Item talk:Q143118: Difference between revisions
From geokb
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5100710213", "orcid": "https://orcid.org/0000-0002-4558-3292", "display_name": "Weidong Li", "display_name_alternatives": [ "Weidong Li", "LI Wei\u2010dong", "Weidong Li \u2010", "W. Li", "Wei\u2010Dong Li", "Li Weidong" ], "works_count": 277, "cited_by_count": 4818, "summary_stats": { "2yr_mean_citedness": 3.8, "h_index": 38, "i10_index":...") |
No edit summary |
||
Line 443: | Line 443: | ||
"created_date": "2024-07-11", | "created_date": "2024-07-11", | ||
"_id": "https://openalex.org/A5100710213" | "_id": "https://openalex.org/A5100710213" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0002-4558-3292", | |||
"mainEntityOfPage": "https://orcid.org/0000-0002-4558-3292", | |||
"givenName": "Weidong", | |||
"familyName": "Li", | |||
"alumniOf": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Marquette University", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "5505" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Huazhong Agriculture University", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "47895" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "China Agricultural University", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "34752" | |||
} | |||
} | |||
], | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10596-024-10294-x", | |||
"name": "Sensitivity analysis of the MCRF model to different transiogram joint modeling methods for simulating categorical spatial variables", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10596-024-10294-x" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431161.2021.1973687", | |||
"name": "Phenology-based decision tree classification of rice-crayfish fields from Sentinel-2 imagery in Qianjiang, China", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431161.2021.1973687" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431161.2021.1931533", | |||
"name": "Optimization of urban land cover classification using an improved Elephant Herding Optimization algorithm and random forest classifier", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431161.2021.1931533" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs13112146", | |||
"name": "Improving Parcel-Level Mapping of Smallholder Crops from VHSR Imagery: An Ensemble Machine-Learning-Based Framework", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs13112146" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijgi10020044", | |||
"name": "Estimating the Impacts of Proximity to Public Transportation on Residential Property Values: An Empirical Analysis for Hartford and Stamford Areas, Connecticut", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijgi10020044" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs12152420", | |||
"name": "Unprecedented Temporary Reduction in Global Air Pollution Associated with COVID-19 Forced Confinement: A Continental and City Scale Analysis", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs12152420" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijgi9060350", | |||
"name": "Evaluation of Driving Forces of Land Use and Land Cover Change in New England Area by a Mixed Method", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijgi9060350" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/su12072792", | |||
"name": "Spatio-Temporal Nonstationary Effects of Impact Factors on Industrial Land Price in Industrializing Cities of China", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/su12072792" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10596-019-09874-z", | |||
"name": "Markov chain random fields in the perspective of spatial Bayesian networks and optimal neighborhoods for simulation of categorical fields", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10596-019-09874-z" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/03650340.2019.1576171", | |||
"name": "Predicting soil organic matter content in a plain-to-hill transition belt using geographically weighted regression with stratification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/03650340.2019.1576171" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs11151774", | |||
"name": "Semantic Segmentation of Urban Buildings from VHR Remote Sensing Imagery Using a Deep Convolutional Neural Network", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs11151774" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17538947.2018.1464073", | |||
"name": "Parallel computing solutions for Markov chain spatial sequential simulation of categorical fields", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17538947.2018.1464073" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.compenvurbsys.2018.07.007", | |||
"name": "A framework of experimental transiogram modelling for Markov chain geostatistical simulation of landscape categories", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.compenvurbsys.2018.07.007" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/13658816.2018.1463442", | |||
"name": "Integrating multi-agent evacuation simulation and multi-criteria evaluation for spatial allocation of urban emergency shelters", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/13658816.2018.1463442" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/s18082484", | |||
"name": "Using Deep Learning to Identify Utility Poles with Crossarms and Estimate Their Locations from Google Street View Images", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/s18082484" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/19475683.2018.1450786", | |||
"name": "Predicting land use/cover change in Long Island Sound Watersheds and its effect on invasive species: a case study for glossy buckthorn", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/19475683.2018.1450786" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/land7010031", | |||
