Item talk:Q50669: Difference between revisions
From geokb
(Added profile data from https://www.usgs.gov/staff-profiles/prasad-thenkabail) |
(Updated person data cache with ORCID information) |
||
Line 1: | Line 1: | ||
orcid: | |||
activities: | |||
peer-reviews: | |||
group: | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: null | |||
external-id-normalized-error: null | |||
external-id-relationship: null | |||
external-id-type: peer-review | |||
external-id-url: null | |||
external-id-value: issn:2352-9385 | |||
last-modified-date: | |||
value: 1696134743806 | |||
peer-review-group: | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 5991050c-9689-4fd0-9c01-db3be56c9b8c | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: source-work-id | |||
external-id-url: | |||
value: '' | |||
external-id-value: 5991050c-9689-4fd0-9c01-db3be56c9b8c | |||
last-modified-date: | |||
value: 1694406168187 | |||
peer-review-summary: | |||
- completion-date: | |||
day: null | |||
month: null | |||
year: | |||
value: '2023' | |||
convening-organization: | |||
address: | |||
city: New York | |||
country: US | |||
region: NY | |||
disambiguated-organization: | |||
disambiguated-organization-identifier: '5993' | |||
disambiguation-source: RINGGOLD | |||
name: Elsevier, Inc. | |||
created-date: | |||
value: 1694406168187 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 5991050c-9689-4fd0-9c01-db3be56c9b8c | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: source-work-id | |||
external-id-url: | |||
value: '' | |||
external-id-value: 5991050c-9689-4fd0-9c01-db3be56c9b8c | |||
last-modified-date: | |||
value: 1694406168187 | |||
path: /0000-0002-2182-8822/peer-review/10932826 | |||
put-code: 10932826 | |||
review-group-id: issn:2352-9385 | |||
review-type: review | |||
review-url: null | |||
reviewer-role: reviewer | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0002-7423-0090 | |||
uri: https://orcid.org/client/0000-0002-7423-0090 | |||
source-name: | |||
value: 'Elsevier Editorial ' | |||
source-orcid: null | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: daf8484c-7289-4c48-939d-c339cd17b1f8 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: source-work-id | |||
external-id-url: | |||
value: '' | |||
external-id-value: daf8484c-7289-4c48-939d-c339cd17b1f8 | |||
last-modified-date: | |||
value: 1696134743806 | |||
peer-review-summary: | |||
- completion-date: | |||
day: null | |||
month: null | |||
year: | |||
value: '2023' | |||
convening-organization: | |||
address: | |||
city: New York | |||
country: US | |||
region: NY | |||
disambiguated-organization: | |||
disambiguated-organization-identifier: '5993' | |||
disambiguation-source: RINGGOLD | |||
name: Elsevier, Inc. | |||
created-date: | |||
value: 1696134743806 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: daf8484c-7289-4c48-939d-c339cd17b1f8 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: source-work-id | |||
external-id-url: | |||
value: '' | |||
external-id-value: daf8484c-7289-4c48-939d-c339cd17b1f8 | |||
last-modified-date: | |||
value: 1696134743806 | |||
path: /0000-0002-2182-8822/peer-review/11175833 | |||
put-code: 11175833 | |||
review-group-id: issn:2352-9385 | |||
review-type: review | |||
review-url: null | |||
reviewer-role: reviewer | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0002-7423-0090 | |||
uri: https://orcid.org/client/0000-0002-7423-0090 | |||
source-name: | |||
value: 'Elsevier Editorial ' | |||
source-orcid: null | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: null | |||
external-id-normalized-error: null | |||
external-id-relationship: null | |||
external-id-type: peer-review | |||
external-id-url: null | |||
external-id-value: issn:0034-4257 | |||
last-modified-date: | |||
value: 1692418946130 | |||
peer-review-group: | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 2da3d926-de03-442a-aed7-a0fb1f8e2233 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: source-work-id | |||
external-id-url: | |||
value: '' | |||
external-id-value: 2da3d926-de03-442a-aed7-a0fb1f8e2233 | |||
last-modified-date: | |||
value: 1692418946130 | |||
peer-review-summary: | |||
- completion-date: | |||
day: null | |||
month: null | |||
year: | |||
value: '2023' | |||
convening-organization: | |||
address: | |||
city: New York | |||
country: US | |||
region: NY | |||
disambiguated-organization: | |||
disambiguated-organization-identifier: '5993' | |||
disambiguation-source: RINGGOLD | |||
name: Elsevier, Inc. | |||
created-date: | |||
value: 1692418946130 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 2da3d926-de03-442a-aed7-a0fb1f8e2233 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: source-work-id | |||
external-id-url: | |||
value: '' | |||
external-id-value: 2da3d926-de03-442a-aed7-a0fb1f8e2233 | |||
last-modified-date: | |||
value: 1692418946130 | |||
path: /0000-0002-2182-8822/peer-review/10636743 | |||
put-code: 10636743 | |||
review-group-id: issn:0034-4257 | |||
review-type: review | |||
review-url: null | |||
reviewer-role: reviewer | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0002-7423-0090 | |||
uri: https://orcid.org/client/0000-0002-7423-0090 | |||
source-name: | |||
value: 'Elsevier Editorial ' | |||
source-orcid: null | |||
visibility: public | |||
last-modified-date: | |||
value: 1696134743806 | |||
path: /0000-0002-2182-8822/peer-reviews | |||
works: | |||
group: | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs15194894 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs15194894 | |||
external-id-value: 10.3390/rs15194894 | |||
last-modified-date: | |||
value: 1697242138165 | |||
work-summary: | |||
- created-date: | |||
value: 1696882949582 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs15194894 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs15194894 | |||
external-id-value: 10.3390/rs15194894 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1696882949582 | |||
path: /0000-0002-2182-8822/work/144011346 | |||
publication-date: | |||
day: | |||
value: 09 | |||
month: | |||
value: '10' | |||
year: | |||
value: '2023' | |||
put-code: 144011346 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\ | |||
\ California\u2019s Water Savings" | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.3390/rs15194894 | |||
visibility: public | |||
- created-date: | |||
value: 1697242138165 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs15194894 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs15194894 | |||
external-id-value: 10.3390/rs15194894 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1697242138165 | |||
path: /0000-0002-2182-8822/work/144390821 | |||
publication-date: | |||
day: null | |||
month: | |||
value: '10' | |||
year: | |||
value: '2023' | |||
put-code: 144390821 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: APP-WRQOUAK78G5F7GMD | |||
uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD | |||
source-name: | |||
value: Multidisciplinary Digital Publishing Institute | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\ | |||
\ California\u2019s Water Savings" | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://www.mdpi.com/2072-4292/15/19/4894 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs15041017 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs15041017 | |||
external-id-value: 10.3390/rs15041017 | |||
last-modified-date: | |||
value: 1676595953253 | |||
work-summary: | |||
- created-date: | |||
value: 1676281534897 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs15041017 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs15041017 | |||
external-id-value: 10.3390/rs15041017 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1676281534897 | |||
path: /0000-0002-2182-8822/work/128614764 | |||
publication-date: | |||
day: | |||
value: '12' | |||
month: | |||
value: '02' | |||
year: | |||
value: '2023' | |||
