       "cited_by_count": 204
     }
   ],
   "works_api_url": "https://api.openalex.org/works?filter=author.id:A5087668203",
   "updated_date": "2024-08-21T05:44:00.564708",
   "created_date": "2023-07-21",
   "_id": "https://openalex.org/A5087668203"
 },
 "ORCID": {
   "@context": "http://schema.org",
   "@type": "Person",
   "@id": "https://orcid.org/0000-0003-3104-7656",
   "mainEntityOfPage": "https://orcid.org/0000-0003-3104-7656",
   "givenName": "Francesca",
   "familyName": "Bovolo",
   "alumniOf": [
     {
       "@type": "Organization",
       "name": "Universit\u00e0 degli Studi di Trento",
       "alternateName": "Dipartimento di Ingegneria e Scienza dell'Informazione",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "201805"
       }
     },
     {
       "@type": "Organization",
       "name": "Universit\u00e0 degli Studi di Trento",
       "alternateName": "Dipartimento di Ingegneria e Scienza dell'Informazione",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "19034"
       }
     }
   ],
   "affiliation": [
     {
       "@type": "Organization",
       "name": "Fondazione Bruno Kessler",
       "alternateName": "Center for Information and Communication Technology",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "18466"
       }
     },
     {
       "@type": "Organization",
       "name": "Universit\u00e0 degli Studi di Trento",
       "alternateName": "Dipartimento di Ingegneria e Scianza dell'Informazione",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "19034"
       }
     }
   ],
   "@reverse": {
     "creator": [
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s11214-024-01089-8",
         "name": "Characterization of the Surfaces and Near-Surface Atmospheres of Ganymede, Europa and Callisto by JUICE",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s11214-024-01089-8"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/mgrs.2024.3383652",
         "name": "2023 GRSS Awards Presented at the IGARSS Night 2023 \u201cSpace and Magic\u201d [Conference Reports]",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/mgrs.2024.3383652"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2024.3359819",
         "name": "Multiannual Change Detection Using a Weakly Supervised 3-D CNN in HR SITS",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/lgrs.2024.3359819"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2024.3431631",
         "name": "Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2024.3431631"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2024.3438465",
         "name": "Multiscale Hierarchical Losses to Preserve Hidden-Layer Features for Unsupervised Change Detection",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2024.3438465"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2024.3378576",
         "name": "Super-Resolution of Radargrams With a Generative Deep Learning Model",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2024.3378576"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs15184639",
         "name": "Remote Sensing and Deep Learning to Understand Noisy OpenStreetMap",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs15184639"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1080/01431161.2023.2255350",
         "name": "Enhancing suspended sediment concentration retrieval by integrating thermal infrared and optical bands of Landsat-8 and machine learning algorithms",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1080/01431161.2023.2255350"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/mgrs.2023.3303685",
         "name": "IGARSS 2023 in Pasadena, California: Impressions of the First Days [Conference Reports]",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/mgrs.2023.3303685"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.36227/techrxiv.23987301",
         "name": "An Unsupervised Framework for Radar Sounder Signal Segmentation Based on Enhanced Self-supervised Transformers",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.36227/techrxiv.23987301"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.36227/techrxiv.23987301.v1",
         "name": "An Unsupervised Framework for Radar Sounder Signal Segmentation Based on Enhanced Self-supervised Transformers",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.36227/techrxiv.23987301.v1"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.ophoto.2023.100031",
         "name": "Towards global scale segmentation with OpenStreetMap and remote sensing",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.ophoto.2023.100031"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2023.3243396",
         "name": "A Dual-Branch Deep Learning Architecture for Multisensor and Multitemporal Remote Sensing Semantic Segmentation",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/jstars.2023.3243396"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2023.3252939",
         "name": "A Weakly Supervised Transfer Learning Approach for Radar Sounder Data Segmentation",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2023.3252939"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2023.3266929",
         "name": "Deep-Learning-Based Retrieval of an Orange Band Sensitive to Cyanobacteria for Landsat-8/9 and Sentinel-2",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/jstars.2023.3266929"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2023.3333811",
         "name": "FMPR-Net: False Matching Point Removal Network for Very-High-Resolution Satellite Image Registration",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2023.3333811"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/mgrs.2022.3222705",
         "name": "Awards Presented at the IGARSS 2022 Banquet [Conference Reports]",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/mgrs.2022.3222705"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs14184596",
         "name": "Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs14184596"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/mgrs.2022.3198313",
         "name": "IGARSS 2022 in Kuala Lumpur, Malaysia: Impressions of the First Days [Conference Reports]",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/mgrs.2022.3198313"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2021.3125773",
         "name": "A Deep Learning Architecture for Semantic Segmentation of Radar Sounder Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2021.3125773"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2021.3081101",
         "name": "A Nonconvex Framework for Sparse Unmixing Incorporating the Group Structure of the Spectral Library",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2021.3081101"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2021.3110280",
         "name": "A System for Burned Area Detection on Multispectral Imagery",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2021.3110280"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2021.3119047",
         "name": "An Approach to the Assessment of Detectability of Subsurface Targets in Polar Ice From Satellite Radar Sounders",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2021.3119047"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2021.3062753",
         "name": "An Unsupervised Fuzzy System for the Automatic Detection of Candidate Lava Tubes in Radar Sounder Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2021.3062753"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2022.3164547",
