Item talk:Q72538

From geokb
Revision as of 02:29, 30 July 2023 by Sky (talk | contribs) (Added abstract and other texts to publication item's discussion page for reference)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory-Determination of organophosphate pesticides in filtered water by gas chromatography with flame photometric detection

A method for the isolation of 20 parent organophosphate pesticides and 5 pesticide degradates from filtered natural-water samples is described. Seven of these compounds are reported permanently with an estimated concentration because of performance issues. Water samples are filtered to remove suspended particulate matter, and then 1 liter of filtrate is pumped through disposable solid-phase extraction columns that contain octadecyl-bonded porous silica to extract the compounds. The C-18 columns are dried with nitrogen gas, and method compounds are eluted from the columns with ethyl acetate. The extract is analyzed by dual capillary-column gas chromatography with flame photometric detection. Single-operator method detection limits in all three water-matrix samples ranged from 0.004 to 0.012 microgram per liter. Method performance was validated by spiking all compounds into three different matrices at three different concentrations. Eight replicates were analyzed at each concentration level in each matrix. Mean recoveries of method compounds spiked in surface-water samples ranged from 39 to 149 percent and those in ground-water samples ranged from 40 to 124 percent for all pesticides except dimethoate. Mean recoveries of method compounds spiked in reagent-water samples ranged from 41 to 119 percent for all pesticides except dimethoate. Dimethoate exhibited reduced recoveries (mean of 43 percent in low- and medium-concentration level spiked samples and 20 percent in high-concentration level spiked samples) in all matrices because of incomplete collection on the C-18 column. As a result, concen-trations of dimethoate and six other compounds (based on performance issues) in samples are reported in this method with an estimated remark code.