Item talk:Q140678: Difference between revisions
From geokb
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5053939876", "orcid": "https://orcid.org/0000-0003-0731-286X", "display_name": "George Lauder", "display_name_alternatives": [ "G.V Lauder", "George Lauder", "George V. Lauder", "G. V. Lauder", "G. Lauder", "GeorgeV. Lauder" ], "works_count": 2813, "cited_by_count": 26219, "summary_stats": { "2yr_mean_citedness": 8.72972972972973, "h_index": 91,...") |
No edit summary |
||
Line 1,179: | Line 1,179: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5053939876" | "_id": "https://openalex.org/A5053939876" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0003-0731-286X", | |||
"mainEntityOfPage": "https://orcid.org/0000-0003-0731-286X", | |||
"givenName": "George", | |||
"familyName": "Lauder", | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jmor.21764", | |||
"name": "Patterns of dermal denticle loss in sharks", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jmor.21764" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/icb/icae066", | |||
"name": "Hydrodynamic Function of the Slimy and Scaly Surfaces of Teleost Fishes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/icb/icae066" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/icb/icae044", | |||
"name": "Combining Computational Fluid Dynamics and Experimental Data to Understand Fish Schooling Behavior", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/icb/icae044" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-3190/ad1dba", | |||
"name": "Fish robotics: multi-fin propulsion and the coupling of fin phase, spacing, and compliance", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-3190/ad1dba" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.7554/elife.90352", | |||
"name": "Energy conservation by collective movement in schooling fish", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.7554/elife.90352" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.7554/elife.90352.3", | |||
"name": "Energy conservation by collective movement in schooling fish", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.7554/elife.90352.3" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/2024.01.18.576168", | |||
"name": "Collective movement of schooling fish reduces locomotor cost in turbulence", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/2024.01.18.576168" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.7554/elife.90352.2", | |||
"name": "Energy conservation by collective movement in schooling fish", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.7554/elife.90352.2" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1242/jeb.246684", | |||
"name": "Locomotor effects of a fibrosis-based immune response in stickleback fish", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1242/jeb.246684" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.7554/elife.90352.1", | |||
"name": "Energy conservation by group dynamics in schooling fish", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.7554/elife.90352.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/d15111105", | |||
"name": "The Denticle Multiverse: Morphological Diversity of Placoid Scales across Ontogeny in the Portuguese Dogfish, Centroscymnus coelolepis, and Its Systematic Implications", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/d15111105" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1242/jeb.245617", | |||
"name": "Energetics of collective movement in vertebrates", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1242/jeb.245617" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1098/rsif.2023.0357", | |||
"name": "The role of hydrodynamics in collective motions of fish schools and bioinspired underwater robots", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1098/rsif.2023.0357" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/icb/icad096", | |||
"name": "Genes, Morphology, Performance, and Fitness: Quantifying Organismal Performance to Understand Adaptive Evolution", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/icb/icad096" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1103/physrevfluids.8.073101", | |||
"name": "Vortex dynamics and fin-fin interactions resulting in performance enhancement in fish-like propulsion", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1103/physrevfluids.8.073101" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/2023.06.24.546342", | |||
"name": "Locomotor effects of a fibrosis-based immune response in stickleback fish", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/2023.06.24.546342" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.7554/elife.81392", | |||
"name": "In-line swimming dynamics revealed by fish interacting with a robotic mechanism", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.7554/elife.81392" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/2022.11.09.515731", | |||
"name": "Energy conservation by collective movement in schooling fish", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/2022.11.09.515731" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-3190/ac9879", | |||