"name": "Improving Object-Based Land Use/Cover Classification from Medium Resolution Imagery by Markov Chain Geostatistical Post-Classification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/land7010031" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/su9112050", | |||
"name": "Spatiotemporal Effects of Main Impact Factors on Residential Land Price in Major Cities of China", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/su9112050" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.compenvurbsys.2017.03.001", | |||
"name": "Parcel-based urban land use classification in megacity using airborne LiDAR, high resolution orthoimagery, and Google Street View", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.compenvurbsys.2017.03.001" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs9060620", | |||
"name": "Evaluating the Use of DMSP/OLS Nighttime Light Imagery in Predicting PM<sub>2.5</sub> Concentrations in the Northeastern United States", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs9060620" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijgi6040108", | |||
"name": "Adaptive and Optimized RDF Query Interface for Distributed WFS Data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijgi6040108" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/land5040044", | |||
"name": "Prediction of Land Use Change in Long Island Sound Watersheds Using Nighttime Light Data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/land5040044" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ufug.2016.06.002", | |||
"name": "Environmental inequities in terms of different types of urban greenery in Hartford, Connecticut", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ufug.2016.06.002" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/land5030025", | |||
"name": "Analysis and Prediction of Land Use Changes Related to Invasive Species and Major Driving Forces in the State of Connecticut", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/land5030025" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.apgeog.2016.01.006", | |||
"name": "Spatially non-stationary relationships between urban residential land price and impact factors in Wuhan city, China", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.apgeog.2016.01.006" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijgi4031166", | |||
"name": "Does the Visibility of Greenery Increase Perceived Safety in Urban Areas? Evidence from the Place Pulse 1.0 Dataset", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijgi4031166" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1155/2014/689482", | |||
"name": "County-Scale Spatial Variability of Macronutrient Availability Ratios in Paddy Soils", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1155/2014/689482" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1155/2014/750879", | |||
"name": "Estimating the Pollution Risk of Cadmium in Soil Using a Composite Soil Environmental Quality Standard", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1155/2014/750879" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1117/1.jrs.8.083698", | |||
"name": "Restoration of the missing pixel information caused by contrails in multispectral remotely sensed imagery", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1117/1.jrs.8.083698" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/10807039.2013.770352", | |||
"name": "Spatial Distribution and Uncertainty Assessment of Potential Ecological Risks of Heavy Metals in Soil Using Sequential Gaussian Simulation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/10807039.2013.770352" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecoinf.2012.06.005", | |||
"name": "Assessing the risk costs in delineating soil nickel contamination using sequential Gaussian simulation and transfer functions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecoinf.2012.06.005" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecoinf.2013.04.001", | |||
"name": "Assessing the spatial uncertainty in soil nitrogen mapping through stochastic simulations with categorical land use information", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecoinf.2013.04.001" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2136/sssaj2013.05.0177", | |||
"name": "Comparison of Three Methods for Soil Fertility Quality Spatial Simulation with Uncertainty Assessment", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2136/sssaj2013.05.0177" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.apgeog.2013.04.002", | |||
"name": "Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically weighted regression and cokriging", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.apgeog.2013.04.002" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/13658816.2012.747687", | |||
"name": "Some further clarification on Markov chain random fields and transiograms", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/13658816.2012.747687" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s1002-0160(13)60036-3", | |||
"name": "Source Apportionment of Heavy Metals in Soils Using Multivariate Statistics and Geostatistics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s1002-0160(13)60036-3" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijgi2010067", | |||
"name": "Towards Improving Query Performance of Web Feature Services (WFS) for Disaster Response", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijgi2010067" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1155/2013/587284", | |||
"name": "Updating Categorical Soil Maps Using Limited Survey Data by Bayesian Markov Chain Cosimulation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1155/2013/587284" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1365-2389.2011.01413.x", | |||
