Item talk:Q139647: Difference between revisions
From geokb
No edit summary |
No edit summary |
||
Line 1,289: | Line 1,289: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5001849461" | "_id": "https://openalex.org/A5001849461" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0002-4000-4888", | |||
"mainEntityOfPage": "https://orcid.org/0000-0002-4000-4888", | |||
"givenName": "Masahito", | |||
"familyName": "Ueyama", | |||
"address": { | |||
"addressCountry": "JP", | |||
"@type": "PostalAddress" | |||
}, | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2023jg007956", | |||
"name": "Solar\u2010Induced Chlorophyll Fluorescence as a Potential Proxy for Gross Primary Production and Methane Emission in a Cool\u2010Temperate Bog in Northern Japan", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2023jg007956" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.22541/essoar.171707810.00580408/v1", | |||
"name": "Boreal Forest Fire Causes Daytime Surface Warming During Summer to Exceed Surface Cooling During Winter in North America", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.22541/essoar.171707810.00580408/v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2023wr035984", | |||
"name": "Interannual Variations in Spring Snowmelt Timing of Alaskan Black Spruce Forests Using a Bulk\u2010Surface Energy Balance Approach", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2023wr035984" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/jstars.2024.3387979", | |||
"name": "Construction and Validation of a Dawn and Dusk Land Surface Temperature Using MERSI-LL FY-3E", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/jstars.2024.3387979" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1073/pnas.2301596120", | |||
"name": "El Ni\u00f1o-Southern Oscillation forcing on carbon and water cycling in a Bornean tropical rainforest", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1073/pnas.2301596120" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2023.109600", | |||
"name": "Snow-corrected vegetation indices for improved gross primary productivity assessment in North American evergreen forests", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2023.109600" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/ace376", | |||
"name": "A boreal forest model benchmarking dataset for North America: a case study with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/ace376" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.16594", | |||
"name": "Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.16594" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.polar.2022.100921", | |||
"name": "Methane and carbon dioxide emissions from the forest floor of a black spruce forest on permafrost in interior Alaska", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.polar.2022.100921" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.polar.2022.100918", | |||
"name": "Snow disappearance timing associated with elevation and vegetation type determines heterogeneity in spring onset in interior Alaska", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.polar.2022.100918" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1071/wf22165", | |||
"name": "Evaluating the Drought Code for lowland taiga of Interior Alaska using eddy covariance measurements", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1071/wf22165" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2022.109113", | |||
"name": "What explains the year-to-year variation in growing season timing of boreal black spruce forests?", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2022.109113" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.envpol.2022.119210", | |||
"name": "A decade of CO2 flux measured by the eddy covariance method including the COVID-19 pandemic period in an urban center in Sakai, Japan", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.envpol.2022.119210" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2022.108852", | |||
"name": "Partitioning methane flux by the eddy covariance method in a cool temperate bog based on a Bayesian framework", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2022.108852" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2021.108654", | |||
"name": "Constraining models for methane oxidation based on long-term continuous chamber measurements in a temperate forest soil", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2021.108654" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-17-5861-2020", | |||
"name": "Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-17-5861-2020" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020jd032968", | |||
"name": "Cooling and Moistening of the Planetary Boundary Layer in Interior Alaska Due to a Postfire Change in Surface Energy Exchange", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020jd032968" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/ab79e5", | |||
"name": "Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/ab79e5" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-2020-182", | |||
"name": "Investigating the sensitivity of soil respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-2020-182" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-2020-182-supplement", | |||
"name": "Supplementary material to "Investigating the sensitivity of soil respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model"", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-2020-182-supplement" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41558-020-0763-7", | |||
"name": "Increasing contribution of peatlands to boreal evapotranspiration in a warming climate", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41558-020-0763-7" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2019.107852", | |||
"name": "Environmental controls on methane fluxes in a cool temperate bog", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2019.107852" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.14863", | |||
"name": "Increased high\u2010latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.14863" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2480/agrmet.d-20-00022", | |||
