Item talk:Q100070
Analysis of the world distribution of metal-rich subsea manganese nodules
Publicly available data on the composition of subsea manganese nodules extend previous reports of differences in average metal contents from ocean to ocean and of variations related to latitude and depth. Pacific Ocean nodules have the highest average manganese, nickel, and copper contents, and Atlantic Ocean nodules have the highest average iron content. The average manganese, nickel, and copper contents generally increase toward the equator in both hemispheres, and iron content generally decreases. The variation of metal content with water depth is not linear; instead, there appears to be a threshold depth of about 2,900 to 3,000 m, above which combined nickel and copper contents are generally less than 1 percent and below which cobalt content is generally less than about 0.6 percent. The composition of the nodules varies widely, but three rarely overlapping types that are of possible economic interest can be recognized. (1) Nodules containing more than about 1 percent combined nickel and copper only exceptionally contain more than 0.5 percent cobalt and 35 percent manganese. (2) Nodules containing more than 0.5 percent cobalt rarely contain more than 1 percent combined nickel and copper and 35 percent manganese. (3) Nodules containing more than 35 percent manganese only exceptionally contain more than 0.5 percent cobalt, although they average nearly 1.1 percent combined nickel and copper. Current economic interest in nodule mining is focused on the Clarion-Clipperton zone in the northeastern equatorial Pacific Ocean, the largest known area in which nodules average 1.8 percent or more combined nickel and copper. Several other areas in which nodules are rich in these metals are found in the Pacific and Indian Oceans and may be viewed as targets for exploration. Nearly 60 chemical elements have been found in manganese nodules, many in concentrations far exceeding their crustal abundances. The amounts in which many minor elements are present vary with the amounts of principal metals present, but the three metal types described above do not include the maximum reported values for several other elements, such as titanium (8.9 percent), vanadium (0.5), zinc (9.0), and lead (0.75). It seems possible, therefore, that there may be other kinds of metal-rich types, some of which may have p6tential economic value. Many of the variations in nodule composition are in large part a function of variations in mineral composition, to which many factors contribute. Some of the regional variations can be broadly related to oceanic circulation, basin morphology, and depth, but a better understanding of ocean processes and regional oceanography and geology is needed to explain all the variations observed in the composition of manganese nodules.