"name": "Comments on \u2018An efficient maximum entropy approach for categorical variable prediction\u2019 by D. Allard, D. D'Or & R. Froidevaux", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1365-2389.2011.01413.x" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/13658816.2012.673617", | |||
"name": "Comments on \u2018Combining spatial transition probabilities for stochastic simulation of categorical fields\u2019 with communications on some issues related to Markov chain geostatistics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/13658816.2012.673617" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2747/1548-1603.49.6.915", | |||
"name": "Comparison of Geographically Weighted Regression and Regression Kriging for Estimating the Spatial Distribution of Soil Organic Matter", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2747/1548-1603.49.6.915" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2747/1548-1603.49.3.397", | |||
"name": "Effect of Land Use Types on the Spatial Prediction of Soil Nitrogen", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2747/1548-1603.49.3.397" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/13658816.2011.603336", | |||
"name": "Modeling experimental cross-transiograms of neighboring landscape categories with the gamma distribution", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/13658816.2011.603336" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jag.2010.05.004", | |||
"name": "Automatic search of geospatial features for disaster and emergency management", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jag.2010.05.004" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s00477-010-0389-9", | |||
"name": "Estimating threshold-exceeding probability maps of environmental variables with Markov chain random fields", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s00477-010-0389-9" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/13658810903127991", | |||
"name": "Linear interpolation and joint model fitting of experimental transiograms for Markov chain simulation of categorical spatial variables", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/13658810903127991" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17538940903373803", | |||
"name": "The framework of a geospatial semantic web-based spatial decision support system for Digital Earth", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17538940903373803" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/13658810903240687", | |||
"name": "Towards logic-based geospatial feature discovery and integration using web feature service and geospatial semantic web", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/13658810903240687" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160802549294", | |||
"name": "Restoration of clouded pixels in multispectral remotely sensed imagery with cokriging", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160802549294" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/env.981", | |||
"name": "Simulating the spatial distribution of clay layer occurrence depth in alluvial soils with a Markov chain geostatistical approach", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/env.981" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1117/12.812831", | |||
"name": "<title>An interoperable spatial decision support system based on geospatial semantic web technologies</title>", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1117/12.812831" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s00477-007-0109-2", | |||
"name": "A comparative study of nonlinear Markov chain models for conditional simulation of multinomial classes from regular samples", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s00477-007-0109-2" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10651-007-0045-9", | |||
"name": "A single-chain-based multidimensional Markov chain model for subsurface characterization", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10651-007-0045-9" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1475-2743.2008.00165.x", | |||
"name": "Regional-scale modelling of the spatial distribution of surface and subsurface textural classes in alluvial soils using Markov chain geostatistics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1475-2743.2008.00165.x" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3141/2064-11", | |||
"name": "Transformation of Transportation Data Models from Unified Modeling Language to Web Ontology Language", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3141/2064-11" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11004-006-9071-7", | |||
"name": "A Fixed-Path Markov Chain Algorithm for Conditional Simulation of Discrete Spatial Variables", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11004-006-9071-7" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2136/sssaj2006.0173", | |||
"name": "A Random-Path Markov Chain Algorithm for Simulating Categorical Soil Variables from Random Point Samples", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2136/sssaj2006.0173" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1145/1341012.1341069", | |||
"name": "A middle-insertion algorithm for Markov chain simulation of soil layering", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1145/1341012.1341069" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2747/1548-1603.44.3.251", | |||
"name": "Comparing a Fixed-Path Markov Chain Geostatistical Algorithm with Sequential Indicator Simulation in Categorical Variable Simulation from Regular Samples", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2747/1548-1603.44.3.251" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160701250416", | |||