"name": "Cooling effect of an urban park by enhanced heat transport efficiency", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2480/agrmet.d-20-00022" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2480/agrmet.d-18-00029", | |||
"name": "Observation of vertical profiles of NO, O<SUB>3</SUB>, and VOCs to estimate their sources and sinks by inverse modeling in a Japanese larch forest", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2480/agrmet.d-18-00029" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2019.05.020", | |||
"name": "Carbon dioxide balance in early-successional forests after forest fires in interior Alaska", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2019.05.020" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1175/bams-d-18-0268.1", | |||
"name": "FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and Future Directions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1175/bams-d-18-0268.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.atmosenv.2018.04.025", | |||
"name": "A cool-temperate young larch plantation as a net methane source - A 4-year continuous hyperbolic relaxed eddy accumulation and chamber measurements", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.atmosenv.2018.04.025" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2480/agrmet.d-17-00031", | |||
"name": "Leaf-and ecosystem-scale photosynthetic parameters for the overstory and understory of boreal forests in interior Alaska", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2480/agrmet.d-17-00031" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85045257191" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2016jg003640", | |||
"name": "New data\u2010driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2016jg003640" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/aa926d", | |||
"name": "Reconciliation of top-down and bottom-up CO2 fluxes in Siberian larch forest", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85039069313" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/aa926d" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.uclim.2017.01.005", | |||
"name": "Surface energy exchange in a dense urban built-up area based on two-year eddy covariance measurements in Sakai, Japan", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.uclim.2017.01.005" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85010901242" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/acp-2016-334-ac2", | |||
"name": "Interactive comment on \u201cDiurnal, weekly, seasonal and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan\u201d by Masahito Ueyama and Tomoya Ando", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/acp-2016-334-ac2" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/acp-2016-334-ac1", | |||
"name": "Reply to anonymous refree #1", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/acp-2016-334-ac1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/acp-2016-334", | |||
"name": "Diurnal, weekly, seasonal and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/acp-2016-334" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/acp-16-14727-2016", | |||
"name": "Diurnal, weekly, seasonal, and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/acp-16-14727-2016" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84998879833" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2016.02.020", | |||
"name": "Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84959432523" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2016.02.020" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2016.03.007", | |||
"name": "Optimization of a biochemical model with eddy covariance measurements in black spruce forests of Alaska for estimating CO2 fertilization effects", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2016.03.007" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84962332939" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2480/agrmet.d-14-00003", | |||
"name": "Effects of water vapor dilution on trace gas flux, and practical correction methods", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2480/agrmet.d-14-00003" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84930733929" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2014.11.005", | |||
"name": "Impact of anomalous climates on carbon allocation to biomass production of leaves, woody components, and fine roots in a cool-temperate deciduous forest", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2014.11.005" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84911410197" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2015.08.252", | |||
"name": "Methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84940375161" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2015.08.252" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2015.05.004", | |||
"name": "Methane uptake in a temperate forest soil using continuous closed-chamber measurements", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84934950108" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2015.05.004" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/00380768.2014.990349", | |||
"name": "Spatial and seasonal variations of CO2 flux and photosynthetic and respiratory parameters of larch forests in East Asia", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/00380768.2014.990349" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84922348007" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2015.08.247", | |||
"name": "Understory CO2, sensible heat, and latent heat fluxes in a black spruce forest in interior Alaska", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2015.08.247" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84939625241" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2014.05.005", | |||
"name": "An inter-comparison between Gill and Campbell sonic anemometers", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84901469387" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2014.05.005" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.12434", | |||
"name": "Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84896708360" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.12434" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2014jg002717", | |||