"name": "Role of the caudal peduncle in a fish-inspired robotic model: how changing stiffness and angle of attack affects swimming performance", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-3190/ac9879" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/icb/icac039", | |||
"name": "A Fish-Like Soft-Robotic Model Generates a Diversity of Swimming Patterns", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/icb/icac039" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/icb/icac016", | |||
"name": "Robotics as a Comparative Method in Ecology and Evolutionary Biology", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/icb/icac016" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/2022.07.14.500016", | |||
"name": "In-line swimming dynamics revealed by fish interacting with a robotic mechanism", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/2022.07.14.500016" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-3190/ac6bd6", | |||
"name": "Fish-inspired segment models for undulatory steady swimming", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-3190/ac6bd6" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1126/science.abh0474", | |||
"name": "An autonomously swimming biohybrid fish designed with human cardiac biophysics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1126/science.abh0474" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-3190/ac3ca5", | |||
"name": "Tunable stiffness in fish robotics: mechanisms and advantages", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-3190/ac3ca5" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/iob/obab034", | |||
"name": "Dermal Denticle Diversity in Sharks: Novel Patterns on the Interbranchial Skin", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/iob/obab034" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1073/pnas.2113206118", | |||
"name": "Convergence of undulatory swimming kinematics across a diversity of fishes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1073/pnas.2113206118" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-3190/ac03a8", | |||
"name": "Fin\u2013fin interactions during locomotion in a simplified biomimetic fish model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-3190/ac03a8" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-3190/abe137", | |||
"name": "Hydrodynamic advantages of in-line schooling", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-3190/abe137" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-3190/abd013", | |||
"name": "Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-3190/abd013" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-3190/abb86d", | |||
"name": "Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-3190/abb86d" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1098/rspb.2020.2726", | |||
"name": "Tuna robotics: hydrodynamics of rapid linear accelerations", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1098/rspb.2020.2726" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jmor.21224", | |||
"name": "Longer development provides first\u2010feeding fish time to escape hydrodynamic constraints", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jmor.21224" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jmor.21222", | |||
"name": "The denticle surface of thresher shark tails: Three\u2010dimensional structure and comparison to other pelagic species", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jmor.21222" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-3190/ab8d0f", | |||
"name": "Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-3190/ab8d0f" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1073/pnas.1919055117", | |||
"name": "Airfoil-like mechanics generate thrust on the anterior body of swimming fishes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1073/pnas.1919055117" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-3190/ab75f7", | |||
"name": "Tunas as a high-performance fish platform for inspiring the next generation of autonomous underwater vehicles", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-3190/ab75f7" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/2020.02.20.958389", | |||
"name": "The fish body functions as an airfoil: surface pressures generate thrust during carangiform locomotion", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/2020.02.20.958389" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1242/jeb.223230", | |||
"name": "How zebrafish turn: analysis of pressure force dynamics and mechanical work", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1242/jeb.223230" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1063/1.5129274", | |||
"name": "Hydrodynamics of median-fin interactions in fish-like locomotion: Effects of fin shape and movement", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1063/1.5129274" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1126/scirobotics.aax4615", | |||
"name": "Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1126/scirobotics.aax4615" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jmor.20836", | |||
"name": "Diversity of dermal denticle structure in sharks: Skin surface roughness and three\u2010dimensional morphology", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jmor.20836" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jmor.20814", | |||