"name": "Gaps\u2010fill of SLC\u2010off Landsat ETM+ satellite image using a geostatistical approach", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160701250416" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11004-007-9081-0", | |||
"name": "Markov Chain Random Fields for Estimation of\u00a0Categorical Variables", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11004-007-9081-0" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2136/sssaj2005.0132", | |||
"name": "Transiograms for Characterizing Spatial Variability of Soil Classes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2136/sssaj2005.0132" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1467-9671.2006.01017.x", | |||
"name": "A Generalized Markov Chain Approach for Conditional Simulation of Categorical Variables from Grid Samples", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1467-9671.2006.01017.x" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2747/1548-1603.42.4.297", | |||
"name": "Application of Transiograms to Markov Chain Simulation and Spatial Uncertainty Assessment of Land-Cover Classes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2747/1548-1603.42.4.297" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2747/1548-1603.42.1.1", | |||
"name": "Markov Chain Modeling of Multinomial Land-Cover Classes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2747/1548-1603.42.1.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1559/152304005775194728", | |||
"name": "The Roles of Web Feature and Web Map Services in Real-time Geospatial Data Sharing for Time-critical Applications", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1559/152304005775194728" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2136/sssaj2004.1479", | |||
"name": "Two-dimensional Markov Chain Simulation of Soil Type Spatial Distribution", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2136/sssaj2004.1479" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s0016-7061(99)00024-5", | |||
"name": "Markov-chain simulation of soil textural profiles", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s0016-7061(99)00024-5" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1097/00010694-199709000-00009", | |||
"name": "APPLICATION OF THE MARKOV CHAIN THEORY TO DESCRIBE SPATIAL DISTRIBUTION OF TEXTURAL LAYERS", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1097/00010694-199709000-00009" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2011.2121916", | |||
"name": "A Markov Chain Geostatistical Framework for Land-Cover Classification With Uncertainty Assessment Based on Expert-Interpreted Pixels From Remotely Sensed Imagery", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2011.2121916" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/rsete.2011.5964519", | |||
"name": "Integration of categorical information of land use maps in spatial prediction of soil available Cu in Hanchuan county, China", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/rsete.2011.5964519" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/rsete.2011.5964581", | |||
"name": "Risk assessment of soil Cd exceedance in the Wuhan Donghu High-tech Developing Zone by disjunctive kriging", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/rsete.2011.5964581" | |||
} | |||
} | |||
] | |||
} | |||
} | } | ||
} | } |
Latest revision as of 21:54, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5100710213", "orcid": "https://orcid.org/0000-0002-4558-3292", "display_name": "Weidong Li", "display_name_alternatives": [ "Weidong Li", "LI Wei\u2010dong", "Weidong Li \u2010", "W. Li", "Wei\u2010Dong Li", "Li Weidong" ], "works_count": 277, "cited_by_count": 4818, "summary_stats": { "2yr_mean_citedness": 3.8, "h_index": 38, "i10_index": 95 }, "ids": { "openalex": "https://openalex.org/A5100710213", "orcid": "https://orcid.org/0000-0002-4558-3292" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I140172145", "ror": "https://ror.org/02der9h97", "display_name": "University of Connecticut", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I140172145" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I36152291", "ror": "https://ror.org/05sbgwt55", "display_name": "Henan University of Technology", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I36152291" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2015, 2010 ] }, { "institution": { "id": "https://openalex.org/I4210094030", "ror": "https://ror.org/00sgtyj59", "display_name": "Ansteel (China)", "country_code": "CN", "type": "company", "lineage": [ "https://openalex.org/I4210094030" ] }, "years": [ 2024, 2022 ] }, { "institution": { "id": "https://openalex.org/I189210763", "ror": "https://ror.org/0040axw97", "display_name": "Yunnan University", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I189210763" ] }, "years": [ 2024, 2022 ] }, { "institution": { "id": "https://openalex.org/I2802497816", "ror": "https://ror.org/02gp4e279", "display_name": "Chinese Academy of Geological Sciences", "country_code": "CN", "type": "facility", "lineage": [ "https://openalex.org/I2802497816" ] }, "years": [ 2023, 2022 ] }, { "institution": { "id": "https://openalex.org/I20942203", "ror": "https://ror.org/03q648j11", "display_name": "Hainan University", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I20942203" ] }, "years": [ 2023, 2022, 2021 ] }, { "institution": { "id": "https://openalex.org/I154425047", "ror": "https://ror.org/0160cpw27", "display_name": "University of Alberta", "country_code": "CA", "type": "education", "lineage": [ "https://openalex.org/I154425047" ] }, "years": [ 2023, 2022, 2018 ] }, { "institution": { "id": "https://openalex.org/I4210130959", "ror": "https://ror.org/039b65w79", "display_name": "Mineral Resources", "country_code": "AU", "type": "facility", "lineage": [ "https://openalex.org/I1292875679", "https://openalex.org/I2801453606", "https://openalex.org/I4210130959", "https://openalex.org/I4387156119" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I4210101009", "ror": "https://ror.org/00y3jnz30", "display_name": "Huaneng Clean Energy Research Institute", "country_code": "CN", "type": "facility", "lineage": [ "https://openalex.org/I4210101009" ] }, "years": [ 2023, 2022 ] }, { "institution": { "id": "https://openalex.org/I103193709", "ror": "https://ror.org/00xbjad38", "display_name": "Adamson University", "country_code": "PH", "type": "education", "lineage": [ "https://openalex.org/I103193709" ] }, "years": [ 2023 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I140172145", "ror": "https://ror.org/02der9h97", "display_name": "University of Connecticut", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I140172145" ] } ], "topics": [], "topic_share": [], "x_concepts": [ { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 67.1 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 60.3 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 54.2 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 54.2 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 51.6 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 51.3 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 40.1 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 38.6 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 37.2 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 37.2 }, { "id": "https://openalex.org/C17744445", "wikidata": "https://www.wikidata.org/wiki/Q36442", "display_name": "Political science", "level": 0, "score": 29.6 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 29.2 }, { "id": "https://openalex.org/C199539241", "wikidata": "https://www.wikidata.org/wiki/Q7748", "display_name": "Law", "level": 1, "score": 29.2 }, { "id": "https://openalex.org/C119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 28.9 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 27.4 }, { "id": "https://openalex.org/C162324750", "wikidata": "https://www.wikidata.org/wiki/Q8134", "display_name": "Economics", "level": 0, "score": 27.1 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 26.7 }, { "id": "https://openalex.org/C62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 25.6 }, { "id": "https://openalex.org/C15744967", "wikidata": "https://www.wikidata.org/wiki/Q9418", "display_name": "Psychology", "level": 0, "score": 24.2 }, { "id": "https://openalex.org/C185592680", "wikidata": "https://www.wikidata.org/wiki/Q2329", "display_name": "Chemistry", "level": 0, "score": 22.0 }, { "id": "https://openalex.org/C71924100", "wikidata": "https://www.wikidata.org/wiki/Q11190", "display_name": "Medicine", "level": 0, "score": 20.9 }, { "id": "https://openalex.org/C138885662", "wikidata": "https://www.wikidata.org/wiki/Q5891", "display_name": "Philosophy", "level": 0, "score": 20.6 } ], "counts_by_year": [ { "year": 2024, "works_count": 8, "cited_by_count": 584 }, { "year": 2023, "works_count": 15, "cited_by_count": 740 }, { "year": 2022, "works_count": 18, "cited_by_count": 705 }, { "year": 2021, "works_count": 12, "cited_by_count": 652 }, { "year": 2020, "works_count": 14, "cited_by_count": 443 }, { "year": 2019, "works_count": 14, "cited_by_count": 396 }, { "year": 2018, "works_count": 14, "cited_by_count": 346 }, { "year": 2017, "works_count": 13, "cited_by_count": 247 }, { "year": 2016, "works_count": 18, "cited_by_count": 190 }, { "year": 2015, "works_count": 20, "cited_by_count": 122 }, { "year": 2014, "works_count": 15, "cited_by_count": 130 }, { "year": 2013, "works_count": 15, "cited_by_count": 121 }, { "year": 2012, "works_count": 14, "cited_by_count": 91 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5100710213", "updated_date": "2024-08-22T21:40:22.017382", "created_date": "2024-07-11", "_id": "https://openalex.org/A5100710213" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0002-4558-3292", "mainEntityOfPage": "https://orcid.org/0000-0002-4558-3292", "givenName": "Weidong", "familyName": "Li", "alumniOf": [ { "@type": "Organization", "name": "Marquette University", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "5505" } }, { "@type": "Organization", "name": "Huazhong Agriculture University", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "47895" } }, { "@type": "Organization", "name": "China Agricultural University", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "34752" } } ], "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10596-024-10294-x", "name": "Sensitivity analysis of the MCRF model to different transiogram joint modeling methods for simulating categorical spatial variables", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10596-024-10294-x" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431161.2021.1973687", "name": "Phenology-based decision tree classification of rice-crayfish fields from Sentinel-2 imagery in Qianjiang, China", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2021.1973687" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431161.2021.1931533", "name": "Optimization of urban land cover classification using an improved Elephant Herding Optimization algorithm and random forest classifier", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2021.1931533" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs13112146", "name": "Improving Parcel-Level Mapping of Smallholder Crops from VHSR Imagery: An Ensemble Machine-Learning-Based Framework", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs13112146" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi10020044", "name": "Estimating the Impacts of Proximity to Public Transportation on Residential Property Values: An Empirical Analysis for Hartford and Stamford Areas, Connecticut", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi10020044" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs12152420", "name": "Unprecedented