"name": "Change in surface energy balance in Alaska due to fire and spring warming, based on upscaling eddy covariance measurements", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2014jg002717" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84924978263" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-11-5877-2014", | |||
"name": "Delayed responses of an Arctic ecosystem to an extreme summer: Impacts on net ecosystem exchange and vegetation functioning", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-11-5877-2014" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84908584038" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10310-014-0448-z", | |||
"name": "Does summer warming reduce black spruce productivity in interior Alaska?", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84922000471" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10310-014-0448-z" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2014.06.002", | |||
"name": "Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84903594244" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2014.06.002" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2014jg002716", | |||
"name": "Inferring methane fluxes at a larch forest using Lagrangian, Eulerian, and hybrid inverse models", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84925002715" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2014jg002716" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10874-014-9282-0", | |||
"name": "Is the empirical coefficient b for the relaxed eddy accumulation method constant?", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84904046217" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10874-014-9282-0" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.atmosenv.2013.10.054", | |||
"name": "Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84888258084" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.atmosenv.2013.10.054" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bgd-10-19189-2013", | |||
"name": "Delayed responses of an Arctic ecosystem to an extremely dry summer: impacts on net ecosystem exchange and vegetation functioning", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bgd-10-19189-2013" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10310-012-0378-6", | |||
"name": "Dataset of CarboEastAsia and uncertainties in the CO2 budget evaluation caused by different data processing", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84873719977" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10310-012-0378-6" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11284-012-1019-4", | |||
"name": "Determination of the gas exchange phenology in an evergreen coniferous forest from 7 years of eddy covariance flux data using an extended big-leaf analysis", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11284-012-1019-4" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84876995517" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1890/11-0875.1", | |||
"name": "Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA)", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84891290113" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1890/11-0875.1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2013.04.029", | |||
"name": "High-precision measurements of the methane flux over a larch forest based on a hyperbolic relaxed eddy accumulation method using a laser spectrometer", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2013.04.029" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84880326611" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs5116043", | |||
"name": "Recent changes in terrestrial gross primary productivity in asia from 1982 to 2011", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84904636101" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs5116043" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10310-012-0367-9", | |||
"name": "Site-level model-data synthesis of terrestrial carbon fluxes in the CarboEastAsia eddy-covariance observation network: Toward future modeling efforts", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84873721170" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10310-012-0367-9" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11284-013-1072-7", | |||
"name": "The role of carbon flux and biometric observations in constraining a terrestrial ecosystem model: A case study in disturbed forests in East Asia", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84883799994" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11284-013-1072-7" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jgrg.20095", | |||
"name": "Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jgrg.20095" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84886656522" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.polar.2013.03.004", | |||
"name": "Variations in fraction of absorbed photosynthetically active radiation and comparisons with MODIS data in burned black spruce forests of interior Alaska", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.polar.2013.03.004" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84879078962" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s00704-012-0587-0", | |||
"name": "Continuous measurement of methane flux over a larch forest using a relaxed eddy accumulation method", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s00704-012-0587-0" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84864474026" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Influences of various calculation options on heat, water and carbon fluxes determined by open- and closed-path eddy covariance methods" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s00704-011-0564-z", | |||
"name": "Measurement of methane flux over an evergreen coniferous forest canopy using a relaxed eddy accumulation system with tuneable diode laser spectroscopy detection", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s00704-011-0564-z" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84862242333" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Sensitivity and offset changes of a fast-response open-path infrared gas analyzer during long-term observations in an Arctic environment" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2012.03.017", | |||
