Item talk:Q142209: Difference between revisions
From geokb
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5084145417", "orcid": "https://orcid.org/0000-0002-3517-337X", "display_name": "John Jakeman", "display_name_alternatives": [ "John Davis Jakeman", "J. Jakeman", "John Jakeman", "John D. Jakeman", "J. D. Jakeman" ], "works_count": 218, "cited_by_count": 2469, "summary_stats": { "2yr_mean_citedness": 2.8125, "h_index": 24, "i10_index": 40 },...") |
No edit summary |
||
Line 1,217: | Line 1,217: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5084145417" | "_id": "https://openalex.org/A5084145417" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0002-3517-337X", | |||
"mainEntityOfPage": "https://orcid.org/0000-0002-3517-337X", | |||
"givenName": "John", | |||
"familyName": "Jakeman", | |||
"address": { | |||
"addressCountry": "US", | |||
"@type": "PostalAddress" | |||
}, | |||
"alumniOf": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Australian National University", | |||
"alternateName": "Mathematics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "2219" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Australian National University", | |||
"alternateName": "Mathematics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ROR", | |||
"value": "https://ror.org/019wvm592" | |||
} | |||
} | |||
], | |||
"affiliation": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Sandia National Laboratories", | |||
"alternateName": "Optimization and Uncertainty Quantification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "1105" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Sandia National Laboratories", | |||
"alternateName": "Optimization and Uncertainty Quantification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ROR", | |||
"value": "https://ror.org/01apwpt12" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Sandia National Laboratories", | |||
"alternateName": "Optimization and Uncertainty Quantificaiton", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ROR", | |||
"value": "https://ror.org/01apwpt12" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Statistical and Applied Mathematical Sciences Institute", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ROR", | |||
"value": "https://ror.org/01shctp43" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Purdue University System", | |||
"alternateName": "Mathematics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ROR", | |||
"value": "https://ror.org/05p8z3f47" | |||
} | |||
} | |||
], | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-2024-2209", | |||
"name": "An evaluation of multi-fidelity methods for quantifying uncertainty in projections of ice-sheet mass-change", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-2024-2209" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.18174/sesmo.18678", | |||
"name": "Assessing convergence in global sensitivity analysis: a review of methods for assessing and monitoring convergence", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.18174/sesmo.18678" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-2024-1677", | |||
"name": "Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under high ice-shelf basal melt conditions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-2024-1677" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2023047605", | |||
"name": "HYPERDIFFERENTIAL SENSITIVITY ANALYSIS IN THE CONTEXT OF BAYESIAN INFERENCE APPLIED TO ICE-SHEET PROBLEMS", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1615/int.j.uncertaintyquantification.2023047605" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.envsoft.2023.105825", | |||
"name": "PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design, and multi-fidelity uncertainty quantification and surrogate modeling", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.envsoft.2023.105825" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.cma.2023.116205", | |||
"name": "Multifidelity uncertainty quantification with models based on dissimilar parameters", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.cma.2023.116205" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2022wr032194", | |||
"name": "A Decision\u2010Relevant Factor\u2010Fixing Framework: Application to Uncertainty Analysis of a High\u2010Dimensional Water Quality Model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2022wr032194" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2514/6.2023-0917", | |||
"name": "Improving Bayesian networks multifidelity surrogate construction with basis adaptation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2514/6.2023-0917" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2514/6.2023-1481", | |||
"name": "Strategies for Automation of Model Tuning in Multi-fidelity Trajectory Uncertainty Propagation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2514/6.2023-1481" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/access.2023.3284837", | |||
"name": "Epistemic Uncertainty-Aware Barlow Twins Reduced Order Modeling for Nonlinear Contact Problems", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/access.2023.3284837" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021ms002831", | |||
"name": "Global Sensitivity Analysis Using the Ultra\u2010Low Resolution Energy Exascale Earth System Model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021ms002831" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/nme.6958", | |||
"name": "Adaptive experimental design for multi\u2010fidelity surrogate modeling of multi\u2010disciplinary systems", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/nme.6958" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1137/20m1357615", | |||
"name": "Risk-Adapted Optimal Experimental Design", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1137/20m1357615" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ress.2021.108280", | |||
"name": "Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ress.2021.108280" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.envsoft.2021.105290", | |||
