Item talk:Q44512

From geokb
Revision as of 16:51, 30 January 2024 by Sky (talk | contribs) (Updated item talk page content)

orcid:

 meta:
   status_code: 200
   timestamp: '2023-10-20T08:42:11.067904'
   url: https://orcid.org/0000-0002-1201-5459
 orcid:
   activities:
     works:
       group:
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs15194894
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs15194894
             external-id-value: 10.3390/rs15194894
         last-modified-date:
           value: 1697242138600
         work-summary:
         - created-date:
             value: 1696873829176
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.3390/rs15194894
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.3390/rs15194894
               external-id-value: 10.3390/rs15194894
           journal-title:
             value: Remote Sensing
           last-modified-date:
             value: 1696873829176
           path: /0000-0002-1201-5459/work/144002947
           publication-date:
             day:
               value: 09
             month:
               value: '10'
             year:
               value: '2023'
           put-code: 144002947
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\
                 \ California\u2019s Water Savings"
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.3390/rs15194894
           visibility: public
         - created-date:
             value: 1697242138600
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.3390/rs15194894
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.3390/rs15194894
               external-id-value: 10.3390/rs15194894
           journal-title:
             value: Remote Sensing
           last-modified-date:
             value: 1697242138600
           path: /0000-0002-1201-5459/work/144390823
           publication-date:
             day: null
             month:
               value: '10'
             year:
               value: '2023'
           put-code: 144390823
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: APP-WRQOUAK78G5F7GMD
               uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
             source-name:
               value: Multidisciplinary Digital Publishing Institute
             source-orcid: null
           title:
             subtitle: null
             title:
               value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\
                 \ California\u2019s Water Savings"
             translated-title: null
           type: journal-article
           url:
             value: https://www.mdpi.com/2072-4292/15/19/4894
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1109/jstars.2022.3204223
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1109/JSTARS.2022.3204223
             external-id-value: 10.1109/JSTARS.2022.3204223
         last-modified-date:
           value: 1663789139405
         work-summary:
         - created-date:
             value: 1662416891548
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1109/jstars.2022.3204223
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1109/JSTARS.2022.3204223
               external-id-value: 10.1109/JSTARS.2022.3204223
           journal-title:
             value: IEEE Journal of Selected Topics in Applied Earth Observations
               and Remote Sensing
           last-modified-date:
             value: 1663789139405
           path: /0000-0002-1201-5459/work/118486022
           publication-date:
             day: null
             month: null
             year:
               value: '2022'
           put-code: 118486022
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: New Generation Hyperspectral Data From DESIS Compared to High
                 Spatial Resolution PlanetScope Data for Crop Type Classification
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1109/JSTARS.2022.3204223
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/17538947.2019.1651912
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1080/17538947.2019.1651912
             external-id-value: 10.1080/17538947.2019.1651912
         last-modified-date:
           value: 1653785800639
         work-summary:
         - created-date:
             value: 1567059364554
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1080/17538947.2019.1651912
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1080/17538947.2019.1651912
               external-id-value: 10.1080/17538947.2019.1651912
           journal-title:
             value: International Journal of Digital Earth
           last-modified-date:
             value: 1653785800639
           path: /0000-0002-1201-5459/work/61031898
           publication-date:
             day:
               value: '02'
             month:
               value: 08
             year:
               value: '2020'
           put-code: 61031898
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: A meta-analysis of global crop water productivity of three
                 leading world crops (wheat, corn, and rice) in the irrigated areas
                 over three decades
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1080/17538947.2019.1651912
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs10122027
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs10122027
             external-id-value: 10.3390/rs10122027
         last-modified-date:
           value: 1653670258289
         work-summary:
         - created-date:
             value: 1545098572555
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.3390/rs10122027
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.3390/rs10122027
               external-id-value: 10.3390/rs10122027
           journal-title:
             value: Remote Sensing
           last-modified-date:
             value: 1653670258289
           path: /0000-0002-1201-5459/work/51757003
           publication-date:
             day: null
             month:
               value: '12'
             year:
               value: '2018'
           put-code: 51757003
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: APP-WRQOUAK78G5F7GMD
               uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
             source-name:
               value: Multidisciplinary Digital Publishing Institute
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Accuracies Achieved in Classifying Five Leading World Crop
                 Types and their Growth Stages Using Optimal Earth Observing-1 Hyperion
                 Hyperspectral Narrowbands on Google Earth Engine
             translated-title: null
           type: journal-article
           url:
             value: http://www.mdpi.com/2072-4292/10/12/2027
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1002/ece3.2876
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1002/ece3.2876
             external-id-value: 10.1002/ece3.2876
         last-modified-date:
           value: 1694969845426
         work-summary:
         - created-date:
             value: 1493088947662
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1002/ece3.2876
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1002/ece3.2876
               external-id-value: 10.1002/ece3.2876
           journal-title:
             value: Ecology and Evolution
           last-modified-date:
             value: 1694969845426
           path: /0000-0002-1201-5459/work/32121770
           publication-date:
             day: null
             month:
               value: '05'
             year:
               value: '2017'
           put-code: 32121770
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: "Correlating species and spectral diversities using hyperspectral\
                 \ remote sensing in early\u2010successional fields"
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1002/ece3.2876
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/01431161.2016.1259682
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url: null
             external-id-value: 10.1080/01431161.2016.1259682
         last-modified-date:
           value: 1653495522174
         work-summary:
         - created-date:
             value: 1493137923542
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1080/01431161.2016.1259682
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url: null
               external-id-value: 10.1080/01431161.2016.1259682
           journal-title:
             value: International Journal of Remote Sensing
           last-modified-date:
             value: 1653495522174
           path: /0000-0002-1201-5459/work/32141180
           publication-date:
             day: null
             month:
               value: '11'
             year:
               value: '2016'
           put-code: 32141180
           source:
             assertion-origin-client-id: null
             assertion-origin-name:
               value: Itiya Aneece
             assertion-origin-orcid:
               host: orcid.org
               path: 0000-0002-1201-5459
               uri: https://orcid.org/0000-0002-1201-5459
             source-client-id:
               host: orcid.org
               path: 0000-0002-3054-1567
               uri: https://orcid.org/client/0000-0002-3054-1567
             source-name:
               value: Crossref Metadata Search
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Identifying invasive plant species using field spectroscopy
                 in the VNIR region in successional systems of north-central Virginia
             translated-title: null
           type: journal-article
           url: null
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/00091383.2016.1198186
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url: null
             external-id-value: 10.1080/00091383.2016.1198186
         last-modified-date:
           value: 1653495521648
         work-summary:
         - created-date:
             value: 1493137885069
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1080/00091383.2016.1198186
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url: null
               external-id-value: 10.1080/00091383.2016.1198186
           journal-title:
             value: 'Change: The Magazine of Higher Learning'
           last-modified-date:
             value: 1653495521648
           path: /0000-0002-1201-5459/work/32141087
           publication-date:
             day:
               value: '03'
             month:
               value: '07'
             year:
               value: '2016'
           put-code: 32141087
           source:
             assertion-origin-client-id: null
             assertion-origin-name:
               value: Itiya Aneece
             assertion-origin-orcid:
               host: orcid.org
               path: 0000-0002-1201-5459
               uri: https://orcid.org/0000-0002-1201-5459
             source-client-id:
               host: orcid.org
               path: 0000-0002-3054-1567
               uri: https://orcid.org/client/0000-0002-3054-1567
             source-name:
               value: Crossref Metadata Search
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Does the Document Matter? The Evolving Role of Syllabi in Higher
                 Education
             translated-title: null
           type: journal-article
           url: null
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs71215850
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url: null
             external-id-value: 10.3390/rs71215850
         last-modified-date:
           value: 1653495522052
         work-summary:
         - created-date:
             value: 1493137919087
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.3390/rs71215850
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url: null
               external-id-value: 10.3390/rs71215850
           journal-title:
             value: Remote Sensing
           last-modified-date:
             value: 1653495522052
           path: /0000-0002-1201-5459/work/32141160
           publication-date:
             day: null
             month: null
             year:
               value: '2015'
           put-code: 32141160
           source:
             assertion-origin-client-id: null
             assertion-origin-name:
               value: Itiya Aneece
             assertion-origin-orcid:
               host: orcid.org
               path: 0000-0002-1201-5459
               uri: https://orcid.org/0000-0002-1201-5459
             source-client-id:
               host: orcid.org
               path: 0000-0002-3054-1567
               uri: https://orcid.org/client/0000-0002-3054-1567
             source-name:
               value: Crossref Metadata Search
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Distinguishing Early Successional Plant Communities Using Ground-Level
                 Hyperspectral Data
             translated-title: null
           type: journal-article
           url: null
           visibility: public
       last-modified-date:
         value: 1697242138600
       path: /0000-0002-1201-5459/works
   history:
     claimed: true
     completion-date: null
     creation-method: MEMBER_REFERRED
     deactivation-date: null
     last-modified-date:
       value: 1697242138593
     source: null
     submission-date:
       value: 1441381610857
     verified-email: true
     verified-primary-email: true
   person:
     name:
       created-date:
         value: 1460757225450
       credit-name: null
       family-name:
         value: Aneece
       given-names:
         value: Itiya
       last-modified-date:
         value: 1460757225450
       path: 0000-0002-1201-5459
       source: null
       visibility: public