"name": "Scale diversity in bigeye tuna (Thunnus obesus): Fat\u2010filled trabecular scales made of cellular bone", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jmor.20814" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1242/jeb.138438", | |||
"name": "Robotics-inspired biology", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1242/jeb.138438" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jmor.20744", | |||
"name": "Structure of supporting elements in the dorsal fin of percid fishes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jmor.20744" | |||
} | |||
} | |||
] | |||
} | |||
} | } | ||
} | } |
Latest revision as of 20:50, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5053939876", "orcid": "https://orcid.org/0000-0003-0731-286X", "display_name": "George Lauder", "display_name_alternatives": [ "G.V Lauder", "George Lauder", "George V. Lauder", "G. V. Lauder", "G. Lauder", "GeorgeV. Lauder" ], "works_count": 2813, "cited_by_count": 26219, "summary_stats": { "2yr_mean_citedness": 8.72972972972973, "h_index": 91, "i10_index": 263 }, "ids": { "openalex": "https://openalex.org/A5053939876", "orcid": "https://orcid.org/0000-0003-0731-286X" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I136199984", "ror": "https://ror.org/03vek6s52", "display_name": "Harvard University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I136199984" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I2801851002", "ror": "https://ror.org/006v7bf86", "display_name": "Harvard University Press", "country_code": "US", "type": "other", "lineage": [ "https://openalex.org/I136199984", "https://openalex.org/I2801851002" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2017, 2015, 2014, 2013 ] }, { "institution": { "id": "https://openalex.org/I51556381", "ror": "https://ror.org/0153tk833", "display_name": "University of Virginia", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I51556381" ] }, "years": [ 2020 ] }, { "institution": { "id": "https://openalex.org/I4210126082", "ror": "https://ror.org/0411v1p84", "display_name": "Est\u00e9e Lauder (United States)", "country_code": "US", "type": "company", "lineage": [ "https://openalex.org/I4210126082" ] }, "years": [ 2018, 2006 ] }, { "institution": { "id": "https://openalex.org/I124055696", "ror": "https://ror.org/035b05819", "display_name": "University of Copenhagen", "country_code": "DK", "type": "education", "lineage": [ "https://openalex.org/I124055696" ] }, "years": [ 2018 ] }, { "institution": { "id": "https://openalex.org/I174015415", "ror": "https://ror.org/05q5em355", "display_name": "Morpho (United States)", "country_code": "US", "type": "company", "lineage": [ "https://openalex.org/I174015415" ] }, "years": [ 2018 ] }, { "institution": { "id": "https://openalex.org/I63966007", "ror": "https://ror.org/042nb2s44", "display_name": "Massachusetts Institute of Technology", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I63966007" ] }, "years": [ 2017, 2003 ] }, { "institution": { "id": "https://openalex.org/I4210135132", "ror": "https://ror.org/03jsdjx34", "display_name": "Cambridge University Press", "country_code": "GB", "type": "company", "lineage": [ "https://openalex.org/I241749", "https://openalex.org/I4210135132" ] }, "years": [ 2017 ] }, { "institution": { "id": "https://openalex.org/I2799442855", "ror": "https://ror.org/01rz15025", "display_name": "New York University Press", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I2799442855", "https://openalex.org/I57206974" ] }, "years": [ 2017 ] }, { "institution": { "id": "https://openalex.org/I116680314", "ror": "https://ror.org/037xccs34", "display_name": "Chitose Institute of Science and Technology", "country_code": "JP", "type": "education", "lineage": [ "https://openalex.org/I116680314" ] }, "years": [ 2017 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I136199984", "ror": "https://ror.org/03vek6s52", "display_name": "Harvard University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I136199984" ] } ], "topics": [ { "id": "https://openalex.org/T10302", "display_name": "Importance and Conservation of Freshwater Biodiversity", "count": 895, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11170", "display_name": "Biological and Biomimetic Flight Dynamics", "count": 817, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10157", "display_name": "Sports Science and Performance Analysis", "count": 493, "subfield": { "id": "https://openalex.org/subfields/2732", "display_name": "Orthopedics and Sports Medicine" }, "field": { "id": "https://openalex.org/fields/27", "display_name": "Medicine" }, "domain": { "id": "https://openalex.org/domains/4", "display_name": "Health Sciences" } }, { "id": "https://openalex.org/T11056", "display_name": "Metabolic Theory of Ecology and Climate Change Impacts", "count": 345, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11809", "display_name": "NMR Spectroscopy Techniques", "count": 311, "subfield": { "id": "https://openalex.org/subfields/1607", "display_name": "Spectroscopy" }, "field": { "id": "https://openalex.org/fields/16", "display_name": "Chemistry" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11279", "display_name": "Lanthanide Luminescence in Biomedical Applications", "count": 195, "subfield": { "id": "https://openalex.org/subfields/2505", "display_name": "Materials