Temporary Reduction in Global Air Pollution Associated with COVID-19 Forced Confinement: A Continental and City Scale Analysis", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs12152420" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi9060350", "name": "Evaluation of Driving Forces of Land Use and Land Cover Change in New England Area by a Mixed Method", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi9060350" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/su12072792", "name": "Spatio-Temporal Nonstationary Effects of Impact Factors on Industrial Land Price in Industrializing Cities of China", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/su12072792" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10596-019-09874-z", "name": "Markov chain random fields in the perspective of spatial Bayesian networks and optimal neighborhoods for simulation of categorical fields", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10596-019-09874-z" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/03650340.2019.1576171", "name": "Predicting soil organic matter content in a plain-to-hill transition belt using geographically weighted regression with stratification", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/03650340.2019.1576171" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs11151774", "name": "Semantic Segmentation of Urban Buildings from VHR Remote Sensing Imagery Using a Deep Convolutional Neural Network", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs11151774" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/17538947.2018.1464073", "name": "Parallel computing solutions for Markov chain spatial sequential simulation of categorical fields", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/17538947.2018.1464073" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.compenvurbsys.2018.07.007", "name": "A framework of experimental transiogram modelling for Markov chain geostatistical simulation of landscape categories", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.compenvurbsys.2018.07.007" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/13658816.2018.1463442", "name": "Integrating multi-agent evacuation simulation and multi-criteria evaluation for spatial allocation of urban emergency shelters", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/13658816.2018.1463442" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/s18082484", "name": "Using Deep Learning to Identify Utility Poles with Crossarms and Estimate Their Locations from Google Street View Images", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/s18082484" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/19475683.2018.1450786", "name": "Predicting land use/cover change in Long Island Sound Watersheds and its effect on invasive species: a case study for glossy buckthorn", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/19475683.2018.1450786" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/land7010031", "name": "Improving Object-Based Land Use/Cover Classification from Medium Resolution Imagery by Markov Chain Geostatistical Post-Classification", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/land7010031" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/su9112050", "name": "Spatiotemporal Effects of Main Impact Factors on Residential Land Price in Major Cities of China", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/su9112050" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.compenvurbsys.2017.03.001", "name": "Parcel-based urban land use classification in megacity using airborne LiDAR, high resolution orthoimagery, and Google Street View", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.compenvurbsys.2017.03.001" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs9060620", "name": "Evaluating the Use of DMSP/OLS Nighttime Light Imagery in Predicting PM2.5 Concentrations in the Northeastern United States", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs9060620" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi6040108", "name": "Adaptive and Optimized RDF Query Interface for Distributed WFS Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi6040108" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/land5040044", "name": "Prediction of Land Use Change in Long Island Sound Watersheds Using Nighttime Light Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/land5040044" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ufug.2016.06.002", "name": "Environmental inequities in terms of different types of urban greenery in Hartford, Connecticut", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ufug.2016.06.002" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/land5030025", "name": "Analysis and Prediction of Land Use Changes Related to Invasive Species and Major Driving Forces in the State of Connecticut", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/land5030025" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.apgeog.2016.01.006", "name": "Spatially non-stationary relationships between urban residential land price and impact factors in Wuhan city, China", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeog.2016.01.006" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi4031166", "name": "Does the Visibility of Greenery Increase Perceived Safety in Urban Areas? Evidence from the Place Pulse 1.0 Dataset", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi4031166" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1155/2014/689482", "name": "County-Scale Spatial Variability of Macronutrient Availability Ratios in Paddy Soils", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1155/2014/689482" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1155/2014/750879", "name": "Estimating