Item talk:Q50221: Difference between revisions

From geokb
(Updated person data cache with ORCID information)
(Updated item talk page content)
Line 476: Line 476:
usgs_staff_profile:
usgs_staff_profile:
   meta:
   meta:
    url: https://www.usgs.gov/staff-profiles/ashton-wiens
    timestamp: '2024-01-30T18:54:57.514012'
     status_code: 200
     status_code: 200
    timestamp: '2023-09-30T17:37:37.031206'
    url: https://www.usgs.gov/staff-profiles/ashton-wiens
   profile:
   profile:
     abstracts: []
     name: Ashton Wiens, Ph.D.
     affiliations: []
     name_qualifier: null
     education:
     titles:
     - University of Colorado; MS and PhD in applied mathematics, 2015-2020
     - Mathematical Statistician
    - University of Kansas; BS in mathematics, 2011-2015
    organizations:
    - !!python/tuple
      - Geology, Energy & Minerals Science Center
      - https://www.usgs.gov/centers/geology-energy-and-minerals-science-center
     email: awiens@usgs.gov
     email: awiens@usgs.gov
    orcid: 0000-0002-7030-0602
    intro_statements:
    - Ashton Wiens is a Mathematical Statistician with the USGS Geology, Energy &
      Minerals (GEM) Science Center in Reston, VA.
     expertise_terms:
     expertise_terms:
     - Spatial statistics
     - Spatial statistics
Line 491: Line 498:
     - Applied mathematics
     - Applied mathematics
     - Population dynamics
     - Population dynamics
    professional_experience:
    - "USGS, Ecosystems mission area, Upper Midwest Environmental Sciences Center\
      \ (UMESC) Ecological sciences branch, 2020 \u2013 Present"
    - NCAR, Institute for Mathematics Applied to the Geosciences 2018-2020
    - University of Colorado, Boulder; Graduate research assistant 2017-2020
    education:
    - University of Colorado; MS and PhD in applied mathematics, 2015-2020
    - University of Kansas; BS in mathematics, 2011-2015
    affiliations: []
     honors: []
     honors: []
     intro_statements:
     abstracts: []
    - Ashton Wiens is a Mathematical Statistician with the USGS Geology, Energy &
      Minerals (GEM) Science Center in Reston, VA.
    name: Ashton Wiens, Ph.D.
    name_qualifier: null
    orcid: 0000-0002-7030-0602
    organization_link: https://www.usgs.gov/centers/geology-energy-and-minerals-science-center
    organization_name: Geology, Energy & Minerals Science Center
     personal_statement: My present research in population ecology includes time series
     personal_statement: My present research in population ecology includes time series
       analysis using demographic and phenology modeling, population viability analysis,
       analysis using demographic and phenology modeling, population viability analysis,
       and the development of decision support tools. I serve as a lead analyst for
       and the development of decision support tools. I serve as a lead analyst for
       the North American Bat Monitoring Program (NABat).
       the North American Bat Monitoring Program (NABat).
    professional_experience:
    - "USGS, Ecosystems mission area, Upper Midwest Environmental Sciences Center\
      \ (UMESC) Ecological sciences branch, 2020 \u2013 Present"
    - NCAR, Institute for Mathematics Applied to the Geosciences 2018-2020
    - University of Colorado, Boulder; Graduate research assistant 2017-2020
    title: Mathematical Statistician

Revision as of 01:54, 31 January 2024

orcid:

 meta:
   status_code: 200
   timestamp: '2023-10-20T09:24:45.563394'
   url: https://pub.orcid.org/v3.0/0000-0002-7030-0602/record
 orcid:
   activities:
     employments:
       affiliation-group:
       - external-ids:
           external-id: []
         last-modified-date:
           value: 1621022591533
         summaries:
         - employment-summary:
             created-date:
               value: 1621022591533
             department-name: null
             display-index: '1'
             end-date: null
             external-ids: null
             last-modified-date:
               value: 1621022591533
             organization:
               address:
                 city: La Crosse
                 country: US
                 region: Wisconsin
               disambiguated-organization: null
               name: USGS
             path: /0000-0002-7030-0602/employment/14801944
             put-code: 14801944
             role-title: Mathematical Statistician
             source:
               assertion-origin-client-id: null
               assertion-origin-name: null
               assertion-origin-orcid: null
               source-client-id: null
               source-name:
                 value: Ashton Wiens
               source-orcid:
                 host: orcid.org
                 path: 0000-0002-7030-0602
                 uri: https://orcid.org/0000-0002-7030-0602
             start-date: null
             url: null
             visibility: public
       last-modified-date:
         value: 1621022591533
       path: /0000-0002-7030-0602/employments
     works:
       group:
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1002/ece3.9547
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1002/ece3.9547
             external-id-value: 10.1002/ece3.9547
         last-modified-date:
           value: 1669619973853
         work-summary:
         - created-date:
             value: 1669619973853
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1002/ece3.9547
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1002/ece3.9547
               external-id-value: 10.1002/ece3.9547
           journal-title:
             value: Ecology and Evolution
           last-modified-date:
             value: 1669619973853
           path: /0000-0002-7030-0602/work/123652564
           publication-date:
             day: null
             month:
               value: '11'
             year:
               value: '2022'
           put-code: 123652564
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Gaussian process forecasts Pseudogymnoascus destructans will
                 cover coterminous United States by 2030
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1002/ece3.9547
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1111/rssa.12833
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1111/rssa.12833
             external-id-value: 10.1111/rssa.12833
         last-modified-date:
           value: 1660260841236
         work-summary:
         - created-date:
             value: 1648730162249
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1111/rssa.12833
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1111/rssa.12833
               external-id-value: 10.1111/rssa.12833
           journal-title:
             value: 'Journal of the Royal Statistical Society: Series A (Statistics
               in Society)'
           last-modified-date:
             value: 1660260841236
           path: /0000-0002-7030-0602/work/110744795
           publication-date:
             day: null
             month:
               value: '07'
             year:
               value: '2022'
           put-code: 110744795
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: "A modelling strategy to estimate conditional probabilities\
                 \ of African origins: The collapse of the Oyo Empire and the transatlantic\
                 \ slave trade, 1817\u20131836"
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1111/rssa.12833
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1007/s11004-020-09917-7
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1007/s11004-020-09917-7
             external-id-value: 10.1007/s11004-020-09917-7
         last-modified-date:
           value: 1654024971070
         work-summary:
         - created-date:
             value: 1611580045042
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1007/s11004-020-09917-7
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1007/s11004-020-09917-7
               external-id-value: 10.1007/s11004-020-09917-7
           journal-title:
             value: Mathematical Geosciences
           last-modified-date:
             value: 1654024971070
           path: /0000-0002-7030-0602/work/87457057
           publication-date:
             day:
               value: '25'
             month:
               value: 08
             year:
               value: '2021'
           put-code: 87457057
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Nonrigid Registration Using Gaussian Processes and Local Likelihood
                 Estimation
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1007/s11004-020-09917-7
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1002/env.2652
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1002/env.2652
             external-id-value: 10.1002/env.2652
         last-modified-date:
           value: 1693898391411
         work-summary:
         - created-date:
             value: 1597052601058
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1002/env.2652
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1002/env.2652
               external-id-value: 10.1002/env.2652
           journal-title:
             value: Environmetrics
           last-modified-date:
             value: 1693898391411
           path: /0000-0002-7030-0602/work/78578944
           publication-date:
             day: null
             month:
               value: 09
             year:
               value: '2020'
           put-code: 78578944
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: "Modeling spatial data using local likelihood estimation and\
                 \ a Mat\xE9rn to spatial autoregressive translation"
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1002/env.2652
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1007/s11004-019-09802-y
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1007/s11004-019-09802-y
             external-id-value: 10.1007/s11004-019-09802-y
         last-modified-date:
           value: 1653786207821
         work-summary:
         - created-date:
             value: 1567268474510
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1007/s11004-019-09802-y
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1007/s11004-019-09802-y
               external-id-value: 10.1007/s11004-019-09802-y
           journal-title:
             value: Mathematical Geosciences
           last-modified-date:
             value: 1653786207821
           path: /0000-0002-7030-0602/work/61121423
           publication-date:
             day:
               value: '22'
             month:
               value: '05'
             year:
               value: '2020'
           put-code: 61121423
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Surface Estimation for Multiple Misaligned Point Sets
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1007/s11004-019-09802-y
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1016/j.spasta.2018.08.006
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1016/j.spasta.2018.08.006
             external-id-value: 10.1016/j.spasta.2018.08.006
         last-modified-date:
           value: 1653786207807
         work-summary:
         - created-date:
             value: 1567268474317
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1016/j.spasta.2018.08.006
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1016/j.spasta.2018.08.006
               external-id-value: 10.1016/j.spasta.2018.08.006
           journal-title:
             value: Spatial Statistics
           last-modified-date:
             value: 1653786207807
           path: /0000-0002-7030-0602/work/61121422
           publication-date:
             day: null
             month:
               value: '12'
             year:
               value: '2018'
           put-code: 61121422
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Modeling and emulation of nonstationary Gaussian fields
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1016/j.spasta.2018.08.006
           visibility: public
       last-modified-date:
         value: 1693898391411
       path: /0000-0002-7030-0602/works
   history:
     claimed: true
     completion-date: null
     creation-method: DIRECT
     deactivation-date: null
     last-modified-date:
       value: 1693898391245
     source: null
     submission-date:
       value: 1510807640445
     verified-email: true
     verified-primary-email: true
   person:
     addresses:
       address:
       - country:
           value: US
         created-date:
           value: 1621022354252
         display-index: 1
         last-modified-date:
           value: 1621022354252
         path: /0000-0002-7030-0602/address/2089481
         put-code: 2089481
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id: null
           source-name:
             value: Ashton Wiens
           source-orcid:
             host: orcid.org
             path: 0000-0002-7030-0602
             uri: https://orcid.org/0000-0002-7030-0602
         visibility: public
       last-modified-date:
         value: 1621022354252
       path: /0000-0002-7030-0602/address
     name:
       created-date:
         value: 1510807640445
       credit-name: null
       family-name:
         value: Wiens
       given-names:
         value: Ashton
       last-modified-date:
         value: 1510807640665
       path: 0000-0002-7030-0602
       source: null
       visibility: public