Chemistry" }, "field": { "id": "https://openalex.org/fields/25", "display_name": "Materials Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "count": 178, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10612", "display_name": "Molecular Magnetism and Spintronics", "count": 105, "subfield": { "id": "https://openalex.org/subfields/2504", "display_name": "Electronic, Optical and Magnetic Materials" }, "field": { "id": "https://openalex.org/fields/25", "display_name": "Materials Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11878", "display_name": "Solid Acids in Protonic Conduction and Ferroelectricity", "count": 82, "subfield": { "id": "https://openalex.org/subfields/2505", "display_name": "Materials Chemistry" }, "field": { "id": "https://openalex.org/fields/25", "display_name": "Materials Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11192", "display_name": "Underwater Acoustic Sensor Networks and Communication", "count": 75, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12014", "display_name": "Biogeography and Conservation of Neotropical Freshwater Fishes", "count": 72, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11387", "display_name": "Conservation of Sharks and Rays", "count": 63, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12381", "display_name": "Electron Spin Resonance in Biomolecular Studies", "count": 60, "subfield": { "id": "https://openalex.org/subfields/1304", "display_name": "Biophysics" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12719", "display_name": "Airborne Wind Energy Systems and High-Altitude Platforms", "count": 51, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10332", "display_name": "Global Amphibian Declines and Extinctions", "count": 33, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10955", "display_name": "Evolutionary History and Diversity of Dinosaurs", "count": 24, "subfield": { "id": "https://openalex.org/subfields/1911", "display_name": "Paleontology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11486", "display_name": "Hydrodynamics of Active Matter", "count": 21, "subfield": { "id": "https://openalex.org/subfields/3104", "display_name": "Condensed Matter Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10879", "display_name": "Biomechanics of Bipedal Locomotion in Robots and Animals", "count": 20, "subfield": { "id": "https://openalex.org/subfields/2204", "display_name": "Biomedical Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10174", "display_name": "Evolutionary Ecology of Animal Behavior and Traits", "count": 20, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10360", "display_name": "Turbulent Flows and Vortex Dynamics", "count": 19, "subfield": { "id": "https://openalex.org/subfields/2206", "display_name": "Computational Mechanics" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11685", "display_name": "Zebrafish as a Model Organism for Multidisciplinary Research", "count": 16, "subfield": { "id": "https://openalex.org/subfields/1307", "display_name": "Cell Biology" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11751", "display_name": "Lattice Boltzmann Method for Complex Flows", "count": 16, "subfield": { "id": "https://openalex.org/subfields/2206", "display_name": "Computational Mechanics" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10659", "display_name": "Ecology and Conservation of Marine Mammals", "count": 15, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10604", "display_name": "Regulation of RNA Processing and Function", "count": 14, "subfield": { "id": "https://openalex.org/subfields/1312", "display_name": "Molecular Biology" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11354", "display_name": "Evolutionary Dynamics of Mammals and Their Ancestors", "count": 13, "subfield": { "id": "https://openalex.org/subfields/1911", "display_name": "Paleontology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T11170", "display_name": "Biological and Biomimetic Flight Dynamics", "value": 0.0237162, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11056", "display_name": "Metabolic Theory of Ecology and Climate Change Impacts", "value": 0.0024015, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10302", "display_name": "Importance and Conservation of Freshwater Biodiversity", "value": 0.0023637, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10157", "display_name": "Sports Science and Performance Analysis", "value": 0.0017939, "subfield": { "id": "https://openalex.org/subfields/2732", "display_name": "Orthopedics and Sports Medicine" }, "field": { "id": "https://openalex.org/fields/27", "display_name": "Medicine" }, "domain": { "id": "https://openalex.org/domains/4", "display_name": "Health Sciences" } }, { "id": "https://openalex.org/T11809", "display_name": "NMR Spectroscopy Techniques", "value": 0.0016487, "subfield": { "id": "https://openalex.org/subfields/1607", "display_name": "Spectroscopy" }, "field": { "id": "https://openalex.org/fields/16", "display_name": "Chemistry" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "value": 0.0012294, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11279", "display_name": "Lanthanide Luminescence in Biomedical Applications", "value": 0.0009744, "subfield": { "id": "https://openalex.org/subfields/2505", "display_name": "Materials