put-code: 128614764 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Mapping Vegetation Index-Derived Actual Evapotranspiration across | |||
Croplands Using the Google Earth Engine Platform | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.3390/rs15041017 | |||
visibility: public | |||
- created-date: | |||
value: 1676595953253 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs15041017 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs15041017 | |||
external-id-value: 10.3390/rs15041017 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1676595953253 | |||
path: /0000-0002-2182-8822/work/128961757 | |||
publication-date: | |||
day: null | |||
month: | |||
value: '02' | |||
year: | |||
value: '2023' | |||
put-code: 128961757 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: APP-WRQOUAK78G5F7GMD | |||
uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD | |||
source-name: | |||
value: Multidisciplinary Digital Publishing Institute | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Mapping Vegetation Index-Derived Actual Evapotranspiration across | |||
Croplands Using the Google Earth Engine Platform | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://www.mdpi.com/2072-4292/15/4/1017 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1080/15481603.2022.2088651 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1080/15481603.2022.2088651 | |||
external-id-value: 10.1080/15481603.2022.2088651 | |||
last-modified-date: | |||
value: 1657723274603 | |||
work-summary: | |||
- created-date: | |||
value: 1657723274603 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1080/15481603.2022.2088651 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1080/15481603.2022.2088651 | |||
external-id-value: 10.1080/15481603.2022.2088651 | |||
journal-title: | |||
value: GIScience & Remote Sensing | |||
last-modified-date: | |||
value: 1657723274603 | |||
path: /0000-0002-2182-8822/work/115784484 | |||
publication-date: | |||
day: | |||
value: '31' | |||
month: | |||
value: '12' | |||
year: | |||
value: '2022' | |||
put-code: 115784484 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Multiple agricultural cropland products of South Asia developed | |||
using Landsat-8 30 m and MODIS 250 m data using machine learning on | |||
the Google Earth Engine (GEE) cloud and spectral matching techniques | |||
(SMTs) in support of food and water security | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.1080/15481603.2022.2088651 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3133/ofr20221001 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3133/ofr20221001 | |||
external-id-value: 10.3133/ofr20221001 | |||
last-modified-date: | |||
value: 1654617415748 | |||
work-summary: | |||
- created-date: | |||
value: 1649879426773 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3133/ofr20221001 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3133/ofr20221001 | |||
external-id-value: 10.3133/ofr20221001 | |||
journal-title: null | |||
last-modified-date: | |||
value: 1654617415748 | |||
path: /0000-0002-2182-8822/work/111411967 | |||
publication-date: | |||
day: null | |||
month: null | |||
year: | |||
value: '2022' | |||
put-code: 111411967 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: "Global food-security-support-analysis data at 30-m resolution\ | |||
\ (GFSAD30) cropland-extent products\u2014Download Analysis" | |||
translated-title: null | |||
type: report | |||
url: | |||
value: https://doi.org/10.3133/ofr20221001 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs13224704 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs13224704 | |||
external-id-value: 10.3390/rs13224704 | |||
last-modified-date: | |||
value: 1654165420948 | |||
work-summary: | |||
- created-date: | |||
value: 1637888518472 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs13224704 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs13224704 | |||
external-id-value: 10.3390/rs13224704 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1654163896253 | |||
path: /0000-0002-2182-8822/work/103773347 | |||
publication-date: | |||
day: null | |||
month: | |||
value: '11' | |||
year: | |||
value: '2021' | |||
put-code: 103773347 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: APP-WRQOUAK78G5F7GMD | |||
uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD | |||
source-name: | |||
value: Multidisciplinary Digital Publishing Institute | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Classifying Crop Types Using Two Generations of Hyperspectral | |||
Sensors (Hyperion and DESIS) with Machine Learning on the Cloud | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://www.mdpi.com/2072-4292/13/22/4704 | |||
visibility: public | |||
- created-date: | |||
value: 1638353842888 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs13224704 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs13224704 | |||
external-id-value: 10.3390/rs13224704 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1654165420948 | |||
path: /0000-0002-2182-8822/work/104037871 | |||
publication-date: | |||
day: | |||
value: '21' | |||
month: | |||
value: '11' | |||
year: | |||
value: '2021' | |||
put-code: 104037871 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Classifying Crop Types Using Two Generations of Hyperspectral | |||
Sensors (Hyperion and DESIS) with Machine Learning on the Cloud | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.3390/rs13224704 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3133/pp1868 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3133/pp1868 | |||
external-id-value: 10.3133/pp1868 | |||
last-modified-date: | |||
value: 1654161873473 | |||
work-summary: | |||
- created-date: | |||
value: 1637352786249 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3133/pp1868 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3133/pp1868 | |||
external-id-value: 10.3133/pp1868 | |||
journal-title: null | |||
last-modified-date: | |||
value: 1654161873473 | |||
path: /0000-0002-2182-8822/work/103462916 | |||
publication-date: | |||
day: null | |||
month: null | |||
year: | |||
value: '2021' | |||
put-code: 103462916 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Global cropland-extent product at 30-m resolution (GCEP30) derived | |||
from Landsat satellite time-series data for the year 2015 using multiple | |||
machine-learning algorithms on Google Earth Engine cloud | |||
translated-title: null | |||
type: report | |||
url: | |||
value: https://doi.org/10.3133/pp1868 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1016/j.isprsjprs.2020.06.022 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1016/j.isprsjprs.2020.06.022 | |||
external-id-value: 10.1016/j.isprsjprs.2020.06.022 | |||
last-modified-date: | |||
value: 1653931908071 | |||
work-summary: | |||
- created-date: | |||
value: 1595087749186 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1016/j.isprsjprs.2020.06.022 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1016/j.isprsjprs.2020.06.022 | |||
external-id-value: 10.1016/j.isprsjprs.2020.06.022 | |||
journal-title: | |||
value: ISPRS Journal of Photogrammetry and Remote Sensing | |||
last-modified-date: | |||
value: 1653931908071 | |||
path: /0000-0002-2182-8822/work/77502415 | |||
publication-date: | |||
day: null | |||
month: | |||
value: 09 | |||
year: | |||
value: '2020' | |||
put-code: 77502415 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Mapping croplands of Europe, Middle East, Russia, and Central | |||
Asia using Landsat, Random Forest, and Google Earth Engine | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.1016/j.isprsjprs.2020.06.022 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1080/17538947.2019.1651912 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1080/17538947.2019.1651912 | |||
external-id-value: 10.1080/17538947.2019.1651912 | |||
last-modified-date: | |||
value: 1653785800531 | |||
work-summary: | |||
- created-date: | |||