the Pollution Risk of Cadmium in Soil Using a Composite Soil Environmental Quality Standard", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1155/2014/750879" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/1.jrs.8.083698", "name": "Restoration of the missing pixel information caused by contrails in multispectral remotely sensed imagery", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/1.jrs.8.083698" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10807039.2013.770352", "name": "Spatial Distribution and Uncertainty Assessment of Potential Ecological Risks of Heavy Metals in Soil Using Sequential Gaussian Simulation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10807039.2013.770352" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecoinf.2012.06.005", "name": "Assessing the risk costs in delineating soil nickel contamination using sequential Gaussian simulation and transfer functions", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecoinf.2012.06.005" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecoinf.2013.04.001", "name": "Assessing the spatial uncertainty in soil nitrogen mapping through stochastic simulations with categorical land use information", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecoinf.2013.04.001" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2136/sssaj2013.05.0177", "name": "Comparison of Three Methods for Soil Fertility Quality Spatial Simulation with Uncertainty Assessment", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2136/sssaj2013.05.0177" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.apgeog.2013.04.002", "name": "Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically weighted regression and cokriging", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.apgeog.2013.04.002" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/13658816.2012.747687", "name": "Some further clarification on Markov chain random fields and transiograms", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/13658816.2012.747687" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s1002-0160(13)60036-3", "name": "Source Apportionment of Heavy Metals in Soils Using Multivariate Statistics and Geostatistics", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s1002-0160(13)60036-3" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi2010067", "name": "Towards Improving Query Performance of Web Feature Services (WFS) for Disaster Response", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi2010067" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1155/2013/587284", "name": "Updating Categorical Soil Maps Using Limited Survey Data by Bayesian Markov Chain Cosimulation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1155/2013/587284" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1365-2389.2011.01413.x", "name": "Comments on \u2018An efficient maximum entropy approach for categorical variable prediction\u2019 by D. Allard, D. D'Or & R. Froidevaux", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2389.2011.01413.x" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/13658816.2012.673617", "name": "Comments on \u2018Combining spatial transition probabilities for stochastic simulation of categorical fields\u2019 with communications on some issues related to Markov chain geostatistics", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/13658816.2012.673617" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2747/1548-1603.49.6.915", "name": "Comparison of Geographically Weighted Regression and Regression Kriging for Estimating the Spatial Distribution of Soil Organic Matter", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2747/1548-1603.49.6.915" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2747/1548-1603.49.3.397", "name": "Effect of Land Use Types on the Spatial Prediction of Soil Nitrogen", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2747/1548-1603.49.3.397" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/13658816.2011.603336", "name": "Modeling experimental cross-transiograms of neighboring landscape categories with the gamma distribution", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/13658816.2011.603336" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jag.2010.05.004", "name": "Automatic search of geospatial features for disaster and emergency management", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jag.2010.05.004" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00477-010-0389-9", "name": "Estimating threshold-exceeding probability maps of environmental variables with Markov chain random fields", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00477-010-0389-9" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/13658810903127991", "name": "Linear interpolation and joint model fitting of experimental transiograms for Markov chain simulation of categorical spatial variables", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/13658810903127991" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/17538940903373803", "name": "The framework of a geospatial semantic web-based spatial decision support system for Digital Earth", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/17538940903373803" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/13658810903240687", "name": "Towards logic-based geospatial feature discovery and integration using web feature service and geospatial semantic web", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/13658810903240687" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160802549294", "name": "Restoration of clouded pixels in multispectral remotely sensed imagery with cokriging", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160802549294" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/env.981", "name": "Simulating the