         "name": "Automatic Large-Scale Precise Mapping and Monitoring of Agricultural Fields at Country Level With Sentinel-2 SITS",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/jstars.2022.3164547"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2020.3043822",
         "name": "Change Detection in Image Time-Series Using Unsupervised LSTM",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/lgrs.2020.3043822"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2021.3067096",
         "name": "Deep Reinforcement Learning for Band Selection in Hyperspectral Image Classification",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2021.3067096"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2022.3200985",
         "name": "Detecting Changes by Learning No Changes: Data-Enclosing-Ball Minimizing Autoencoders for One-Class Change Detection in Multispectral Imagery",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2022.3200985"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2022.3140594",
         "name": "Editorial Foreword to the Special Issue on Recent Advances in Multitemporal Remote-Sensing Data Processing",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/jstars.2022.3140594"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2022.3187179",
         "name": "River Bathymetry Retrieval From Landsat-9 Images Based on Neural Networks and Comparison to SuperDove and Sentinel-2",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/jstars.2022.3187179"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2022.3180761",
         "name": "TransSounder: A Hybrid TransUNet-TransFuse Architectural Framework for Semantic Segmentation of Radar Sounder Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2022.3180761"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2022.3140404",
         "name": "Unsupervised Change Detection Using Convolutional-Autoencoder Multiresolution Features",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2022.3140404"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2022.3163404",
         "name": "Void-Volume-Based Stem Geometric Modeling and Branch-Knot Localization in Terrestrial Laser Scanning Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/jstars.2022.3163404"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/w13223286",
         "name": "Sentinel-2 Reveals Abrupt Increment of Total Suspended Matter While Ever Given Ship Blocked the Suez Canal",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/w13223286"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.36227/techrxiv.16870633",
         "name": "TransSounder: A Hybrid TransUNet-TransFuse Architectural Framework for Semantic Segmentation of Radar Sounder Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.36227/techrxiv.16870633"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.36227/techrxiv.16870633.v1",
         "name": "TransSounder: A Hybrid TransUNet-TransFuse Architectural Framework for Semantic Segmentation of Radar Sounder Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.36227/techrxiv.16870633.v1"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.3390/rs13122381",
         "name": "Inter-Comparison of Methods for Chlorophyll-a Retrieval: Sentinel-2 Time-Series Analysis in Italian Lakes",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.3390/rs13122381"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2020.3012343",
         "name": "A Crown Quantization-Based Approach to Tree-Species Classification Using High-Density Airborne Laser Scanning Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2020.3012343"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2020.2990284",
         "name": "Unsupervised Deep Transfer Learning-Based Change Detection for HR Multispectral Images",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/lgrs.2020.2990284"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2020.2985340",
         "name": "Semisupervised Change Detection Using Graph Convolutional Network",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/lgrs.2020.2985340"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2020.2980429",
         "name": "A Novel Dual-Alternating Direction Method of Multipliers for Spectral Unmixing",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/lgrs.2020.2980429"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2020.3000296",
         "name": "Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2020.3000296"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2021.3119358",
         "name": "A General Framework for Change Detection Using Multimodal Remote Sensing Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/jstars.2021.3119358"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/mgrs.2021.3063465",
         "name": "Change Detection From Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/mgrs.2021.3063465"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/978-3-030-68787-8_42",
         "name": "Self-supervised Pre-training Enhances Change Detection in Sentinel-2 Imagery",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/978-3-030-68787-8_42"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2020.2990640",
         "name": "Unsupervised Deep Joint Segmentation of Multitemporal High-Resolution Images",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2020.2990640"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2019.2958262",
         "name": "An Unsupervised Approach to Change Detection in Built-Up Areas by Multitemporal PolSAR Images",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/lgrs.2019.2958262"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2020.2969026",
         "name": "Snow Cover Estimation Underneath the Clouds Based on Multitemporal Correlation Analysis in Historical Time-Series Imagery",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2020.2969026"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2020.2966865",
         "name": "A Novel Framework Based on Polarimetric Change Vectors for Unsupervised Multiclass Change Detection in Dual-Pol Intensity SAR Images",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2020.2966865"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2019.2953652",
         "name": "A Method for the Analysis of Small Crop Fields in Sentinel-2 Dense Time Series",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2019.2953652"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2020.3026838",
         "name": "An Approach to Unsupervised Detection of Fully and Partially Destroyed Buildings in Multitemporal VHR SAR Images",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/jstars.2020.3026838"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2019.2929422",
         "name": "Distributed Radar Sounder: A Novel Concept for Subsurface Investigations Using Sensors in Formation Flight",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2019.2929422"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2019.2933251",
         "name": "Novel Spectra-Derived Features for Empirical Retrieval of Water Quality Parameters: Demonstrations for OLI, MSI, and OLCI Sensors",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2019.2933251"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2019.2924684",
         "name": "Fast and Robust Matching for Multimodal Remote Sensing Image Registration",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2019.2924684"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2019.2914397",