"name": "Assessing the predictive impact of factor fixing with an adaptive uncertainty-based approach", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.envsoft.2021.105290" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2514/6.2022-1099", | |||
"name": "Improving Multi-Model Trajectory Simulation Estimators using Model Selection and Tuning", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2514/6.2022-1099" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Reverse-mode differentiation in arbitrary tensor network format: with application to supervised learning", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "uri", | |||
"value": "http://jmlr.org/papers/v23/21-0225.html" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s00466-021-02042-0", | |||
"name": "MFNets: data efficient all-at-once learning of multifidelity surrogates as directed networks of information sources", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s00466-021-02042-0" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.4208/cicp.oa-2020-0060", | |||
"name": "Cholesky-Based Experimental Design for Gaussian Process and Kernel-Based Emulation and Calibration", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.4208/cicp.oa-2020-0060" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.envsoft.2020.104954", | |||
"name": "The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.envsoft.2020.104954" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1137/20m1342859", | |||
"name": "Data-Driven Learning of Nonautonomous Systems", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1137/20m1342859" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2020034123", | |||
"name": "DEEP LEARNING OF PARAMETERIZED EQUATIONS WITH APPLICATIONS TO UNCERTAINTY QUANTIFICATION", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1615/int.j.uncertaintyquantification.2020034123" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.addma.2020.101593", | |||
"name": "Non-destructive simulation of node defects in additively manufactured lattice structures", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.addma.2020.101593" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020wr027721", | |||
"name": "Modeling Water Quality in Watersheds: From Here to the Next Generation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020wr027721" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jcp.2020.109518", | |||
"name": "Optimal experimental design for prediction based on push-forward probability measures", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jcp.2020.109518" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jcp.2020.109257", | |||
"name": "A generalized approximate control variate framework for multifidelity uncertainty quantification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jcp.2020.109257" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/nme.6268", | |||
"name": "Adaptive multi\u2010index collocation for uncertainty quantification and sensitivity analysis", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/nme.6268" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1615/jmachlearnmodelcomput.2020035155", | |||
"name": "A SURVEY OF CONSTRAINED GAUSSIAN PROCESS REGRESSION: APPROACHES AND IMPLEMENTATION CHALLENGES", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1615/jmachlearnmodelcomput.2020035155" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2020032978", | |||
"name": "MFNets: MULTI-FIDELITY DATA-DRIVEN NETWORKS FOR BAYESIAN LEARNING AND PREDICTION", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1615/int.j.uncertaintyquantification.2020032978" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.envsoft.2019.07.007", | |||
"name": "Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.envsoft.2019.07.007" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.cma.2019.03.049", | |||
"name": "Polynomial chaos expansions for dependent random variables", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.cma.2019.03.049" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85064648323" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2514/6.2019-0722", | |||
"name": "Recent advancements in multilevel-multifidelity techniques for forward UQ in the DARPA sequoia project", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2514/6.2019-0722" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85068997543" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jcp.2018.08.010", | |||
"name": "Gradient-based optimization for regression in the functional tensor-train format", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jcp.2018.08.010" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85052290013" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.cma.2018.04.009", | |||
"name": "Generation and application of multivariate polynomial quadrature rules", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85046963014" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.cma.2018.04.009" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/978-981-10-7811-8_15", | |||
"name": "An Overview of Methods to Identify and Manage Uncertainty for Modelling Problems in the Water\u2013Environment\u2013Agriculture Cross-Sector", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/978-981-10-7811-8_15" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1137/16m1087229", | |||
"name": "Combining push-forward measures and bayes' rule to construct consistent solutions to stochastic inverse problems", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1137/16m1087229" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85046818004" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1137/17m112590x", | |||
"name": "Compressed sensing with sparse corruptions: Fault-tolerant sparse collocation approximations", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1137/17m112590x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85058213189" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1137/18m1181675", | |||
"name": "Convergence of probability densities using approximate models for forward and inverse problems in uncertainty quantification", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1137/18m1181675" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85056128186" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Multilevel-multifidelity approaches for forward uq in the DARPA SEQUOIA project", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85044335981" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1115/1.4037457", | |||