spatial distribution of clay layer occurrence depth in alluvial soils with a Markov chain geostatistical approach", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/env.981" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.812831", "name": "<title>An interoperable spatial decision support system based on geospatial semantic web technologies</title>", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.812831" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00477-007-0109-2", "name": "A comparative study of nonlinear Markov chain models for conditional simulation of multinomial classes from regular samples", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00477-007-0109-2" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10651-007-0045-9", "name": "A single-chain-based multidimensional Markov chain model for subsurface characterization", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10651-007-0045-9" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1475-2743.2008.00165.x", "name": "Regional-scale modelling of the spatial distribution of surface and subsurface textural classes in alluvial soils using Markov chain geostatistics", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1475-2743.2008.00165.x" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3141/2064-11", "name": "Transformation of Transportation Data Models from Unified Modeling Language to Web Ontology Language", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3141/2064-11" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11004-006-9071-7", "name": "A Fixed-Path Markov Chain Algorithm for Conditional Simulation of Discrete Spatial Variables", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11004-006-9071-7" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2136/sssaj2006.0173", "name": "A Random-Path Markov Chain Algorithm for Simulating Categorical Soil Variables from Random Point Samples", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2136/sssaj2006.0173" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1145/1341012.1341069", "name": "A middle-insertion algorithm for Markov chain simulation of soil layering", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1145/1341012.1341069" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2747/1548-1603.44.3.251", "name": "Comparing a Fixed-Path Markov Chain Geostatistical Algorithm with Sequential Indicator Simulation in Categorical Variable Simulation from Regular Samples", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2747/1548-1603.44.3.251" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160701250416", "name": "Gaps\u2010fill of SLC\u2010off Landsat ETM+ satellite image using a geostatistical approach", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160701250416" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11004-007-9081-0", "name": "Markov Chain Random Fields for Estimation of\u00a0Categorical Variables", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11004-007-9081-0" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2136/sssaj2005.0132", "name": "Transiograms for Characterizing Spatial Variability of Soil Classes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2136/sssaj2005.0132" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1467-9671.2006.01017.x", "name": "A Generalized Markov Chain Approach for Conditional Simulation of Categorical Variables from Grid Samples", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1467-9671.2006.01017.x" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2747/1548-1603.42.4.297", "name": "Application of Transiograms to Markov Chain Simulation and Spatial Uncertainty Assessment of Land-Cover Classes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2747/1548-1603.42.4.297" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2747/1548-1603.42.1.1", "name": "Markov Chain Modeling of Multinomial Land-Cover Classes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2747/1548-1603.42.1.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1559/152304005775194728", "name": "The Roles of Web Feature and Web Map Services in Real-time Geospatial Data Sharing for Time-critical Applications", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1559/152304005775194728" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2136/sssaj2004.1479", "name": "Two-dimensional Markov Chain Simulation of Soil Type Spatial Distribution", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2136/sssaj2004.1479" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0016-7061(99)00024-5", "name": "Markov-chain simulation of soil textural profiles", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0016-7061(99)00024-5" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1097/00010694-199709000-00009", "name": "APPLICATION OF THE MARKOV CHAIN THEORY TO DESCRIBE SPATIAL DISTRIBUTION OF TEXTURAL LAYERS", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1097/00010694-199709000-00009" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2011.2121916", "name": "A Markov Chain Geostatistical Framework for Land-Cover Classification With Uncertainty Assessment Based on Expert-Interpreted Pixels From Remotely Sensed Imagery", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2011.2121916" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/rsete.2011.5964519", "name": "Integration of categorical information of land use maps in spatial prediction of soil available Cu in Hanchuan county, China", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/rsete.2011.5964519" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/rsete.2011.5964581", "name": "Risk assessment of soil Cd exceedance in the Wuhan Donghu High-tech Developing Zone by disjunctive kriging", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/rsete.2011.5964581" } } ] } }
}