         "name": "Generation of Homogeneous VHR Time Series by Nonparametric Regression of Multisensor Bitemporal Images",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2019.2914397"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2019.2896385",
         "name": "An Approach to Multiple Change Detection in VHR Optical Images Based on Iterative Clustering and Adaptive Thresholding",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/lgrs.2019.2896385"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2019.2894339",
         "name": "A Novel Change Detection Method for Multitemporal Hyperspectral Images Based on Binary Hyperspectral Change Vectors",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2019.2894339"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/mgrs.2019.2898520",
         "name": "A Review of Change Detection in Multitemporal Hyperspectral Images: Current Techniques, Applications, and Challenges",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/mgrs.2019.2898520"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2018.2886643",
         "name": "Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2018.2886643"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/mgrs.2018.2890023",
         "name": "Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/mgrs.2018.2890023"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2018.2865014",
         "name": "A Local Projection-Based Approach to Individual Tree Detection and 3-D Crown Delineation in Multistoried Coniferous Forests Using High-Density Airborne LiDAR Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2018.2865014"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2018.2854930",
         "name": "Compensating Earth Ionosphere Phase Distortion in Spaceborne VHF Radar Sounders for Subsurface Investigations",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/lgrs.2018.2854930"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2017.2752282",
         "name": "A Novel Technique Based on Deep Learning and a Synthetic Target Database for Classification of Urban Areas in PolSAR Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/jstars.2017.2752282"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2017.2656152",
         "name": "An Internal Crown Geometric Model for Conifer Species Classification With High-Density LiDAR Data",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2017.2656152"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2017.2655941",
         "name": "Segmentation-Based Fine Registration of Very High Resolution Multitemporal Images",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/tgrs.2017.2655941"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2015.2389520",
         "name": "A Novel Graph-Matching-Based Approach for Domain Adaptation in Classification of Remote Sensing Image Pair",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84922758050"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2015.2389520"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2014.2360833",
         "name": "A new self-training-based unsupervised satellite image classification technique using cluster ensemble strategy",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/lgrs.2014.2360833"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84910053472"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2014.2381645",
         "name": "An Adaptive Semisupervised Approach to the Detection of User-Defined Recurrent Changes in Image Time Series",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84921301218"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2014.2381645"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2015.2445632",
         "name": "An Approach to Fine Coregistration between Very High Resolution Multispectral Images Based on Registration Noise Distribution",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2015.2445632"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84941218087"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2014.2363548",
         "name": "Building change detection in multitemporal very high resolution SAR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2014.2363548"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84921032920"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2014.2321277",
         "name": "Hierarchical unsupervised change detection in multitemporal hyperspectral images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84906782734"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2014.2321277"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2015.2396686",
         "name": "Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84925121216"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2015.2396686"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2014.6946631",
         "name": "A novel circular approach to change detection in pair of images extracted from image time series",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84911396125"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2014.6946631"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2014.6946706",
         "name": "A novel neural approach for unsupervised change detection using SOM clustering for pseudo-training set selection followed by CSOM classifier",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84911401280"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2014.6946706"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2014.6947531",
         "name": "A novel sequential spectral change vector analysis for representing and detecting multiple changes in hyperspectral images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84911408889"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2014.6947531"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/12.2068171",
         "name": "Change detection in Very High Resolution multisensor optical images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/12.2068171"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84923039912"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jstars.2014.2330808",
         "name": "Concurrent self-organizing maps for supervised/unsupervised change detection in remote sensing images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/jstars.2014.2330808"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84908018605"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2014.6946668",
         "name": "Detection of specific changes in image time series by an adaptive change vector analysis",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2014.6946668"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84911440557"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2014.6946945",
         "name": "Rapid and accurate damage detection in built-up areas combining stripmap and spotlight SAR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2014.6946945"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84911441701"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.optlastec.2013.10.003",
         "name": "Spatio-contextual fuzzy clustering with Markov random field model for change detection in remotely sensed images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.optlastec.2013.10.003"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84888291051"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2013.6723575",
         "name": "A 4-dimensional approach to image time series visualization and analysis",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2013.6723575"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84894280066"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2012.2223219",