"name": "The role of permafrost in water exchange of a black spruce forest in Interior Alaska", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2012.03.017" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84859919745" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Development of a Portable Relaxed Eddy Accumulation Devise and Its Application for Terpenoid Flux Measurement Above a Larch Forest" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2151/sola.2011-027", | |||
"name": "Quick recovery of carbon dioxide exchanges in a burned black spruce forest in Interior Alaska", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2151/sola.2011-027" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84861819820" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecolmodel.2011.05.006", | |||
"name": "The sensitivity of carbon sequestration to harvesting and climate conditions in a temperate cypress forest: Observations and modeling", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecolmodel.2011.05.006" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-80051942397" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10546-010-9513-0", | |||
"name": "Influence of Source/Sink Distributions on Flux-Gradient Relationships in the Roughness Sublayer Over an Open Forest Canopy Under Unstable Conditions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77955711540" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10546-010-9513-0" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-7-2061-2010", | |||
"name": "Multi-model analysis of terrestrial carbon cycles in Japan: Limitations and implications of model calibration using eddy flux observations", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-7-2061-2010" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77954362015" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1175/2010ei319.1", | |||
"name": "Satellite-based modeling of the carbon fluxes in mature black spruce forests in Alaska: A synthesis of the eddy covariance data and satellite remote sensing data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-78650384065" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1175/2010ei319.1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-7-959-2010", | |||
"name": "Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77949389085" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-7-959-2010" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2480/agrmet.65.4.1", | |||
"name": "A technique for high-accuracy flux measurement using a relaxed eddy accumulation system with an appropriate averaging strategy", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-80051936123" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2480/agrmet.65.4.1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2480/agrmet.65.4.6", | |||
"name": "Applications of MODIS-visible bands index, greenery ratio to estimate CO2 budget of a rice paddy in Japan", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2480/agrmet.65.4.6" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-81355156476" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2008.10.011", | |||
"name": "Response of the carbon cycle in sub-arctic black spruce forests to climate change: Reduction of a carbon sink related to the sensitivity of heterotrophic respiration", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-59249089700" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2008.10.011" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2480/agrmet.65.1.12", | |||
"name": "Satellite Observations of Decadal Scale CO2 Fluxes Over Black Spruce Forests in Alaska Associated with Climate Variability", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2480/agrmet.65.1.12" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84879290448" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2480/agrmet.63.171", | |||
"name": "Applications of NOAA/AVHRR and Observed Fluxes to Estimate 3 Regional Carbon Fluxes over Black Spruce Forests in Alaska", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84987804615" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2480/agrmet.63.171" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1600-0889.2006.00233.x", | |||
"name": "Assessment of winter fluxes of CO2 and CH4 in boreal forest soils of central Alaska estimated by the profile method and the chamber method: A diagnosis of methane emission and implications for the regional carbon budget", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33947431077" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1600-0889.2006.00233.x" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1600-0889.2006.00205.x", | |||
"name": "Controlling factors on the interannual CO2 budget at a subarctic black spruce forest in interior Alaska", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33750037911" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1600-0889.2006.00205.x" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Micrometeorological measurements of methane flux at a boreal forest in central Alaska", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33745752695" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2480/agrmet.62.9", | |||
"name": "Vertical Distribution of CO2 Flux within and Above a Larch Forest -Experimental and Numerical Approach-", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2480/agrmet.62.9" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84924979831" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2480/agrmet.60.25", | |||
"name": "Feature of Wind Profile in and above a Forest Canopy in a Complex Terrain", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2480/agrmet.60.25" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33745741100" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2480/agrmet.60.133", | |||
"name": "The Mechanism of Sensible Heat Transfer in and above a Forest", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-80051917803" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2480/agrmet.60.133" | |||