value: 1567059297352 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1080/17538947.2019.1651912 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1080/17538947.2019.1651912 | |||
external-id-value: 10.1080/17538947.2019.1651912 | |||
journal-title: | |||
value: International Journal of Digital Earth | |||
last-modified-date: | |||
value: 1653785800531 | |||
path: /0000-0002-2182-8822/work/61031875 | |||
publication-date: | |||
day: | |||
value: '02' | |||
month: | |||
value: 08 | |||
year: | |||
value: '2020' | |||
put-code: 61031875 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: A meta-analysis of global crop water productivity of three leading | |||
world crops (wheat, corn, and rice) in the irrigated areas over three | |||
decades | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.1080/17538947.2019.1651912 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1080/15481603.2019.1690780 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1080/15481603.2019.1690780 | |||
external-id-value: 10.1080/15481603.2019.1690780 | |||
last-modified-date: | |||
value: 1653808967548 | |||
work-summary: | |||
- created-date: | |||
value: 1574409970523 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1080/15481603.2019.1690780 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1080/15481603.2019.1690780 | |||
external-id-value: 10.1080/15481603.2019.1690780 | |||
journal-title: | |||
value: GIScience & Remote Sensing | |||
last-modified-date: | |||
value: 1653808967548 | |||
path: /0000-0002-2182-8822/work/64938316 | |||
publication-date: | |||
day: | |||
value: '02' | |||
month: | |||
value: '04' | |||
year: | |||
value: '2020' | |||
put-code: 64938316 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Agricultural cropland extent and areas of South Asia derived | |||
using Landsat satellite 30-m time-series big-data using random forest | |||
machine learning algorithms on the Google Earth Engine cloud | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.1080/15481603.2019.1690780 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs11151790 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs11151790 | |||
external-id-value: 10.3390/rs11151790 | |||
last-modified-date: | |||
value: 1653778176597 | |||
work-summary: | |||
- created-date: | |||
value: 1564590270850 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs11151790 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs11151790 | |||
external-id-value: 10.3390/rs11151790 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1653777470269 | |||
path: /0000-0002-2182-8822/work/60075773 | |||
publication-date: | |||
day: | |||
value: '31' | |||
month: | |||
value: '07' | |||
year: | |||
value: '2019' | |||
put-code: 60075773 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Remote Sensing 10th Anniversary Best Paper Award | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.3390/rs11151790 | |||
visibility: public | |||
- created-date: | |||
value: 1564963344227 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs11151790 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs11151790 | |||
external-id-value: 10.3390/rs11151790 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1653778176597 | |||
path: /0000-0002-2182-8822/work/60207500 | |||
publication-date: | |||
day: null | |||
month: | |||
value: '07' | |||
year: | |||
value: '2019' | |||
put-code: 60207500 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: APP-WRQOUAK78G5F7GMD | |||
uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD | |||
source-name: | |||
value: Multidisciplinary Digital Publishing Institute | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: <i>Remote Sensing</i> 10th Anniversary Best Paper Award | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://www.mdpi.com/2072-4292/11/15/1790 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs11010091 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs11010091 | |||
external-id-value: 10.3390/rs11010091 | |||
last-modified-date: | |||
value: 1653759299557 | |||
work-summary: | |||
- created-date: | |||
value: 1547258644017 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs11010091 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs11010091 | |||
external-id-value: 10.3390/rs11010091 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1653675443514 | |||
path: /0000-0002-2182-8822/work/52548763 | |||
publication-date: | |||
day: null | |||
month: | |||
value: '01' | |||
year: | |||
value: '2019' | |||
put-code: 52548763 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: APP-WRQOUAK78G5F7GMD | |||
uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD | |||
source-name: | |||
value: Multidisciplinary Digital Publishing Institute | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: A Bibliometric Profile of the <i>Remote Sensing Open Access Journal</i> | |||
Published by MDPI between 2009 and 2018 | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: http://www.mdpi.com/2072-4292/11/1/91 | |||
visibility: public | |||
- created-date: | |||
value: 1556291405878 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs11010091 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs11010091 | |||
external-id-value: 10.3390/rs11010091 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1653759299557 | |||
path: /0000-0002-2182-8822/work/56826498 | |||
publication-date: | |||
day: | |||
value: '07' | |||
month: | |||
value: '01' | |||
year: | |||
value: '2019' | |||
put-code: 56826498 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: A Bibliometric Profile of the Remote Sensing Open Access Journal | |||
Published by MDPI between 2009 and 2018 | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.3390/rs11010091 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs10122027 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs10122027 | |||
external-id-value: 10.3390/rs10122027 | |||
last-modified-date: | |||
value: 1653670258295 | |||
work-summary: | |||
- created-date: | |||
value: 1544780479769 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs10122027 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs10122027 | |||
external-id-value: 10.3390/rs10122027 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1653669561586 | |||
path: /0000-0002-2182-8822/work/51660905 | |||
publication-date: | |||
day: | |||
value: '13' | |||
month: | |||
value: '12' | |||
year: | |||
value: '2018' | |||
put-code: 51660905 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Accuracies Achieved in Classifying Five Leading World Crop Types | |||
and their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral | |||
Narrowbands on Google Earth Engine | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.3390/rs10122027 | |||
visibility: public | |||
- created-date: | |||
value: 1545098573258 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3390/rs10122027 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3390/rs10122027 | |||
external-id-value: 10.3390/rs10122027 | |||
journal-title: | |||
value: Remote Sensing | |||
last-modified-date: | |||
value: 1653670258295 | |||
path: /0000-0002-2182-8822/work/51757004 | |||
publication-date: | |||
day: null | |||
month: | |||
value: '12' | |||
year: | |||
value: '2018' | |||
put-code: 51757004 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: APP-WRQOUAK78G5F7GMD | |||
uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD | |||
source-name: | |||
value: Multidisciplinary Digital Publishing Institute | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Accuracies Achieved in Classifying Five Leading World Crop Types | |||
and their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral | |||
Narrowbands on Google Earth Engine | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: http://www.mdpi.com/2072-4292/10/12/2027 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1080/15481603.2018.1482855 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1080/15481603.2018.1482855 | |||