"name": "Optimal experimental design using a consistent Bayesian approach", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85047052602" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1115/1.4037457" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2018026902", | |||
"name": "TIME AND FREQUENCY DOMAIN METHODS FOR BASIS SELECTION IN RANDOM LINEAR DYNAMICAL SYSTEMS", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1615/int.j.uncertaintyquantification.2018026902" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2514/6.2017-1327", | |||
"name": "Scalable Environment for Quantification of Uncertainty and Optimization in Industrial Applications (SEQUOIA)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2514/6.2017-1327" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1090/mcom/3192", | |||
"name": "A christoffel function weighted least squares algorithm for collocation approximations", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85014451167" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1090/mcom/3192" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1137/16m1063885", | |||
"name": "A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85021842585" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1137/16m1063885" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jcp.2015.02.025", | |||
"name": "Enhancing \u21131-minimization estimates of polynomial chaos expansions using basis selection", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84924093639" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jcp.2015.02.025" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jcp.2014.09.014", | |||
"name": "Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84907736357" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jcp.2014.09.014" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1137/140970100", | |||
"name": "Local polynomial chaos expansion for linear differential equations with high dimensional random inputs", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1137/140970100" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84923871286" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2514/6.2015-0500", | |||
"name": "Overview of selected DOE/NNSA predictive science initiatives: The predictive science academic alliance program and the DAKOTA project", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84980385771" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2514/6.2015-0500" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1137/140966368", | |||
"name": "Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1137/140966368" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84919625344" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Practical identifiability analysis of environmental models", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84911927464" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/978-3-642-31703-3-9", | |||
"name": "Local and dimension adaptive stochastic collocation for uncertainty quantification", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/978-3-642-31703-3-9" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84874430506" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jcp.2013.02.035", | |||
"name": "Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84875802025" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jcp.2013.02.035" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/978-3-642-31703-3_9", | |||
"name": "Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/978-3-642-31703-3_9" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jcp.2011.02.022", | |||
"name": "Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jcp.2011.02.022" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79952898773" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10236-010-0312-4", | |||
"name": "Towards spatially distributed quantitative assessment of tsunami inundation models", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10236-010-0312-4" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77958103880" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jcp.2010.03.003", | |||
"name": "Numerical approach for quantification of epistemic uncertainty", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77951620321" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jcp.2010.03.003" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Stochastic galerkin and collocation methods for quantifying uncertainty in differential equations: A review", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84896692798" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Inundation modelling of the December 2004 Indian ocean tsunami", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-80052922543" | |||
} | |||
} | |||
] | |||
}, | |||
"url": "https://quantifying-uncertainty.com/", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "35758908600" | |||
} | |||
} | } | ||
} | } |
Latest revision as of 21:30, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5084145417", "orcid": "https://orcid.org/0000-0002-3517-337X", "display_name": "John Jakeman", "display_name_alternatives": [ "John Davis Jakeman", "J. Jakeman", "John Jakeman", "John D. Jakeman", "J. D. Jakeman" ], "works_count": 218, "cited_by_count": 2469, "summary_stats": { "2yr_mean_citedness": 2.8125, "h_index": 24, "i10_index": 40 }, "ids": { "openalex": "https://openalex.org/A5084145417", "orcid": "https://orcid.org/0000-0002-3517-337X", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=35758908600&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I4210104735", "ror": "https://ror.org/01apwpt12", "display_name": "Sandia National Laboratories", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1330989302", "https://openalex.org/I198811213", "https://openalex.org/I4210104735" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I192454743", "ror": "https://ror.org/058m7ey48", "display_name": "Sandia