usgs_staff_profile:

 meta:
   url: https://www.usgs.gov/staff-profiles/itiya-p-aneece
   timestamp: '2024-01-30T09:51:11.704542'
   status_code: 200
 profile:
   name: Itiya P Aneece
   name_qualifier: null
   titles:
   - Research Geographer
   organizations:
   - !!python/tuple
     - Western Geographic Science Center
     - https://www.usgs.gov/centers/western-geographic-science-center
   email: ianeece@usgs.gov
   orcid: 0000-0002-1201-5459
   intro_statements:
   - Itiya Aneece is currently a Research Geographer at the U.S. Geological Survey
     (USGS) in Flagstaff, AZ, USA.
   expertise_terms:
   - Remote Sensing
   - Crops
   - Invasive Plant Species
   - Big Data Analysis
   - Machine Learning
   - Hyperspectral remote sensing
   - Machine learning and cloud computing
   - Crop water productivity
   professional_experience: []
   education: []
   affiliations: []
   honors: []
   abstracts: []
   personal_statement: At the USGS, she is working with the Western Geographic Science
     Center using hyperspectral and multispectral remote sensing to study globally
     dominant agricultural crops. She is also working on a variety of projects with
     the Astrogeology Science Center. Dr. Aneece earned a PhD in Environmental Sciences
     from the University of Virginia, where she conducted her dissertation research
     on studying the impacts of invasive plant species on secondary successional
     dynamics in abandoned agricultural fields using ground-level hyperspectral remote
     sensing. She has also recently completed a Mendenhall Postdoctoral Fellowship
     within the Western Geographic Science Center, in which she studied crops using
     Hyperion hyperspectral satellite data in Google Earth Engine.