         "name": "A hierarchical approach to change detection in very high resolution SAR images for surveillance applications",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2012.2223219"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84875743687"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/jproc.2012.2197169",
         "name": "A novel framework for the design of change-detection systems for very-high-resolution remote sensing images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84874545870"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/jproc.2012.2197169"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2013.6721285",
         "name": "A novel hierarchical method for change detection in multitemporal hyperspectral images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84894230540"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2013.6721285"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2013.6723199",
         "name": "A novel multitemporal detector for primitive extraction from VHR SAR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84894228934"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2013.6723199"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2012.2222340",
         "name": "Change detection in VHR images based on morphological attribute profiles",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84873988083"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/lgrs.2012.2222340"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tip.2013.2259838",
         "name": "Classification of time series of multispectral images with limited training data",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tip.2013.2259838"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84879064950"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2013.6723569",
         "name": "Detection of changed buildings in multitemporal Very High Resolution SAR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2013.6723569"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84894227862"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2013.2251802",
         "name": "Introduction to the special issue on analysis of multitemporal remote sensing data",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2013.2251802"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84875681758"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2013.6723686",
         "name": "RIME: Radar for Icy moon Exploration",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2013.6723686"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84894277122"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2013.6723696",
         "name": "Sequential cascade classification of image time series by exploiting multiple pairwise change detection",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2013.6723696"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84894226133"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2012.2195727",
         "name": "Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84871725096"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2012.2195727"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2011.2171493",
         "name": "A framework for automatic and unsupervised detection of multiple changes in Multitemporal Images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84861340870"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2011.2171493"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/12.974661",
         "name": "A novel approach to building change detection in very high resolution SAR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84875642669"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/12.974661"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2011.2174154",
         "name": "A novel domain adaptation bayesian classifier for updating land-cover maps with class differences in source and target domains",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2011.2174154"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84862996106"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2012.6351110",
         "name": "A novel hierarchical approach to change detection with very high resolution SAR images for surveillance applications",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2012.6351110"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84873186794"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2012.6351613",
         "name": "A novel system for classification of image time series with limited ground reference data",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2012.6351613"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84873120912"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2011.2168534",
         "name": "Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2011.2168534"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84860338492"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2012.6352359",
         "name": "Development and validation of multitemporal image analysis methodologies for multirisk monitoring of critical structures and infrastructures",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84873207889"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2012.6352359"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2012.6351934",
         "name": "Discovering single classes in remote sensing images with active learning",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84873153002"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2012.6351934"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tywrrs.2012.6381123",
         "name": "Freight traffic surveillance in VHR SAR images by multiscale information extraction",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tywrrs.2012.6381123"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84872028779"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/siu.2012.6204814",
         "name": "Low-cost updating of land-cover maps by classifiying multitemporal remote sensing images | Arazi-\u00f6rt\u00fcs\u00fc haritalarinin \u00e7ok zamanli uzaktan algilama g\u00f6r\u00fcnt\u00fclerini siniflandirarak d\u00fc\u015f\u00fck maliyetli g\u00fcncellenmesi",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84863474814"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/siu.2012.6204814"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jag.2011.10.013",
         "name": "Supervised change detection in VHR images using contextual information and support vector machines",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.jag.2011.10.013"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84863479380"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2012.6350981",
         "name": "Target-driven change detection based on data transformation and similarity measures",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84873113068"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2012.6350981"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/whispers.2012.6874245",
         "name": "Unsupervised hierarchical spectral analysis for change detection in hyperspectral images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/whispers.2012.6874245"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84906539411"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/12.898596",