} | |||
] | |||
} | |||
] | |||
}, | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "ResearcherID", | |||
"value": "O-1294-2018" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "14033562700" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Researcher Name Resolver ID", | |||
"value": "1000060508373" | |||
} | |||
] | |||
} | } | ||
} | } |
Latest revision as of 20:22, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5001849461", "orcid": "https://orcid.org/0000-0002-4000-4888", "display_name": "Masahito Ueyama", "display_name_alternatives": [ "M. Ueyama", "Masahito Ueyama" ], "works_count": 197, "cited_by_count": 3742, "summary_stats": { "2yr_mean_citedness": 10.825, "h_index": 34, "i10_index": 72 }, "ids": { "openalex": "https://openalex.org/A5001849461", "orcid": "https://orcid.org/0000-0002-4000-4888", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=14033562700&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I15807432", "ror": "https://ror.org/02cf1je33", "display_name": "Osaka Prefecture University", "country_code": "JP", "type": "education", "lineage": [ "https://openalex.org/I15807432" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I69740276", "ror": "https://ror.org/00ws30h19", "display_name": "Tokyo Metropolitan University", "country_code": "JP", "type": "education", "lineage": [ "https://openalex.org/I69740276" ] }, "years": [ 2024, 2023, 2022 ] }, { "institution": { "id": "https://openalex.org/I137975476", "ror": "https://ror.org/0244rem06", "display_name": "Shinshu University", "country_code": "JP", "type": "education", "lineage": [ "https://openalex.org/I137975476" ] }, "years": [ 2024 ] }, { "institution": { "id": "https://openalex.org/I141472210", "ror": "https://ror.org/01j7nq853", "display_name": "University of Alaska Fairbanks", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I141472210" ] }, "years": [ 2023, 2021, 2014, 2009, 2007, 2006 ] }, { "institution": { "id": "https://openalex.org/I1285790362", "ror": "https://ror.org/05hppb561", "display_name": "Finnish Meteorological Institute", "country_code": "FI", "type": "government", "lineage": [ "https://openalex.org/I1284112523", "https://openalex.org/I1285790362" ] }, "years": [ 2021 ] }, { "institution": { "id": "https://openalex.org/I177725633", "ror": "https://ror.org/00t33hh48", "display_name": "Chinese University of Hong Kong", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I177725633" ] }, "years": [ 2021 ] }, { "institution": { "id": "https://openalex.org/I203172682", "ror": "https://ror.org/0272j5188", "display_name": "Northern Arizona University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I203172682" ] }, "years": [ 2021 ] }, { "institution": { "id": "https://openalex.org/I133731052", "ror": "https://ror.org/040af2s02", "display_name": "University of Helsinki", "country_code": "FI", "type": "education", "lineage": [ "https://openalex.org/I133731052" ] }, "years": [ 2021 ] }, { "institution": { "id": "https://openalex.org/I51923648", "ror": "https://ror.org/01c0k9408", "display_name": "Life University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I51923648" ] }, "years": [ 2017, 2015 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I69740276", "ror": "https://ror.org/00ws30h19", "display_name": "Tokyo Metropolitan University", "country_code": "JP", "type": "education", "lineage": [ "https://openalex.org/I69740276" ] } ], "topics": [ { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "count": 101, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 70, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 50, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 38, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "count": 30, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "count": 26, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "count": 24, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "count": 13, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "count": 10, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "count": 10, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11760", "display_name": "Impacts of Elevated CO2 and Ozone on Plant Physiology", "count": 8, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10766", "display_name": "Urban Heat Islands and Mitigation Strategies", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11880", "display_name": "Estimation of Forest Biomass and Carbon Stocks", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10399", "display_name": "Characterization of Shale Gas Pore Structure", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2211", "display_name": "Mechanics of Materials" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10017", "display_name": "Climate Change and Paleoclimatology", "count": 8, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10466", "display_name": "Numerical Weather Prediction Models", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10190", "display_name": "Health Effects of Air Pollution", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2307", "display_name": "Health, Toxicology and Mutagenesis" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10005", "display_name": "Biodiversity Conservation and Ecosystem Management", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11371", "display_name": "Urban Wind Environment and Air Quality Modeling", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10895", "display_name": "Species Distribution Modeling and Climate Change Impacts", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2302", "display_name": "Ecological Modeling" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10075", "display_name": "Atmospheric Aerosols and their Impacts", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11284", "display_name": "Coalbed Methane Recovery and Utilization Practices", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 0.0003486, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "value": 0.0002965, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "value": 0.0002965, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "value": 