Chemistry" }, "field": { "id": "https://openalex.org/fields/25", "display_name": "Materials Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12719", "display_name": "Airborne Wind Energy Systems and High-Altitude Platforms", "value": 0.0009418, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11387", "display_name": "Conservation of Sharks and Rays", "value": 0.0005678, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12014", "display_name": "Biogeography and Conservation of Neotropical Freshwater Fishes", "value": 0.0005546, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11192", "display_name": "Underwater Acoustic Sensor Networks and Communication", "value": 0.0005338, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10612", "display_name": "Molecular Magnetism and Spintronics", "value": 0.000436, "subfield": { "id": "https://openalex.org/subfields/2504", "display_name": "Electronic, Optical and Magnetic Materials" }, "field": { "id": "https://openalex.org/fields/25", "display_name": "Materials Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12381", "display_name": "Electron Spin Resonance in Biomolecular Studies", "value": 0.0003923, "subfield": { "id": "https://openalex.org/subfields/1304", "display_name": "Biophysics" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11486", "display_name": "Hydrodynamics of Active Matter", "value": 0.0003245, "subfield": { "id": "https://openalex.org/subfields/3104", "display_name": "Condensed Matter Physics" }, "field": { "id": "https://openalex.org/fields/31", "display_name": "Physics and Astronomy" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11878", "display_name": "Solid Acids in Protonic Conduction and Ferroelectricity", "value": 0.0003215, "subfield": { "id": "https://openalex.org/subfields/2505", "display_name": "Materials Chemistry" }, "field": { "id": "https://openalex.org/fields/25", "display_name": "Materials Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10955", "display_name": "Evolutionary History and Diversity of Dinosaurs", "value": 0.000308, "subfield": { "id": "https://openalex.org/subfields/1911", "display_name": "Paleontology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11685", "display_name": "Zebrafish as a Model Organism for Multidisciplinary Research", "value": 0.0003049, "subfield": { "id": "https://openalex.org/subfields/1307", "display_name": "Cell Biology" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10879", "display_name": "Biomechanics of Bipedal Locomotion in Robots and Animals", "value": 0.0002933, "subfield": { "id": "https://openalex.org/subfields/2204", "display_name": "Biomedical Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10332", "display_name": "Global Amphibian Declines and Extinctions", "value": 0.0002221, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11751", "display_name": "Lattice Boltzmann Method for Complex Flows", "value": 0.0001462, "subfield": { "id": "https://openalex.org/subfields/2206", "display_name": "Computational Mechanics" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10868", "display_name": "Design and Control of Soft Robotic Systems", "value": 0.0001276, "subfield": { "id": "https://openalex.org/subfields/2204", "display_name": "Biomedical Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13748", "display_name": "Secure Classical Communication Using Noise and Laws", "value": 0.0001147, "subfield": { "id": "https://openalex.org/subfields/1705", "display_name": "Computer Networks and Communications" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13664", "display_name": "Genomic Rearrangements in Evolutionary Biology", "value": 0.000111, "subfield": { "id": "https://openalex.org/subfields/1311", "display_name": "Genetics" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10174", "display_name": "Evolutionary Ecology of Animal Behavior and Traits", "value": 0.0001093, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11228", "display_name": "Ecology and Behavior of Bats", "value": 9.67e-05, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 51.3 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 43.1 }, { "id": "https://openalex.org/C505870484", "wikidata": "https://www.wikidata.org/wiki/Q180538", "display_name": "Fishery", "level": 1, "score": 34.3 }, { "id": "https://openalex.org/C2909208804", "wikidata": "https://www.wikidata.org/wiki/Q127282", "display_name": "Fish <Actinopterygii>", "level": 2, "score": 33.6 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 26.8 }, { "id": "https://openalex.org/C2779363728", "wikidata": "https://www.wikidata.org/wiki/Q2258881", "display_name": "Trout", "level": 3, "score": 26.4 } ], "counts_by_year": [ { "year": 2024, "works_count": 11, "cited_by_count": 1545 }, { "year": 2023, "works_count": 13, "cited_by_count": 2073 }, { "year": 2022, "works_count": 23, "cited_by_count": 2028 }, { "year": 2021, "works_count": 14, "cited_by_count": 2156 }, { "year": 2020, "works_count": 2398, "cited_by_count": 1726 }, { "year": 2019, "works_count": 11, "cited_by_count": 1546 }, { "year": 2018, "works_count": 13, "cited_by_count": 1300 }, { "year": 2017, "works_count": 24, "cited_by_count": 1313 }, { "year": 2016, "works_count": 17, "cited_by_count": 1224 }, { "year": 2015, "works_count": 15, "cited_by_count": 1358 }, { "year": 2014, "works_count": 11, "cited_by_count": 1118 }, { "year": 2013, "works_count": 9, "cited_by_count": 988 }, { "year": 2012, "works_count": 16, "cited_by_count": 886 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5053939876", "updated_date": "2024-08-22T11:59:53.334905", "created_date": "2023-07-21", "_id": "https://openalex.org/A5053939876" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0003-0731-286X", "mainEntityOfPage": "https://orcid.org/0000-0003-0731-286X", "givenName": "George", "familyName": "Lauder", "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jmor.21764", "name": "Patterns of dermal denticle loss in sharks", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jmor.21764" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/icb/icae066", "name": "Hydrodynamic Function of the Slimy and Scaly Surfaces of Teleost Fishes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/icb/icae066" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/icb/icae044", "name": "Combining Computational Fluid Dynamics and Experimental Data to Understand Fish Schooling Behavior", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/icb/icae044" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-3190/ad1dba", "name": "Fish robotics: multi-fin propulsion and the coupling of fin phase, spacing, and compliance", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-3190/ad1dba" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.7554/elife.90352", "name": "Energy conservation by collective movement in schooling fish", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.7554/elife.90352" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.7554/elife.90352.3", "name": "Energy conservation by collective movement in schooling fish", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.7554/elife.90352.3" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2024.01.18.576168", "name": "Collective movement of schooling fish reduces locomotor cost in turbulence", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2024.01.18.576168" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.7554/elife.90352.2", "name": "Energy conservation by collective movement in schooling fish", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.7554/elife.90352.2" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1242/jeb.246684", "name": "Locomotor effects of a fibrosis-based immune response in stickleback fish", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1242/jeb.246684" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.7554/elife.90352.1", "name": "Energy conservation by group dynamics in schooling fish", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.7554/elife.90352.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/d15111105", "name": "The Denticle Multiverse: Morphological Diversity of Placoid Scales across Ontogeny in the Portuguese Dogfish, Centroscymnus coelolepis, and Its Systematic Implications", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/d15111105" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1242/jeb.245617", "name": "Energetics of collective movement in vertebrates", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1242/jeb.245617" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1098/rsif.2023.0357", "name": "The role of hydrodynamics in collective motions of fish schools and bioinspired underwater robots", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1098/rsif.2023.0357" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/icb/icad096", "name": "Genes, Morphology, Performance, and Fitness: Quantifying Organismal Performance to Understand Adaptive Evolution", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/icb/icad096" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1103/physrevfluids.8.073101", "name": "Vortex dynamics and fin-fin interactions resulting in performance enhancement in fish-like propulsion", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1103/physrevfluids.8.073101" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2023.06.24.546342", "name": "Locomotor effects of a fibrosis-based immune response in stickleback fish", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2023.06.24.546342" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.7554/elife.81392", "name": "In-line swimming dynamics revealed by fish interacting with a robotic mechanism", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.7554/elife.81392" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2022.11.09.515731", "name": "Energy conservation by collective movement in schooling fish", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2022.11.09.515731" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-3190/ac9879", "name": "Role of the caudal peduncle in a fish-inspired robotic model: how changing stiffness and angle of attack affects swimming performance", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-3190/ac9879" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/icb/icac039", "name": "A Fish-Like Soft-Robotic Model Generates a Diversity of Swimming Patterns", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/icb/icac039" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/icb/icac016", "name": "Robotics