National Laboratories California", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1330989302", "https://openalex.org/I192454743", "https://openalex.org/I198811213", "https://openalex.org/I4210104735" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2015, 2014 ] }, { "institution": { "id": "https://openalex.org/I52357470", "ror": "https://ror.org/00rs6vg23", "display_name": "The Ohio State University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I52357470" ] }, "years": [ 2020 ] }, { "institution": { "id": "https://openalex.org/I219193219", "ror": "https://ror.org/02dqehb95", "display_name": "Purdue University West Lafayette", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I219193219" ] }, "years": [ 2012 ] }, { "institution": { "id": "https://openalex.org/I2801333002", "ror": "https://ror.org/05p8z3f47", "display_name": "Purdue University System", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I2801333002" ] }, "years": [ 2011 ] }, { "institution": { "id": "https://openalex.org/I118347636", "ror": "https://ror.org/019wvm592", "display_name": "Australian National University", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I118347636" ] }, "years": [ 2011, 2010, 2008, 2006 ] }, { "institution": { "id": "https://openalex.org/I2802631561", "ror": "https://ror.org/00yn60108", "display_name": "Australian Mathematical Sciences Institute", "country_code": "AU", "type": "other", "lineage": [ "https://openalex.org/I2802631561" ] }, "years": [ 2008 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I192454743", "ror": "https://ror.org/058m7ey48", "display_name": "Sandia National Laboratories California", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1330989302", "https://openalex.org/I192454743", "https://openalex.org/I198811213", "https://openalex.org/I4210104735" ] } ], "topics": [ { "id": "https://openalex.org/T10928", "display_name": "Uncertainty Quantification and Sensitivity Analysis", "count": 78, "subfield": { "id": "https://openalex.org/subfields/1804", "display_name": "Statistics, Probability and Uncertainty" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T10848", "display_name": "Multiobjective Optimization in Evolutionary Algorithms", "count": 35, "subfield": { "id": "https://openalex.org/subfields/1703", "display_name": "Computational Theory and Mathematics" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11206", "display_name": "Physics-Informed Neural Networks for Scientific Computing", "count": 23, "subfield": { "id": "https://openalex.org/subfields/3109", "display_name": "Statistical and Nonlinear Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11195", "display_name": "Optimization Techniques in Simulation Modeling", "count": 16, "subfield": { "id": "https://openalex.org/subfields/1803", "display_name": "Management Science and Operations Research" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T12814", "display_name": "Gaussian Processes in Machine Learning", "count": 15, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10876", "display_name": "Process Fault Detection and Diagnosis in Industries", "count": 15, "subfield": { "id": "https://openalex.org/subfields/2207", "display_name": "Control and Systems Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10534", "display_name": "Structural Health Monitoring Techniques", "count": 14, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11798", "display_name": "Experimental Design and Optimization Methods", "count": 11, "subfield": { "id": "https://openalex.org/subfields/1803", "display_name": "Management Science and Operations Research" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T10320", "display_name": "Neural Network Fundamentals and Applications", "count": 10, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 9, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13650", "display_name": "Scientific Computing and Data Analysis with Python", "count": 8, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13126", "display_name": "Theoretical and Computational Physics", "count": 8, "subfield": { "id": "https://openalex.org/subfields/3109", "display_name": "Statistical and Nonlinear Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10894", "display_name": "Groundwater Flow and Transport Modeling", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11801", "display_name": "Advanced Techniques in Reservoir Management", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11405", "display_name": "Global Sea Level Variability and Change", "count": 7, "subfield": { "id": "https://openalex.org/subfields/1910", "display_name": "Oceanography" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11159", "display_name": "Design for Manufacture and Assembly in Manufacturing", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2209", "display_name": "Industrial and Manufacturing Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12535", "display_name": "Learning with Noisy Labels in Machine Learning", "count": 6, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11236", "display_name": "System Identification Techniques", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2207", "display_name": "Control and Systems Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12404", "display_name": "High-dimensional Integration and Quasi-Monte Carlo Methods", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2612", "display_name": "Numerical Analysis" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10500", "display_name": "Theory and Applications of Compressed Sensing", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2206", "display_name": "Computational Mechanics" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10339", "display_name": "Finite Element Methods for Fluid-Structure Interaction", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2206", "display_name": "Computational Mechanics" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10688", "display_name": "Image Denoising Techniques and Algorithms", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1707", "display_name": "Computer Vision and Pattern Recognition" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10715", "display_name": "Distributed