0.0001974, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "value": 0.0001725, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "value": 0.0001681, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "value": 0.000149, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11760", "display_name": "Impacts of Elevated CO2 and Ozone on Plant Physiology", "value": 0.0001006, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "value": 8.97e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10766", "display_name": "Urban Heat Islands and Mitigation Strategies", "value": 7.99e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "value": 7.01e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11284", "display_name": "Coalbed Methane Recovery and Utilization Practices", "value": 4.29e-05, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11880", "display_name": "Estimation of Forest Biomass and Carbon Stocks", "value": 3.77e-05, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "value": 2.99e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "value": 2.93e-05, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14157", "display_name": "Hydrological Effects and Water Resource Management in China", "value": 2.21e-05, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13909", "display_name": "Ecological Assessment and Urban Development", "value": 2.2e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13203", "display_name": "Land Use Change and Environmental Impact in China", "value": 1.97e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12063", "display_name": "Heat Transfer in Porous Media and Packed Beds", "value": 1.96e-05, "subfield": { "id": "https://openalex.org/subfields/2206", "display_name": "Computational Mechanics" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11371", "display_name": "Urban Wind Environment and Air Quality Modeling", "value": 1.83e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10399", "display_name": "Characterization of Shale Gas Pore Structure", "value": 1.82e-05, "subfield": { "id": "https://openalex.org/subfields/2211", "display_name": "Mechanics of Materials" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10466", "display_name": "Numerical Weather Prediction Models", "value": 1.74e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10190", "display_name": "Health Effects of Air Pollution", "value": 1.69e-05, "subfield": { "id": "https://openalex.org/subfields/2307", "display_name": "Health, Toxicology and Mutagenesis" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "value": 1.67e-05, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11821", "display_name": "Chemical and Biological Technologies for Odor Control", "value": 1.55e-05, "subfield": { "id": "https://openalex.org/subfields/1508", "display_name": "Process Chemistry and Technology" }, "field": { "id": "https://openalex.org/fields/15", "display_name": "Chemical Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 95.4 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 90.9 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 90.4 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 90.4 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 78.7 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 78.2 }, { "id": "https://openalex.org/C91586092", "wikidata": "https://www.wikidata.org/wiki/Q757520", "display_name": "Atmospheric sciences", "level": 1, "score": 71.1 }, { "id": "https://openalex.org/C110872660", "wikidata": "https://www.wikidata.org/wiki/Q37813", "display_name": "Ecosystem", "level": 2, "score": 70.6 }, { "id": "https://openalex.org/C185592680", "wikidata": "https://www.wikidata.org/wiki/Q2329", "display_name": "Chemistry", "level": 0, "score": 54.8 }, { "id": "https://openalex.org/C35187779", "wikidata": "https://www.wikidata.org/wiki/Q5336709", "display_name": "Eddy covariance", "level": 3, "score": 48.7 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 48.7 }, { "id": "https://openalex.org/C178790620", "wikidata": "https://www.wikidata.org/wiki/Q11351", "display_name": "Organic chemistry", "level": 1, "score": 47.7 }, { "id": "https://openalex.org/C49204034", "wikidata": "https://www.wikidata.org/wiki/Q52139", "display_name": "Climatology", "level": 1, "score": 42.1 }, { "id": "https://openalex.org/C59822182", "wikidata": "https://www.wikidata.org/wiki/Q441", "display_name": "Botany", "level": 1, "score": 41.1 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 37.1 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 36.0 }, { "id": "https://openalex.org/C97137747", "wikidata": "https://www.wikidata.org/wiki/Q38112", "display_name": "Forestry", "level": 1, "score": 33.0 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 33.0 }, { "id": "https://openalex.org/C153294291", "wikidata": "https://www.wikidata.org/wiki/Q25261", "display_name": "Meteorology", "level": 1, "score": 29.9 }, { "id": "https://openalex.org/C87621631", "wikidata": "https://www.wikidata.org/wiki/Q69564", "display_name": "Taiga", "level": 2, "score": 28.9 }, { "id": "https://openalex.org/C192562407", "wikidata": "https://www.wikidata.org/wiki/Q228736", "display_name": "Materials science", "level": 0, "score": 28.9 }, { "id": "https://openalex.org/C68709404", "wikidata": "https://www.wikidata.org/wiki/Q1134475", "display_name": "Flux (metallurgy)", "level": 2, "score": 24.9 }, { "id": "https://openalex.org/C191897082", "wikidata": "https://www.wikidata.org/wiki/Q11467", "display_name": "Metallurgy", "level": 1, "score": 24.9 }, { "id": "https://openalex.org/C151730666", "wikidata": "https://www.wikidata.org/wiki/Q7205", "display_name": "Paleontology", "level": 1, "score": 24.4 }, { "id": "https://openalex.org/C24717449", "wikidata": "https://www.wikidata.org/wiki/Q515905", "display_name": "Primary production", "level": 3, "score": 23.4 } ], "counts_by_year": [ { "year": 2024, "works_count": 11, "cited_by_count": 692 }, { "year": 2023, "works_count": 14, "cited_by_count": 923 }, { "year": 2022, "works_count": 14, "cited_by_count": 675 }, { "year": 2021, "works_count": 26, "cited_by_count": 538 }, { "year": 2020, "works_count": 20, "cited_by_count": 260 }, { "year": 2019, "works_count": 13, "cited_by_count": 