         "name": "A change-detection-driven approach to active transfer learning for classification of image time series",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-81755167004"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/12.898596"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/multi-temp.2011.6005034",
         "name": "A multilevel approach to change detection for port surveillance with very high resolution SAR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/multi-temp.2011.6005034"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-80053129947"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2011.6048934",
         "name": "A semantic-based multilevel approach to change detection in very high geometrical resolution multitemporal images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2011.6048934"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-80955172174"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/multi-temp.2011.6005047",
         "name": "Active-learning based cascade classification of multitemporal images for updating land-cover maps",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-80053116814"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/multi-temp.2011.6005047"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2011.6048935",
         "name": "An adaptive thresholding approach to multiple-change detection in multispectral images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2011.6048935"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-80955145072"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/siu.2011.5929851",
         "name": "Detection of land-cover transitions in multitemporal images with a joint entropy based active-learning method | \u00c7ok zamanli g\u00f6r\u00fcnt\u00fclerde arazi-\u00f6rt\u00fcs\u00fc de\u01e7i\u015fimlerinin birle\u015fik entropi temelli bir aktif-\u00f6\u01e7renme y\u00f6ntemi ile algilanmasi",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-79960392931"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/siu.2011.5929851"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2011.6048933",
         "name": "Detection of land-cover transitions in multitemporal images with active-learning based compound classification",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2011.6048933"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-80955164733"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.bandl.2010.09.013",
         "name": "EEG decoding of semantic category reveals distributed representations for single concepts",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.bandl.2010.09.013"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-79953744160"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/multi-temp.2011.6005030",
         "name": "Welcome message",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/multi-temp.2011.6005030"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-80053114054"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2010.5653930",
         "name": "A conceptual framework for change detection in very high resolution remote sensing images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2010.5653930"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-78650921974"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tip.2010.2045070",
         "name": "A context-sensitive technique robust to registration noise for change detection in VHR multispectral images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tip.2010.2045070"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-77953718575"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2010.5652646",
         "name": "A nearly lossless 2D representation and characterization of change information in multispectral images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-78650868348"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2010.5652646"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/12.866031",
         "name": "A novel approach to land-cover maps updating in complex scenarios based on multitemporal remote sensing images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-78649722889"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/12.866031"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tip.2010.2051632",
         "name": "A novel technique for subpixel image classification based on support vector machine",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tip.2010.2051632"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-78049290930"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.patrec.2009.07.002",
         "name": "A support vector domain method for change detection in multitemporal images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.patrec.2009.07.002"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-77953132953"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/12.866032",
         "name": "An automatic approach to the unsupervised detection of multiple changes in multispectral images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/12.866032"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-78649744388"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2009.2029248",
         "name": "Analysis of the effects of pansharpening in change detection on VHR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/lgrs.2009.2029248"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-75449087192"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2010.2045764",
         "name": "Semisupervised one-class support vector machines for classification of remote sensing data",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2010.2045764"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-77954757586"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/12.866178",
         "name": "Study on the capabilities of morphological attribute profiles in change detection on VHR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/12.866178"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-78649752487"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2008.2007429",
         "name": "A multilevel parcel-based approach to change detection in very high resolution multitemporal images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/lgrs.2008.2007429"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-58149483518"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2009.5417492",
         "name": "An adaptive multiscale random field technique for unsupervised change detection in VHR multitemporal images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2009.5417492"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-77951269144"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2009.2017014",
         "name": "Analysis and adaptive estimation of the registration noise distribution in multitemporal VHR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-67949102000"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2009.2017014"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/mlsp.2009.5306259",
         "name": "Supervised change detection in VHR images: A comparative analysis",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/mlsp.2009.5306259"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-77950956433"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2007.905119",
         "name": "A context-sensitive clustering technique based on graph-cut initialization and expectation-maximization algorithm",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-38349123042"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/lgrs.2007.905119"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2008.4779305",