Grid Computing Systems", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1705", "display_name": "Computer Networks and Communications" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10763", "display_name": "Industry 4.0 and Digital Transformation in Manufacturing", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2209", "display_name": "Industrial and Manufacturing Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T10928", "display_name": "Uncertainty Quantification and Sensitivity Analysis", "value": 0.0004429, "subfield": { "id": "https://openalex.org/subfields/1804", "display_name": "Statistics, Probability and Uncertainty" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T12814", "display_name": "Gaussian Processes in Machine Learning", "value": 0.0003719, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10848", "display_name": "Multiobjective Optimization in Evolutionary Algorithms", "value": 0.0003351, "subfield": { "id": "https://openalex.org/subfields/1703", "display_name": "Computational Theory and Mathematics" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11206", "display_name": "Physics-Informed Neural Networks for Scientific Computing", "value": 0.0002743, "subfield": { "id": "https://openalex.org/subfields/3109", "display_name": "Statistical and Nonlinear Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11798", "display_name": "Experimental Design and Optimization Methods", "value": 0.0001653, "subfield": { "id": "https://openalex.org/subfields/1803", "display_name": "Management Science and Operations Research" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T11195", "display_name": "Optimization Techniques in Simulation Modeling", "value": 0.0001112, "subfield": { "id": "https://openalex.org/subfields/1803", "display_name": "Management Science and Operations Research" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T12303", "display_name": "Tensor Decompositions and Applications in Multilinear Algebra", "value": 0.0001112, "subfield": { "id": "https://openalex.org/subfields/2605", "display_name": "Computational Mathematics" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12404", "display_name": "High-dimensional Integration and Quasi-Monte Carlo Methods", "value": 9.97e-05, "subfield": { "id": "https://openalex.org/subfields/2612", "display_name": "Numerical Analysis" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11612", "display_name": "Optimization Methods in Machine Learning", "value": 8.63e-05, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12535", "display_name": "Learning with Noisy Labels in Machine Learning", "value": 7.71e-05, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14146", "display_name": "Impact of Tsunami on Structures and Infrastructure", "value": 6.96e-05, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13141", "display_name": "Multivariate Analysis in Statistical Research", "value": 6.52e-05, "subfield": { "id": "https://openalex.org/subfields/2613", "display_name": "Statistics and Probability" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13650", "display_name": "Scientific Computing and Data Analysis with Python", "value": 5.5e-05, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13126", "display_name": "Theoretical and Computational Physics", "value": 4.97e-05, "subfield": { "id": "https://openalex.org/subfields/3109", "display_name": "Statistical and Nonlinear Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10534", "display_name": "Structural Health Monitoring Techniques", "value": 4.81e-05, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10763", "display_name": "Industry 4.0 and Digital Transformation in Manufacturing", "value": 4.74e-05, "subfield": { "id": "https://openalex.org/subfields/2209", "display_name": "Industrial and Manufacturing Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10876", "display_name": "Process Fault Detection and Diagnosis in Industries", "value": 4.59e-05, "subfield": { "id": "https://openalex.org/subfields/2207", "display_name": "Control and Systems Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10500", "display_name": "Theory and Applications of Compressed Sensing", "value": 4.47e-05, "subfield": { "id": "https://openalex.org/subfields/2206", "display_name": "Computational Mechanics" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11413", "display_name": "Robust Optimization for Risk Management and Finance", "value": 4.29e-05, "subfield": { "id": "https://openalex.org/subfields/1803", "display_name": "Management Science and Operations Research" }, "field": { "id": "https://openalex.org/fields/18", "display_name": "Decision Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T12696", "display_name": "Icing Mitigation Techniques for Wind Turbines and Aircraft", "value": 4.02e-05, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10894", "display_name": "Groundwater Flow and Transport Modeling", "value": 3.77e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11236", "display_name": "System Identification Techniques", "value": 3.59e-05, "subfield": { "id": "https://openalex.org/subfields/2207", "display_name": "Control and Systems Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "value": 3.53e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12056", "display_name": "Bayesian Monte Carlo Methods in Scientific Inference", "value": 3.41e-05, "subfield": { "id": "https://openalex.org/subfields/2613", "display_name": "Statistics and Probability" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10339", "display_name": "Finite Element Methods for Fluid-Structure Interaction", "value": 3.15e-05, "subfield": { "id": "https://openalex.org/subfields/2206", "display_name": "Computational Mechanics" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 95.0 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 73.9 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 53.2 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 47.2 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 45.9 }, { "id": "https://openalex.org/C119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 45.0 }, { "id": "https://openalex.org/C126255220", "wikidata": "https://www.wikidata.org/wiki/Q141495", "display_name": "Mathematical optimization", "level": 1, "score": 37.2 }, { "id": "https://openalex.org/C11413529", "wikidata": "https://www.wikidata.org/wiki/Q8366", "display_name": "Algorithm", "level": 1, "score": 36.7 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 36.2 }, { "id": "https://openalex.org/C62520636", "wikidata": "https://www.wikidata.org/wiki/Q944", "display_name": "Quantum mechanics", "level": 1, "score": 32.6 }, { "id": "https://openalex.org/C28826006", "wikidata": "https://www.wikidata.org/wiki/Q33521", "display_name": "Applied mathematics", "level": 1, "score": 26.6 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 26.1 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 25.2 }, { "id": "https://openalex.org/C134306372", "wikidata": "https://www.wikidata.org/wiki/Q7754", "display_name": "Mathematical analysis", "level": 1, "score": 24.3 }, { "id": "https://openalex.org/C162324750", "wikidata": "https://www.wikidata.org/wiki/Q8134", "display_name": "Economics", "level": 0, "score": 24.3 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 21.1 }, { "id": "https://openalex.org/C2524010", "wikidata": "https://www.wikidata.org/wiki/Q8087", "display_name": "Geometry", "level": 1, "score": 20.2 } ], "counts_by_year": [ { "year": 2024, "works_count": 8, "cited_by_count": 335 }, { "year": 2023, "works_count": 7, "cited_by_count": 456 }, { "year": 2022, "works_count": 28, "cited_by_count": 393 }, { "year": 2021, "works_count": 36, "cited_by_count": 308 }, { "year": 2020, "works_count": 25, "cited_by_count": 221 }, { "year": 2019, "works_count": 21, "cited_by_count": 169 }, { "year": 2018, "works_count": 19, "cited_by_count": 196 }, { "year": 2017, "works_count": 6, "cited_by_count": 125 }, { "year": 2016, "works_count": 4, "cited_by_count": 66 }, { "year": 2015, "works_count": 22, "cited_by_count": 71 }, { "year": 2014, "works_count": 10, "cited_by_count": 46 }, { "year": 2013, "works_count": 12, "cited_by_count": 24 }, { "year": 2012, "works_count": 8, "cited_by_count": 18 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5084145417", "updated_date": "2024-08-20T07:34:43.821992", "created_date": "2023-07-21", "_id": "https://openalex.org/A5084145417" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0002-3517-337X", "mainEntityOfPage": "https://orcid.org/0000-0002-3517-337X", "givenName": "John", "familyName": "Jakeman", "address": { "addressCountry": "US", "@type": "PostalAddress" }, "alumniOf": [ { "@type": "Organization", "name": "Australian National University", "alternateName": "Mathematics", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "2219" } }, { "@type": "Organization", "name": "Australian National University", "alternateName": "Mathematics", "identifier": { "@type": "PropertyValue", "propertyID": "ROR", "value": "https://ror.org/019wvm592" } } ], "affiliation": [ { "@type": "Organization", "name": "Sandia National Laboratories", "alternateName": "Optimization and Uncertainty Quantification", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "1105" } }, { "@type": "Organization", "name": "Sandia National Laboratories", "alternateName": "Optimization and Uncertainty Quantification", "identifier": { "@type": "PropertyValue", "propertyID": "ROR", "value": "https://ror.org/01apwpt12" } }, { "@type": "Organization", "name": "Sandia National Laboratories", "alternateName": "Optimization and Uncertainty Quantificaiton", "identifier": { "@type": "PropertyValue", "propertyID": "ROR", "value": "https://ror.org/01apwpt12" } }, { "@type": "Organization", "name": "Statistical and Applied Mathematical Sciences Institute", "identifier": { "@type": "PropertyValue", "propertyID": "ROR", "value": "https://ror.org/01shctp43" } }, { "@type": "Organization", "name": "Purdue University System", "alternateName": "Mathematics", "identifier": { "@type": "PropertyValue", "propertyID": "ROR", "value": "https://ror.org/05p8z3f47" } } ], "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-2024-2209", "name": "An evaluation of multi-fidelity methods for quantifying uncertainty in projections of ice-sheet mass-change", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-2024-2209" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.18174/sesmo.18678", "name": "Assessing convergence in global sensitivity analysis: a review of methods for assessing and monitoring convergence", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.18174/sesmo.18678" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-2024-1677", "name": "Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under high ice-shelf basal melt conditions", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-2024-1677" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2023047605", "name": "HYPERDIFFERENTIAL SENSITIVITY ANALYSIS IN THE CONTEXT OF BAYESIAN INFERENCE APPLIED TO ICE-SHEET PROBLEMS", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1615/int.j.uncertaintyquantification.2023047605" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.envsoft.2023.105825", "name": "PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design, and multi-fidelity uncertainty quantification and surrogate modeling", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.envsoft.2023.105825" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.cma.2023.116205", "name": "Multifidelity uncertainty quantification with models based on dissimilar parameters", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.cma.2023.116205" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022wr032194", "name": "A Decision\u2010Relevant Factor\u2010Fixing Framework: Application to Uncertainty Analysis of a High\u2010Dimensional Water Quality Model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022wr032194" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2514/6.2023-0917", "name": "Improving Bayesian networks multifidelity surrogate construction with basis adaptation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2514/6.2023-0917" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2514/6.2023-1481", "name": "Strategies for Automation of Model Tuning in Multi-fidelity Trajectory Uncertainty