149 }, { "year": 2018, "works_count": 4, "cited_by_count": 140 }, { "year": 2017, "works_count": 7, "cited_by_count": 120 }, { "year": 2016, "works_count": 12, "cited_by_count": 96 }, { "year": 2015, "works_count": 14, "cited_by_count": 109 }, { "year": 2014, "works_count": 12, "cited_by_count": 109 }, { "year": 2013, "works_count": 12, "cited_by_count": 81 }, { "year": 2012, "works_count": 5, "cited_by_count": 41 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5001849461", "updated_date": "2024-08-26T14:09:11.659049", "created_date": "2023-07-21", "_id": "https://openalex.org/A5001849461" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0002-4000-4888", "mainEntityOfPage": "https://orcid.org/0000-0002-4000-4888", "givenName": "Masahito", "familyName": "Ueyama", "address": { "addressCountry": "JP", "@type": "PostalAddress" }, "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2023jg007956", "name": "Solar\u2010Induced Chlorophyll Fluorescence as a Potential Proxy for Gross Primary Production and Methane Emission in a Cool\u2010Temperate Bog in Northern Japan", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2023jg007956" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.22541/essoar.171707810.00580408/v1", "name": "Boreal Forest Fire Causes Daytime Surface Warming During Summer to Exceed Surface Cooling During Winter in North America", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.22541/essoar.171707810.00580408/v1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2023wr035984", "name": "Interannual Variations in Spring Snowmelt Timing of Alaskan Black Spruce Forests Using a Bulk\u2010Surface Energy Balance Approach", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2023wr035984" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2024.3387979", "name": "Construction and Validation of a Dawn and Dusk Land Surface Temperature Using MERSI-LL FY-3E", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2024.3387979" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1073/pnas.2301596120", "name": "El Ni\u00f1o-Southern Oscillation forcing on carbon and water cycling in a Bornean tropical rainforest", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.2301596120" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2023.109600", "name": "Snow-corrected vegetation indices for improved gross primary productivity assessment in North American evergreen forests", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2023.109600" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/ace376", "name": "A boreal forest model benchmarking dataset for North America: a case study with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/ace376" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.16594", "name": "Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.16594" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.polar.2022.100921", "name": "Methane and carbon dioxide emissions from the forest floor of a black spruce forest on permafrost in interior Alaska", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.polar.2022.100921" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.polar.2022.100918", "name": "Snow disappearance timing associated with elevation and vegetation type determines heterogeneity in spring onset in interior Alaska", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.polar.2022.100918" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1071/wf22165", "name": "Evaluating the Drought Code for lowland taiga of Interior Alaska using eddy covariance measurements", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1071/wf22165" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2022.109113", "name": "What explains the year-to-year variation in growing season timing of boreal black spruce forests?", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2022.109113" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.envpol.2022.119210", "name": "A decade of CO2 flux measured by the eddy covariance method including the COVID-19 pandemic period in an urban center in Sakai, Japan", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.envpol.2022.119210" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2022.108852", "name": "Partitioning methane flux by the eddy covariance method in a cool temperate bog based on a Bayesian framework", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2022.108852" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2021.108654", "name": "Constraining models for methane oxidation based on long-term continuous chamber measurements in a temperate forest soil", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2021.108654" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-17-5861-2020", "name": "Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-17-5861-2020" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020jd032968", "name": "Cooling and Moistening of the Planetary Boundary Layer in Interior Alaska Due to a Postfire Change in Surface Energy Exchange", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020jd032968" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/ab79e5", "name": "Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/ab79e5" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-2020-182", "name": "Investigating the sensitivity of soil respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-2020-182" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-2020-182-supplement", "name": "Supplementary material to "Investigating the sensitivity of soil respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model"", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-2020-182-supplement" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41558-020-0763-7", "name": "Increasing contribution of peatlands to boreal evapotranspiration in a warming climate", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41558-020-0763-7" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2019.107852", "name": "Environmental controls on methane fluxes in a cool temperate bog", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2019.107852" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.14863", "name": "Increased