usgs_staff_profile:

 meta:
   url: https://www.usgs.gov/staff-profiles/ashton-wiens
   timestamp: '2024-01-30T18:54:57.514012'
   status_code: 200
 profile:
   name: Ashton Wiens, Ph.D.
   name_qualifier: null
   titles:
   - Mathematical Statistician
   organizations:
   - !!python/tuple
     - Geology, Energy & Minerals Science Center
     - https://www.usgs.gov/centers/geology-energy-and-minerals-science-center
   email: awiens@usgs.gov
   orcid: 0000-0002-7030-0602
   intro_statements:
   - Ashton Wiens is a Mathematical Statistician with the USGS Geology, Energy &
     Minerals (GEM) Science Center in Reston, VA.
   expertise_terms:
   - Spatial statistics
   - Geostatistics
   - Applied mathematics
   - Population dynamics
   professional_experience:
   - "USGS, Ecosystems mission area, Upper Midwest Environmental Sciences Center\
     \ (UMESC) Ecological sciences branch, 2020 \u2013 Present"
   - NCAR, Institute for Mathematics Applied to the Geosciences 2018-2020
   - University of Colorado, Boulder; Graduate research assistant 2017-2020
   education:
   - University of Colorado; MS and PhD in applied mathematics, 2015-2020
   - University of Kansas; BS in mathematics, 2011-2015
   affiliations: []
   honors: []
   abstracts: []
   personal_statement: My present research in population ecology includes time series
     analysis using demographic and phenology modeling, population viability analysis,
     and the development of decision support tools. I serve as a lead analyst for
     the North American Bat Monitoring Program (NABat).