Propagation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2514/6.2023-1481" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/access.2023.3284837", "name": "Epistemic Uncertainty-Aware Barlow Twins Reduced Order Modeling for Nonlinear Contact Problems", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/access.2023.3284837" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021ms002831", "name": "Global Sensitivity Analysis Using the Ultra\u2010Low Resolution Energy Exascale Earth System Model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021ms002831" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/nme.6958", "name": "Adaptive experimental design for multi\u2010fidelity surrogate modeling of multi\u2010disciplinary systems", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/nme.6958" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1137/20m1357615", "name": "Risk-Adapted Optimal Experimental Design", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1137/20m1357615" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ress.2021.108280", "name": "Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ress.2021.108280" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.envsoft.2021.105290", "name": "Assessing the predictive impact of factor fixing with an adaptive uncertainty-based approach", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.envsoft.2021.105290" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2514/6.2022-1099", "name": "Improving Multi-Model Trajectory Simulation Estimators using Model Selection and Tuning", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2514/6.2022-1099" } }, { "@type": "CreativeWork", "name": "Reverse-mode differentiation in arbitrary tensor network format: with application to supervised learning", "identifier": { "@type": "PropertyValue", "propertyID": "uri", "value": "http://jmlr.org/papers/v23/21-0225.html" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00466-021-02042-0", "name": "MFNets: data efficient all-at-once learning of multifidelity surrogates as directed networks of information sources", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00466-021-02042-0" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.4208/cicp.oa-2020-0060", "name": "Cholesky-Based Experimental Design for Gaussian Process and Kernel-Based Emulation and Calibration", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.4208/cicp.oa-2020-0060" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.envsoft.2020.104954", "name": "The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.envsoft.2020.104954" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1137/20m1342859", "name": "Data-Driven Learning of Nonautonomous Systems", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1137/20m1342859" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2020034123", "name": "DEEP LEARNING OF PARAMETERIZED EQUATIONS WITH APPLICATIONS TO UNCERTAINTY QUANTIFICATION", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1615/int.j.uncertaintyquantification.2020034123" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.addma.2020.101593", "name": "Non-destructive simulation of node defects in additively manufactured lattice structures", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.addma.2020.101593" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020wr027721", "name": "Modeling Water Quality in Watersheds: From Here to the Next Generation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020wr027721" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jcp.2020.109518", "name": "Optimal experimental design for prediction based on push-forward probability measures", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jcp.2020.109518" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jcp.2020.109257", "name": "A generalized approximate control variate framework for multifidelity uncertainty quantification", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jcp.2020.109257" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/nme.6268", "name": "Adaptive multi\u2010index collocation for uncertainty quantification and sensitivity analysis", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/nme.6268" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1615/jmachlearnmodelcomput.2020035155", "name": "A SURVEY OF CONSTRAINED GAUSSIAN PROCESS REGRESSION: APPROACHES AND IMPLEMENTATION CHALLENGES", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1615/jmachlearnmodelcomput.2020035155" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2020032978", "name": "MFNets: MULTI-FIDELITY DATA-DRIVEN NETWORKS FOR BAYESIAN LEARNING AND PREDICTION", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1615/int.j.uncertaintyquantification.2020032978" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.envsoft.2019.07.007", "name": "Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.envsoft.2019.07.007" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.cma.2019.03.049", "name": "Polynomial chaos expansions for dependent random variables", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.cma.2019.03.049" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85064648323" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2514/6.2019-0722", "name": "Recent advancements in multilevel-multifidelity techniques for forward UQ in the DARPA sequoia project", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2514/6.2019-0722" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85068997543" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jcp.2018.08.010", "name": "Gradient-based optimization for regression in the functional tensor-train format", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jcp.2018.08.010" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85052290013" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.cma.2018.04.009", "name": "Generation and application of multivariate polynomial quadrature rules", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85046963014" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.cma.2018.04.009" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/978-981-10-7811-8_15", "name": "An Overview of Methods to