external-id-value: 10.1080/15481603.2018.1482855 | |||
last-modified-date: | |||
value: 1653614921953 | |||
work-summary: | |||
- created-date: | |||
value: 1528278043059 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1080/15481603.2018.1482855 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1080/15481603.2018.1482855 | |||
external-id-value: 10.1080/15481603.2018.1482855 | |||
journal-title: | |||
value: GIScience & Remote Sensing | |||
last-modified-date: | |||
value: 1653614921953 | |||
path: /0000-0002-2182-8822/work/45453145 | |||
publication-date: | |||
day: | |||
value: '02' | |||
month: | |||
value: '11' | |||
year: | |||
value: '2018' | |||
put-code: 45453145 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: Mapping cropland fallow areas in myanmar to scale up sustainable | |||
intensification of pulse crops in the farming system | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.1080/15481603.2018.1482855 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1080/17538947.2016.1267269 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1080/17538947.2016.1267269 | |||
external-id-value: 10.1080/17538947.2016.1267269 | |||
last-modified-date: | |||
value: 1653524417129 | |||
work-summary: | |||
- created-date: | |||
value: 1506303679991 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.1080/17538947.2016.1267269 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.1080/17538947.2016.1267269 | |||
external-id-value: 10.1080/17538947.2016.1267269 | |||
journal-title: | |||
value: International Journal of Digital Earth | |||
last-modified-date: | |||
value: 1653524417129 | |||
path: /0000-0002-2182-8822/work/37080331 | |||
publication-date: | |||
day: | |||
value: '02' | |||
month: | |||
value: 09 | |||
year: | |||
value: '2017' | |||
put-code: 37080331 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: "Spectral matching techniques (SMTs) and automated cropland classification\ | |||
\ algorithms (ACCAs) for mapping croplands of Australia using MODIS\ | |||
\ 250-m time-series (2000\u20132015) data" | |||
translated-title: null | |||
type: journal-article | |||
url: | |||
value: https://doi.org/10.1080/17538947.2016.1267269 | |||
visibility: public | |||
- external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3133/ofr20161038 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3133/ofr20161038 | |||
external-id-value: 10.3133/ofr20161038 | |||
last-modified-date: | |||
value: 1653524417122 | |||
work-summary: | |||
- created-date: | |||
value: 1506303679857 | |||
display-index: '0' | |||
external-ids: | |||
external-id: | |||
- external-id-normalized: | |||
transient: true | |||
value: 10.3133/ofr20161038 | |||
external-id-normalized-error: null | |||
external-id-relationship: self | |||
external-id-type: doi | |||
external-id-url: | |||
value: https://doi.org/10.3133/ofr20161038 | |||
external-id-value: 10.3133/ofr20161038 | |||
journal-title: null | |||
last-modified-date: | |||
value: 1653524417122 | |||
path: /0000-0002-2182-8822/work/37080330 | |||
publication-date: | |||
day: null | |||
month: null | |||
year: | |||
value: '2016' | |||
put-code: 37080330 | |||
source: | |||
assertion-origin-client-id: null | |||
assertion-origin-name: null | |||
assertion-origin-orcid: null | |||
source-client-id: | |||
host: orcid.org | |||
path: 0000-0001-9884-1913 | |||
uri: https://orcid.org/client/0000-0001-9884-1913 | |||
source-name: | |||
value: Crossref | |||
source-orcid: null | |||
title: | |||
subtitle: null | |||
title: | |||
value: A software tool for rapid flood inundation mapping | |||
translated-title: null | |||
type: report | |||
url: | |||
value: https://doi.org/10.3133/ofr20161038 | |||
visibility: public | |||
last-modified-date: | |||
value: 1697242138165 | |||
path: /0000-0002-2182-8822/works | |||
history: | |||
claimed: true | |||
completion-date: null | |||
creation-method: DIRECT | |||
deactivation-date: null | |||
last-modified-date: | |||
value: 1697242138149 | |||
source: null | |||
submission-date: | |||
value: 1466795312431 | |||
verified-email: true | |||
verified-primary-email: true | |||
person: | |||
name: | |||
created-date: | |||
value: 1466795312660 | |||
credit-name: null | |||
family-name: | |||
value: Thenkabail | |||
given-names: | |||
value: Prasad | |||
last-modified-date: | |||
value: 1616534654819 | |||
path: 0000-0002-2182-8822 | |||
source: null | |||
visibility: public | |||
usgs_staff_profile: | usgs_staff_profile: | ||
meta: | meta: |
Revision as of 12:37, 20 October 2023
orcid:
activities: peer-reviews: group: - external-ids: external-id: - external-id-normalized: null external-id-normalized-error: null external-id-relationship: null external-id-type: peer-review external-id-url: null external-id-value: issn:2352-9385 last-modified-date: value: 1696134743806 peer-review-group: - external-ids: external-id: - external-id-normalized: transient: true value: 5991050c-9689-4fd0-9c01-db3be56c9b8c external-id-normalized-error: null external-id-relationship: self external-id-type: source-work-id external-id-url: value: external-id-value: 5991050c-9689-4fd0-9c01-db3be56c9b8c last-modified-date: value: 1694406168187 peer-review-summary: - completion-date: day: null month: null year: value: '2023' convening-organization: address: city: New York country: US region: NY disambiguated-organization: disambiguated-organization-identifier: '5993' disambiguation-source: RINGGOLD name: Elsevier, Inc. created-date: value: 1694406168187 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 5991050c-9689-4fd0-9c01-db3be56c9b8c external-id-normalized-error: null external-id-relationship: self external-id-type: source-work-id external-id-url: value: external-id-value: 5991050c-9689-4fd0-9c01-db3be56c9b8c last-modified-date: value: 1694406168187 path: /0000-0002-2182-8822/peer-review/10932826 put-code: 10932826 review-group-id: issn:2352-9385 review-type: review review-url: null reviewer-role: reviewer source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0002-7423-0090 uri: https://orcid.org/client/0000-0002-7423-0090 source-name: value: 'Elsevier Editorial ' source-orcid: null visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: daf8484c-7289-4c48-939d-c339cd17b1f8 external-id-normalized-error: null external-id-relationship: self external-id-type: source-work-id external-id-url: value: external-id-value: daf8484c-7289-4c48-939d-c339cd17b1f8 last-modified-date: value: 1696134743806 peer-review-summary: - completion-date: day: null month: null year: value: '2023' convening-organization: address: city: New York country: US region: NY disambiguated-organization: disambiguated-organization-identifier: '5993' disambiguation-source: RINGGOLD name: Elsevier, Inc. created-date: value: 1696134743806 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: daf8484c-7289-4c48-939d-c339cd17b1f8 external-id-normalized-error: null external-id-relationship: self external-id-type: source-work-id external-id-url: value: external-id-value: daf8484c-7289-4c48-939d-c339cd17b1f8 last-modified-date: value: 1696134743806 path: /0000-0002-2182-8822/peer-review/11175833 put-code: 11175833 review-group-id: issn:2352-9385 review-type: review review-url: null reviewer-role: reviewer source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0002-7423-0090 uri: https://orcid.org/client/0000-0002-7423-0090 source-name: value: 'Elsevier Editorial ' source-orcid: null visibility: public - external-ids: external-id: - external-id-normalized: null external-id-normalized-error: null external-id-relationship: null external-id-type: peer-review external-id-url: null external-id-value: issn:0034-4257 last-modified-date: value: 1692418946130 peer-review-group: - external-ids: external-id: - external-id-normalized: transient: true value: 2da3d926-de03-442a-aed7-a0fb1f8e2233 external-id-normalized-error: null external-id-relationship: self external-id-type: source-work-id