as a Comparative Method in Ecology and Evolutionary Biology", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/icb/icac016" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2022.07.14.500016", "name": "In-line swimming dynamics revealed by fish interacting with a robotic mechanism", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2022.07.14.500016" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-3190/ac6bd6", "name": "Fish-inspired segment models for undulatory steady swimming", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-3190/ac6bd6" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1126/science.abh0474", "name": "An autonomously swimming biohybrid fish designed with human cardiac biophysics", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.abh0474" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-3190/ac3ca5", "name": "Tunable stiffness in fish robotics: mechanisms and advantages", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-3190/ac3ca5" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/iob/obab034", "name": "Dermal Denticle Diversity in Sharks: Novel Patterns on the Interbranchial Skin", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/iob/obab034" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1073/pnas.2113206118", "name": "Convergence of undulatory swimming kinematics across a diversity of fishes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.2113206118" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-3190/ac03a8", "name": "Fin\u2013fin interactions during locomotion in a simplified biomimetic fish model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-3190/ac03a8" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-3190/abe137", "name": "Hydrodynamic advantages of in-line schooling", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-3190/abe137" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-3190/abd013", "name": "Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-3190/abd013" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-3190/abb86d", "name": "Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-3190/abb86d" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1098/rspb.2020.2726", "name": "Tuna robotics: hydrodynamics of rapid linear accelerations", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1098/rspb.2020.2726" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jmor.21224", "name": "Longer development provides first\u2010feeding fish time to escape hydrodynamic constraints", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jmor.21224" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jmor.21222", "name": "The denticle surface of thresher shark tails: Three\u2010dimensional structure and comparison to other pelagic species", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jmor.21222" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-3190/ab8d0f", "name": "Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-3190/ab8d0f" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1073/pnas.1919055117", "name": "Airfoil-like mechanics generate thrust on the anterior body of swimming fishes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.1919055117" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-3190/ab75f7", "name": "Tunas as a high-performance fish platform for inspiring the next generation of autonomous underwater vehicles", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-3190/ab75f7" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2020.02.20.958389", "name": "The fish body functions as an airfoil: surface pressures generate thrust during carangiform locomotion", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2020.02.20.958389" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1242/jeb.223230", "name": "How zebrafish turn: analysis of pressure force dynamics and mechanical work", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1242/jeb.223230" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1063/1.5129274", "name": "Hydrodynamics of median-fin interactions in fish-like locomotion: Effects of fin shape and movement", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1063/1.5129274" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1126/scirobotics.aax4615", "name": "Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/scirobotics.aax4615" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jmor.20836", "name": "Diversity of dermal denticle structure in sharks: Skin surface roughness and three\u2010dimensional morphology", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jmor.20836" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jmor.20814", "name": "Scale diversity in bigeye tuna (Thunnus obesus): Fat\u2010filled trabecular scales made of cellular bone", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jmor.20814" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1242/jeb.138438", "name": "Robotics-inspired biology", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1242/jeb.138438" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jmor.20744", "name": "Structure of supporting elements in the dorsal fin of percid fishes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jmor.20744" } } ] } }
}