         "name": "A context-sensitive technique robust to registration noise for change detection in very high resolution multispectral images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-67649826087"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2008.4779305"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2008.916643",
         "name": "A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2008.916643"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-45849126857"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2008.4779307",
         "name": "An adaptive technique based on similarity measures for change detection in very high resolution sar images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-67649763869"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2008.4779307"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/12.801672",
         "name": "An approach to change detection in time series of SAR images based on multitemporal similarity measures",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-57649140576"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/12.801672"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tbme.2008.923155",
         "name": "An automatic system for the analysis and classification of human atrial fibrillation patterns from intracardiac electrograms",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-50049125463"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tbme.2008.923155"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/lgrs.2008.917726",
         "name": "An unsupervised technique based on morphological filters for change detection in very high resolution images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-47849131596"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/lgrs.2008.917726"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2007.912445",
         "name": "Multidimensional probability density function matching for preprocessing of multitemporal remote sensing images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2007.912445"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-41549149985"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2007.895835",
         "name": "A Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2007.895835"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-34249812110"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2006.888861",
         "name": "A context-sensitive technique for unsupervised change detection based on hopfield-type neural networks",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-33847695328"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2006.888861"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "A multiscale change detection technique robust to registration noise",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "eid",
           "value": "2-s2.0-38149066754"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/multitemp.2007.4293035",
         "name": "A multiscale technique for reducing registration noise in change detection on multitemporal VHR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/multitemp.2007.4293035"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-47249155303"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2006.885408",
         "name": "A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-33846223394"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2006.885408"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/12.739223",
         "name": "An adaptive parcel-based technique robust to registration noise for change detection in multitemporal VHR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-42449118445"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/12.739223"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2007.4423318",
         "name": "An unsupervised change detection technique based on bayesian initialization and semisupervised SVM",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-82355161179"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2007.4423318"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/12.737764",
         "name": "An unsupervised support vector method for change detection",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/12.737764"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-42449130099"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1049/el:20072428",
         "name": "Automatic selection of frequency and time intervals for classification of EEG signals",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-36949036886"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1049/el:20072428"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2006.646",
         "name": "A novel context-sensitive SVM for classification of remote sensing images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-34948836126"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2006.646"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2006.102",
         "name": "A novel theoretical framework for unsupervised change detection based on CVA in polar domain",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2006.102"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-34948850241"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1117/12.690710",
         "name": "A split-based approach to unsupervised change detection in large-size SAR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1117/12.690710"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-33751399252"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/11590316_36",
         "name": "A context-sensitive technique based on support vector machines for image classification",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-33646751287"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1007/11590316_36"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/tgrs.2005.857987",
         "name": "A detail-preserving scale-driven approach to change detection in multitemporal SAR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-29044447323"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/tgrs.2005.857987"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/igarss.2005.1526442",
         "name": "A multilevel parcel-based approach to change detection in very high resolution multitemporal images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/igarss.2005.1526442"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-33745726918"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/amtrsi.2005.1469846",
         "name": "A wavelet-based change-detection technique for multitemporal SAR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-33745231162"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/amtrsi.2005.1469846"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/icip.2005.1529838",
         "name": "An adaptive multiscale approach to unsupervised change detection in multitemporal SAR images",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1109/icip.2005.1529838"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-33749605486"
           }
         ]
       }
     ]
   },
   "identifier": [
     {
       "@type": "PropertyValue",
       "propertyID": "Scopus Author ID",
       "value": "9943212600"
     },
     {
       "@type": "PropertyValue",
       "propertyID": "ResearcherID",
       "value": "R-7491-2017"
     }
   ]
 }

}