external-id-url: value: external-id-value: 2da3d926-de03-442a-aed7-a0fb1f8e2233 last-modified-date: value: 1692418946130 peer-review-summary: - completion-date: day: null month: null year: value: '2023' convening-organization: address: city: New York country: US region: NY disambiguated-organization: disambiguated-organization-identifier: '5993' disambiguation-source: RINGGOLD name: Elsevier, Inc. created-date: value: 1692418946130 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 2da3d926-de03-442a-aed7-a0fb1f8e2233 external-id-normalized-error: null external-id-relationship: self external-id-type: source-work-id external-id-url: value: external-id-value: 2da3d926-de03-442a-aed7-a0fb1f8e2233 last-modified-date: value: 1692418946130 path: /0000-0002-2182-8822/peer-review/10636743 put-code: 10636743 review-group-id: issn:0034-4257 review-type: review review-url: null reviewer-role: reviewer source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0002-7423-0090 uri: https://orcid.org/client/0000-0002-7423-0090 source-name: value: 'Elsevier Editorial ' source-orcid: null visibility: public last-modified-date: value: 1696134743806 path: /0000-0002-2182-8822/peer-reviews works: group: - external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs15194894 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs15194894 external-id-value: 10.3390/rs15194894 last-modified-date: value: 1697242138165 work-summary: - created-date: value: 1696882949582 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs15194894 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs15194894 external-id-value: 10.3390/rs15194894 journal-title: value: Remote Sensing last-modified-date: value: 1696882949582 path: /0000-0002-2182-8822/work/144011346 publication-date: day: value: 09 month: value: '10' year: value: '2023' put-code: 144011346 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\ \ California\u2019s Water Savings" translated-title: null type: journal-article url: value: https://doi.org/10.3390/rs15194894 visibility: public - created-date: value: 1697242138165 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs15194894 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs15194894 external-id-value: 10.3390/rs15194894 journal-title: value: Remote Sensing last-modified-date: value: 1697242138165 path: /0000-0002-2182-8822/work/144390821 publication-date: day: null month: value: '10' year: value: '2023' put-code: 144390821 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: APP-WRQOUAK78G5F7GMD uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD source-name: value: Multidisciplinary Digital Publishing Institute source-orcid: null title: subtitle: null title: value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\ \ California\u2019s Water Savings" translated-title: null type: journal-article url: value: https://www.mdpi.com/2072-4292/15/19/4894 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs15041017 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs15041017 external-id-value: 10.3390/rs15041017 last-modified-date: value: 1676595953253 work-summary: - created-date: value: 1676281534897 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs15041017 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs15041017 external-id-value: 10.3390/rs15041017 journal-title: value: Remote Sensing last-modified-date: value: 1676281534897 path: /0000-0002-2182-8822/work/128614764 publication-date: day: value: '12' month: value: '02' year: value: '2023' put-code: 128614764 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: Mapping Vegetation Index-Derived Actual Evapotranspiration across Croplands Using the Google Earth Engine Platform translated-title: null type: journal-article url: value: https://doi.org/10.3390/rs15041017 visibility: public - created-date: value: 1676595953253 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs15041017 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs15041017 external-id-value: 10.3390/rs15041017 journal-title: value: Remote Sensing last-modified-date: value: 1676595953253 path: /0000-0002-2182-8822/work/128961757 publication-date: day: null month: value: '02' year: value: '2023' put-code: 128961757 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: APP-WRQOUAK78G5F7GMD uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD source-name: value: Multidisciplinary Digital Publishing Institute source-orcid: null title: subtitle: null title: value: Mapping Vegetation Index-Derived Actual Evapotranspiration across Croplands Using the Google Earth Engine Platform translated-title: null type: journal-article url: value: https://www.mdpi.com/2072-4292/15/4/1017 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.1080/15481603.2022.2088651 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1080/15481603.2022.2088651 external-id-value: 10.1080/15481603.2022.2088651 last-modified-date: value: 1657723274603 work-summary: - created-date: value: 1657723274603 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.1080/15481603.2022.2088651 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1080/15481603.2022.2088651 external-id-value: 10.1080/15481603.2022.2088651 journal-title: value: GIScience & Remote Sensing last-modified-date: value: 1657723274603 path: /0000-0002-2182-8822/work/115784484 publication-date: day: value: '31' month: value: '12' year: value: '2022' put-code: 115784484 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and spectral matching techniques (SMTs) in support of food and water security translated-title: null type: journal-article url: value: https://doi.org/10.1080/15481603.2022.2088651 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.3133/ofr20221001 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3133/ofr20221001 external-id-value: 10.3133/ofr20221001 last-modified-date: value: 1654617415748 work-summary: - created-date: value: 1649879426773 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3133/ofr20221001 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3133/ofr20221001 external-id-value: 10.3133/ofr20221001 journal-title: null last-modified-date: value: 1654617415748 path: /0000-0002-2182-8822/work/111411967 publication-date: day: null month: null year: value: '2022' put-code: 111411967 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: "Global food-security-support-analysis data at 30-m resolution\ \ (GFSAD30) cropland-extent products\u2014Download Analysis" translated-title: null type: report url: value: https://doi.org/10.3133/ofr20221001 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs13224704 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs13224704 external-id-value: 10.3390/rs13224704 last-modified-date: value: 1654165420948 work-summary: - created-date: value: 1637888518472 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs13224704 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs13224704 external-id-value: 10.3390/rs13224704 journal-title: value: Remote Sensing last-modified-date: value: 1654163896253 path: /0000-0002-2182-8822/work/103773347 publication-date: day: null month: value: '11' year: value: '2021' put-code: 103773347 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: APP-WRQOUAK78G5F7GMD uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD source-name: value: Multidisciplinary Digital Publishing Institute source-orcid: null title: subtitle: null title: value: Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud translated-title: null type: journal-article url: value: https://www.mdpi.com/2072-4292/13/22/4704 visibility: public - created-date: value: 1638353842888 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs13224704 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs13224704 external-id-value: 10.3390/rs13224704 journal-title: value: Remote Sensing last-modified-date: value: 1654165420948 path: /0000-0002-2182-8822/work/104037871 publication-date: day: value: '21' month: value: '11' year: value: '2021' put-code: 104037871 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud translated-title: null type: journal-article url: value: https://doi.org/10.3390/rs13224704 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.3133/pp1868 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3133/pp1868 external-id-value: 10.3133/pp1868 last-modified-date: value: 1654161873473 work-summary: - created-date: value: 1637352786249 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3133/pp1868 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3133/pp1868 external-id-value: 10.3133/pp1868 journal-title: null last-modified-date: value: 1654161873473 path: /0000-0002-2182-8822/work/103462916 publication-date: day: null month: null year: value: '2021' put-code: 103462916 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: Global cropland-extent product at 30-m resolution (GCEP30) derived from Landsat satellite time-series data for the year 2015 using multiple machine-learning algorithms on Google Earth Engine cloud translated-title: null type: report url: value: https://doi.org/10.3133/pp1868 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.1016/j.isprsjprs.2020.06.022 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1016/j.isprsjprs.2020.06.022 external-id-value: 10.1016/j.isprsjprs.2020.06.022 last-modified-date: value: 1653931908071 work-summary: - created-date: value: 1595087749186 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.1016/j.isprsjprs.2020.06.022 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1016/j.isprsjprs.2020.06.022 external-id-value: 10.1016/j.isprsjprs.2020.06.022 journal-title: value: ISPRS Journal of Photogrammetry and Remote Sensing last-modified-date: value: 1653931908071 path: /0000-0002-2182-8822/work/77502415 publication-date: day: null month: value: 09 year: value: '2020' put-code: 77502415 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine translated-title: null type: journal-article url: value: https://doi.org/10.1016/j.isprsjprs.2020.06.022 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.1080/17538947.2019.1651912 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1080/17538947.2019.1651912 external-id-value: 10.1080/17538947.2019.1651912 last-modified-date: value: 1653785800531 work-summary: - created-date: value: 1567059297352 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.1080/17538947.2019.1651912 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1080/17538947.2019.1651912 external-id-value: 10.1080/17538947.2019.1651912 journal-title: value: International Journal of Digital Earth last-modified-date: value: 1653785800531 path: /0000-0002-2182-8822/work/61031875 publication-date: day: value: '02' month: value: 08 year: value: '2020' put-code: 61031875 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades translated-title: null type: journal-article url: value: https://doi.org/10.1080/17538947.2019.1651912 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.1080/15481603.2019.1690780 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1080/15481603.2019.1690780 external-id-value: 10.1080/15481603.2019.1690780 last-modified-date: value: 1653808967548 work-summary: - created-date: value: 1574409970523 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.1080/15481603.2019.1690780 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1080/15481603.2019.1690780 external-id-value: 10.1080/15481603.2019.1690780 journal-title: value: GIScience & Remote Sensing last-modified-date: value: 1653808967548 path: /0000-0002-2182-8822/work/64938316 publication-date: day: value: '02' month: value: '04' year: value: '2020' put-code: 64938316 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud translated-title: null type: journal-article url: value: https://doi.org/10.1080/15481603.2019.1690780 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs11151790 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs11151790 external-id-value: 10.3390/rs11151790 last-modified-date: value: 1653778176597 work-summary: - created-date: value: 1564590270850 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs11151790 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs11151790 external-id-value: 10.3390/rs11151790 journal-title: value: Remote Sensing last-modified-date: value: 1653777470269 path: /0000-0002-2182-8822/work/60075773 publication-date: day: value: '31' month: value: '07' year: value: '2019' put-code: 60075773 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: Remote Sensing 10th Anniversary Best Paper Award translated-title: null type: journal-article url: value: https://doi.org/10.3390/rs11151790 visibility: public - created-date: value: 1564963344227 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs11151790 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs11151790 external-id-value: 10.3390/rs11151790 journal-title: value: Remote Sensing last-modified-date: value: 1653778176597 path: /0000-0002-2182-8822/work/60207500 publication-date: day: null month: value: '07' year: value: '2019' put-code: 60207500 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: APP-WRQOUAK78G5F7GMD uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD source-name: value: Multidisciplinary Digital Publishing Institute source-orcid: null title: subtitle: null title: value: Remote Sensing 10th Anniversary Best Paper Award translated-title: null type: journal-article url: value: https://www.mdpi.com/2072-4292/11/15/1790 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs11010091 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs11010091 external-id-value: 10.3390/rs11010091 last-modified-date: value: 1653759299557 work-summary: - created-date: value: 1547258644017 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs11010091 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs11010091 external-id-value: 10.3390/rs11010091 journal-title: value: Remote Sensing last-modified-date: value: 1653675443514 path: /0000-0002-2182-8822/work/52548763 publication-date: day: null month: value: '01' year: value: '2019' put-code: 52548763 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: APP-WRQOUAK78G5F7GMD uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD source-name: value: Multidisciplinary Digital Publishing Institute source-orcid: null title: subtitle: null title: value: A Bibliometric Profile of the Remote Sensing Open Access Journal Published by MDPI between 2009 and 2018 translated-title: null type: journal-article url: value: http://www.mdpi.com/2072-4292/11/1/91 visibility: public - created-date: value: 1556291405878 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs11010091 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs11010091 external-id-value: 10.3390/rs11010091 journal-title: value: Remote Sensing last-modified-date: value: 1653759299557 path: /0000-0002-2182-8822/work/56826498 publication-date: day: value: '07' month: value: '01' year: value: '2019' put-code: 56826498 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: A Bibliometric Profile of the Remote Sensing Open Access Journal Published by MDPI between 2009 and 2018 translated-title: null type: journal-article url: value: https://doi.org/10.3390/rs11010091 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs10122027 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs10122027 external-id-value: 10.3390/rs10122027 last-modified-date: value: 1653670258295 work-summary: - created-date: value: 1544780479769 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs10122027 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs10122027 external-id-value: 10.3390/rs10122027 journal-title: value: Remote Sensing last-modified-date: value: 1653669561586 path: /0000-0002-2182-8822/work/51660905 publication-date: day: value: '13' month: value: '12' year: value: '2018' put-code: 51660905 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: Accuracies Achieved in Classifying Five Leading World Crop Types and their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral Narrowbands on Google Earth Engine translated-title: null type: journal-article url: value: https://doi.org/10.3390/rs10122027 visibility: public - created-date: value: 1545098573258 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3390/rs10122027 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3390/rs10122027 external-id-value: 10.3390/rs10122027 journal-title: value: Remote Sensing last-modified-date: value: 1653670258295 path: /0000-0002-2182-8822/work/51757004 publication-date: day: null month: value: '12' year: value: '2018' put-code: 51757004 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: APP-WRQOUAK78G5F7GMD uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD source-name: value: Multidisciplinary Digital Publishing Institute source-orcid: null title: subtitle: null title: value: Accuracies Achieved in Classifying Five Leading World Crop Types and their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral Narrowbands on Google Earth Engine translated-title: null type: journal-article url: value: http://www.mdpi.com/2072-4292/10/12/2027 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.1080/15481603.2018.1482855 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1080/15481603.2018.1482855 external-id-value: 10.1080/15481603.2018.1482855 last-modified-date: value: 1653614921953 work-summary: - created-date: value: 1528278043059 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.1080/15481603.2018.1482855 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1080/15481603.2018.1482855 external-id-value: 10.1080/15481603.2018.1482855 journal-title: value: GIScience & Remote Sensing last-modified-date: value: 1653614921953 path: /0000-0002-2182-8822/work/45453145 publication-date: day: value: '02' month: value: '11' year: value: '2018' put-code: 45453145 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: Mapping cropland fallow areas in myanmar to scale up sustainable intensification of pulse crops in the farming system translated-title: null type: journal-article url: value: https://doi.org/10.1080/15481603.2018.1482855 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.1080/17538947.2016.1267269 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1080/17538947.2016.1267269 external-id-value: 10.1080/17538947.2016.1267269 last-modified-date: value: 1653524417129 work-summary: - created-date: value: 1506303679991 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.1080/17538947.2016.1267269 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.1080/17538947.2016.1267269 external-id-value: 10.1080/17538947.2016.1267269 journal-title: value: International Journal of Digital Earth last-modified-date: value: 1653524417129 path: /0000-0002-2182-8822/work/37080331 publication-date: day: value: '02' month: value: 09 year: value: '2017' put-code: 37080331 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: "Spectral matching techniques (SMTs) and automated cropland classification\ \ algorithms (ACCAs) for mapping croplands of Australia using MODIS\ \ 250-m time-series (2000\u20132015) data" translated-title: null type: journal-article url: value: https://doi.org/10.1080/17538947.2016.1267269 visibility: public - external-ids: external-id: - external-id-normalized: transient: true value: 10.3133/ofr20161038 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3133/ofr20161038 external-id-value: 10.3133/ofr20161038 last-modified-date: value: 1653524417122 work-summary: - created-date: value: 1506303679857 display-index: '0' external-ids: external-id: - external-id-normalized: transient: true value: 10.3133/ofr20161038 external-id-normalized-error: null external-id-relationship: self external-id-type: doi external-id-url: value: https://doi.org/10.3133/ofr20161038 external-id-value: 10.3133/ofr20161038 journal-title: null last-modified-date: value: 1653524417122 path: /0000-0002-2182-8822/work/37080330 publication-date: day: null month: null year: value: '2016' put-code: 37080330 source: assertion-origin-client-id: null assertion-origin-name: null assertion-origin-orcid: null source-client-id: host: orcid.org path: 0000-0001-9884-1913 uri: https://orcid.org/client/0000-0001-9884-1913 source-name: value: Crossref source-orcid: null title: subtitle: null title: value: A software tool for rapid flood inundation mapping translated-title: null type: report url: value: https://doi.org/10.3133/ofr20161038 visibility: public last-modified-date: value: 1697242138165 path: /0000-0002-2182-8822/works history: claimed: true completion-date: null creation-method: DIRECT deactivation-date: null last-modified-date: value: 1697242138149 source: null submission-date: value: 1466795312431 verified-email: true verified-primary-email: true person: name: created-date: value: 1466795312660 credit-name: null family-name: value: Thenkabail given-names: value: Prasad last-modified-date: value: 1616534654819 path: 0000-0002-2182-8822 source: null visibility: public
usgs_staff_profile:
meta: status_code: 200 timestamp: '2023-09-30T17:41:04.485631' url: https://www.usgs.gov/staff-profiles/prasad-thenkabail profile: abstracts: - "As a result of Dr. Thenkabail\u2019s scientific accomplishments, standing,\ \ and stature, he is a highly sought-after speaker. Since 2011, he has given\ \ 117 talks (averaging ~12 per year) of which 40% (47/117) were invited. He\ \ has been invited as a speaker in Bahrain, Brazil, Canada, China, Egypt, Germany,\ \ India, Indonesia, Israel, Myanmar, Thailand, Vietnam, and various places in\ \ USA (e.g., Purdue, OSU)." affiliations: - Editor-in-Chief, Remote Sensing Open Access Journal; 2011-present. - Associate Editor, American Society of Photogrammetric Engineering and Remote Sensing (PE&RS), a Journal of the Imaging and Geospatial Information Society (ASPRS). - Editorial Advisory Board, International Society of Photogrammetry and Remote Sensing (ISPRS) Journal of Photo. & Remote Sensing, 2014-present. - Editorial Board Member, Remote Sensing of Environment (2007-2016) - 'Core member, NASA South/Southeast Asia Research Initiative (SARI): 2014-present' - Member, American Society of Photogrammetry and Remote Sensing (1988-present) - 'Chair: International Society of Photogrammetry and Remote Sensing (ISPRS) Working Group WG VIII/7: Land cover and its dynamics, including Agricultural & Urban Land Use (2013-2016)' - Global Coordinator, Committee for Earth Observing Systems Agriculture Societal Beneficial Areas (CEOA SBA) (2010-2013) - "Co-lead, IEEE \u201CWater for the World\u201D (2007-2011)" - Member, Landsat Science Team (2007-2011) education: - 1992 - Doctor of Philosophy (PhD) in Agricultural Engineering, The Ohio State University, Columbus, Ohio, USA. - 1983 - Master of Engineering (M.E.) in Hydraulics and Water Resources Engineering, Mysore University (India). - 1981 - Bachelor of Civil Engineering (B.E.), Mysore University (India). email: pthenkabail@usgs.gov expertise_terms: - geospatial analysis - maps and atlases - remote sensing - spatial analysis - forest resources - natural resource management - water resources - ecosystems - environmental assessment - forest ecosystems - freshwater ecosystems - wetland ecosystems - climate change - droughts - global cropland mapping - hydrology - food security - floods - hyperspectral remote sensing - groundwater - irrigation - machine learning and cloud computing - water budget - crop water productivity - water use - water security - vegetation honors: - 2023 Fellow, American Society of Photogrammetric Engineering and Remote Sensing (ASPRS) - 2023 Talbert Abrahms Grand Award, highest paper award from American Society of Photogrammetric Enginering and Remote Sensing (ASPRS). - 2022 - PESEP Scholar. The NASA-ISRO Professional Engineer and Scientist Exchange Program (PESEP). USA (NASA) and India (ISRO) scientific exchange scientist for 2022-2023. - 2020 - Proposal evaluation panel for Israeli Ministry of Science and Technology, to their bi-national Italy-Israel joint laboratory in Precision Agriculture. - "2019 - Advisory Board member, Taylor and Francis Inc., online library collection\ \ to support the United Nations\u2019 Sustainable Development Goals (UN SDGs)." - 2019 - USGS STAR award for supervision - 2019 - Member, NASA Surface Biology Geology (SBG)-Applications. For the SBG hyperspectral remote sensing mission (replacing former HyspIRI program). - 2019 - Member, NASA Calibration and Validation Working Group. For the SBG hyperspectral remote sensing mission (replacing former HyspIRI program). - 2019 - USGS 10-year service recognition - 2018 - The Excellent Reviewer of Remote Sensing of Environment - 2018 - Honored by the Arabian Gulf University, Bahrain and the Dubai-based International Center for Biosaline Agriculture (ICBA) for giving the keynote lecture. - 2016 - NASA Group Achievement Award, 2016. (Member of Team) Fallowed Area Map - '2015 - ASPRS Best Scientific Paper Award, 2015: ASPRS ERDAS award for best scientific paper in remote sensing (given annually for the papers published in American Society of Photogrammetry' - 2015 - Task Force Member NASA, SARI, 2015-present. South Asia Regional Initiative (SARI), A response to regional needs in Land Cover/Land Use Change (LCLUC) Science and Education (NASA) - '2015 - Innovations Inventory, PARIS21, 2015: Remote Sensing Data for Drought Assessment and Monitoring monograph authors (as first author) is in the PARIS21.' - 2013 - Panel chair, 2013, USGS RGE. For the Spring 2013 GIS and Remote Sensing USGS Research Grade Evaluation (RGE) panel. - "2008 - ASPRS President\u2019s award for practical papers: American Society\ \ of Photogrammetry and Remote Sensing (ASPRS) John I. Davidson President\u2019\ s Award for practical papers, 2008." - 2007 - Special achievement in GIS award from ESRI, awarded by ESRI President Mr. Jack Dangermond during the 2007 annual ESRI conference in San Diego. - "2006 - Best team award for my remote sensing and GIS team @ the International\ \ Water Management Institute (IWMI) during Institute\u2019s Annual Research\ \ Meeting 2006." - "2005 - Best paper award (5 best paper awards given) by International Water\ \ Management Institute (IWMI) during Institute\u2019s Annual Research Meeting\ \ 2005." - "2004 - Best paper award (5 best paper awards given) by International Water\ \ Management Institute (IWMI) during Institute\u2019s Annual Research Meeting\ \ 2004." - 2001 - Member, Scientific Advisory Board, Rapideye, a Private German Satellite Company. - 1994 - Autometric award for outstanding paper by American Society of Photogrammetry and Remote Sensing (ASPRS). intro_statements: - "Dr. Prasad S. Thenkabail, Senior Scientist (ST), United States Geological Survey\ \ (USGS), is a world-recognized expert in remote sensing science with major\ \ contributions in the field sustained for nearly 40 years. Dr. Thenkabail\u2019\ s career scientific achievements can be gauged by successfully making the list\ \ of world\u2019s top 1% of scientists across fields (22 scientific fields and\ \ 176 sub-fields)." name: Prasad S. Thenkabail, PhD name_qualifier: null orcid: 0000-0002-2182-8822 organization_link: https://www.usgs.gov/centers/western-geographic-science-center organization_name: Western Geographic Science Center personal_statement: "Dr. Thenkabail has conductedpioneering researchinhyperspectral\ \ remote sensing of vegetationand in that ofglobal croplands and their water\ \ use for food security. Inhyperspectral remote sensinghe has done cutting-edge\ \ research with wide implications in advancing remote sensing science in application\ \ to agriculture and vegetation. This body of work led to more than ten peer-reviewed\ \ research publications with high impact. For example, a single paper entitled\ \ \u201CHyperspectral vegetation indices and their relationships with agricultural\ \ crop characteristics\u201D has received 1500 citations (3/14/23). In studies\ \ ofglobal croplands for food and water security, he has led the release of\ \ the world\u2019s first Landsat-derived: 1. global cropland extent product\ \ @ 30m (GCEP30), and 2. global rainfed and irrigated area product @ 30m (LGRIP30).\ \ This work demonstrates a \u201Cparadigm shift\u201D in how remote sensing\ \ science is conducted. As per Google Scholar, the papers Dr. Thenkabail's research\ \ are cited 14,235 times. His h-index is 58 and i10-index is 113.Dr. Thenkabail\u2019\ s contributions to series of leading edited books on remote sensing science\ \ places him as a world leader in remote sensing science advances. He editedthree-volume\ \ bookentitledRemote Sensing Handbookpublished by Taylor and Francis, with 82\ \ chapters and more than 2000 pages, widely considered a \u201Cmagnus opus\u201D\ \ encyclopedic standard reference for students, scholars, practitioners, and\ \ major experts in remote sensing science. He has recently completed editingHyperspectral\ \ Remote Sensing of Vegetationpublishedbooks by Taylor and Francis in four volumes\ \ with 50 chapters.This is the second edition that is currently in press and\ \ is a follow-up on the earlier single-volumeHyperspectral Remote Sensing of\ \ Vegetation. He has also edited a book onRemote Sensing of Global Croplands\ \ for Food Security.He obtained his PhD from the Ohio State University in 1992\ \ and has 168 publications including 9 books, 146 peer-reviewed journal articles,\ \ and 13 major data releases. Dr. Thenkabail is at the center ofrendering scientific\ \ service to the world\u2019s remote sensing communityin roles that includeEditor-in-Chief\ \ (2011-present)of Remote Sensing Open Access Journal andAssociate Editor (2017-present)of\ \ American Society\u2019s Journal Photogrammetric Engineering and Remote Sensing.\ \ Dr. Thenkabail was recognized as Fellow of the American Society of Photogrammetry\ \ and Remote Sensing (ASPRS) in 2023. His scientific papers have won several\ \ awards over the years demonstrating world class highest quality research.\ \ These include: 2023 Talbert Abrams Grand Award, the highest scientific paper\ \ award of the ASPRS, 2015 ASPRS ERDAS award for best scientific paper in remote\ \ sensing, and 1994 Autometric Award for the outstanding paper in remote sensing.\ \ He was a Landsat Science Team Member (2007-2011)." professional_experience: - 2022 - present - Senior Scientist (ST), United States Geological Survey (USGS) - 'Oct. 2008-2022 - USGS: Supervisory Research Geographer-15 (2017-present), Research Geographer-15 (2011-2017), Research Geographer-14 (2008-2011), United States Geological Survey (USGS), Flagstaff, AZ.USA.' - 'March 2003-Sept. 2008 - IWMI: Principal Researcher, Global Research Division group and Head of Remote Sensing and GIS Unit, International Water Management Institute (IWMI), Colombo, Sri Lanka.' - 'April 1997-March 2003 - Yale University: Associate Research Scientist, Center for Earth Observation, Yale University, New Haven, CT,USA.' - 'Nov. 1995-March 1997 - ICIMOD: Remote Sensing Specialist, International Center for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal.' - 'July 1992-Nov. 1995 - IITA: Remote Sensing Specialist, International Institute of Tropical Agriculture, Ibadan, Nigeria.' - 'Sept. 1998-June 1992 - OSU: Graduate Research Assistant, The Ohio State University, Columbus, Ohio.' - 'Dec. 1984-Nov. 1986 - Mysore and Bangalore University: Teaching hydraulics and water resources, India.' - The countries he has worked in include China, Cambodia, Indonesia, Israel, Syria, United States, Canada, Brazil, Uzbekistan, Bangladesh, India, Myanmar, Nepal, Sri Lanka, Republic of Benin, Burkina Faso, Cameroon, Central African Republic, Cote d'Ivoire, Gambia, Ghana, Mali, Nigeria, Senegal, Togo, Mozambique, and South Africa. title: Senior Scientist (ST)