Identify and Manage Uncertainty for Modelling Problems in the Water\u2013Environment\u2013Agriculture Cross-Sector", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/978-981-10-7811-8_15" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1137/16m1087229", "name": "Combining push-forward measures and bayes' rule to construct consistent solutions to stochastic inverse problems", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1137/16m1087229" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85046818004" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1137/17m112590x", "name": "Compressed sensing with sparse corruptions: Fault-tolerant sparse collocation approximations", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1137/17m112590x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85058213189" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1137/18m1181675", "name": "Convergence of probability densities using approximate models for forward and inverse problems in uncertainty quantification", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1137/18m1181675" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85056128186" } ] }, { "@type": "CreativeWork", "name": "Multilevel-multifidelity approaches for forward uq in the DARPA SEQUOIA project", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85044335981" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1115/1.4037457", "name": "Optimal experimental design using a consistent Bayesian approach", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85047052602" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1115/1.4037457" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2018026902", "name": "TIME AND FREQUENCY DOMAIN METHODS FOR BASIS SELECTION IN RANDOM LINEAR DYNAMICAL SYSTEMS", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1615/int.j.uncertaintyquantification.2018026902" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2514/6.2017-1327", "name": "Scalable Environment for Quantification of Uncertainty and Optimization in Industrial Applications (SEQUOIA)", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2514/6.2017-1327" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1090/mcom/3192", "name": "A christoffel function weighted least squares algorithm for collocation approximations", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85014451167" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1090/mcom/3192" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1137/16m1063885", "name": "A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85021842585" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1137/16m1063885" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jcp.2015.02.025", "name": "Enhancing \u21131-minimization estimates of polynomial chaos expansions using basis selection", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84924093639" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jcp.2015.02.025" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jcp.2014.09.014", "name": "Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907736357" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jcp.2014.09.014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1137/140970100", "name": "Local polynomial chaos expansion for linear differential equations with high dimensional random inputs", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1137/140970100" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923871286" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2514/6.2015-0500", "name": "Overview of selected DOE/NNSA predictive science initiatives: The predictive science academic alliance program and the DAKOTA project", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84980385771" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2514/6.2015-0500" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1137/140966368", "name": "Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1137/140966368" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84919625344" } ] }, { "@type": "CreativeWork", "name": "Practical identifiability analysis of environmental models", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84911927464" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/978-3-642-31703-3-9", "name": "Local and dimension adaptive stochastic collocation for uncertainty quantification", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/978-3-642-31703-3-9" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84874430506" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jcp.2013.02.035", "name": "Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84875802025" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jcp.2013.02.035" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/978-3-642-31703-3_9", "name": "Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/978-3-642-31703-3_9" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jcp.2011.02.022", "name": "Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jcp.2011.02.022" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79952898773" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10236-010-0312-4", "name": "Towards spatially distributed quantitative assessment of tsunami inundation models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10236-010-0312-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77958103880" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jcp.2010.03.003", "name": "Numerical approach for quantification of epistemic uncertainty", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77951620321" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jcp.2010.03.003" } ] }, { "@type": "CreativeWork", "name": "Stochastic galerkin and collocation methods for quantifying uncertainty in differential equations: A review", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84896692798" } }, { "@type": "CreativeWork", "name": "Inundation modelling of the December 2004 Indian ocean tsunami", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80052922543" } } ] }, "url": "https://quantifying-uncertainty.com/", "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "35758908600" } }
}