high\u2010latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.14863" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2480/agrmet.d-20-00022", "name": "Cooling effect of an urban park by enhanced heat transport efficiency", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2480/agrmet.d-20-00022" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2480/agrmet.d-18-00029", "name": "Observation of vertical profiles of NO, O3, and VOCs to estimate their sources and sinks by inverse modeling in a Japanese larch forest", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2480/agrmet.d-18-00029" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2019.05.020", "name": "Carbon dioxide balance in early-successional forests after forest fires in interior Alaska", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2019.05.020" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/bams-d-18-0268.1", "name": "FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and Future Directions", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/bams-d-18-0268.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.atmosenv.2018.04.025", "name": "A cool-temperate young larch plantation as a net methane source - A 4-year continuous hyperbolic relaxed eddy accumulation and chamber measurements", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.atmosenv.2018.04.025" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2480/agrmet.d-17-00031", "name": "Leaf-and ecosystem-scale photosynthetic parameters for the overstory and understory of boreal forests in interior Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2480/agrmet.d-17-00031" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85045257191" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2016jg003640", "name": "New data\u2010driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2016jg003640" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/aa926d", "name": "Reconciliation of top-down and bottom-up CO2 fluxes in Siberian larch forest", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85039069313" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/aa926d" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.uclim.2017.01.005", "name": "Surface energy exchange in a dense urban built-up area based on two-year eddy covariance measurements in Sakai, Japan", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.uclim.2017.01.005" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85010901242" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/acp-2016-334-ac2", "name": "Interactive comment on \u201cDiurnal, weekly, seasonal and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan\u201d by Masahito Ueyama and Tomoya Ando", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/acp-2016-334-ac2" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/acp-2016-334-ac1", "name": "Reply to anonymous refree #1", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/acp-2016-334-ac1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/acp-2016-334", "name": "Diurnal, weekly, seasonal and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/acp-2016-334" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/acp-16-14727-2016", "name": "Diurnal, weekly, seasonal, and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/acp-16-14727-2016" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84998879833" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2016.02.020", "name": "Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84959432523" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2016.02.020" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2016.03.007", "name": "Optimization of a biochemical model with eddy covariance measurements in black spruce forests of Alaska for estimating CO2 fertilization effects", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2016.03.007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84962332939" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2480/agrmet.d-14-00003", "name": "Effects of water vapor dilution on trace gas flux, and practical correction methods", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2480/agrmet.d-14-00003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84930733929" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2014.11.005", "name": "Impact of anomalous climates on carbon allocation to biomass production of leaves, woody components, and fine roots in a cool-temperate deciduous forest", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2014.11.005" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84911410197" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2015.08.252", "name": "Methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84940375161" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2015.08.252" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2015.05.004", "name": "Methane uptake in a temperate forest soil using continuous closed-chamber measurements", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84934950108" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2015.05.004" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/00380768.2014.990349", "name": "Spatial and seasonal variations of CO2 flux and photosynthetic and respiratory parameters of larch forests in East Asia", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/00380768.2014.990349" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84922348007" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2015.08.247", "name": "Understory CO2, sensible heat, and latent heat fluxes in a black spruce forest in interior Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2015.08.247" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84939625241" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2014.05.005", "name": "An inter-comparison between Gill and Campbell sonic anemometers", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84901469387" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2014.05.005" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.12434", "name": "Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84896708360" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.12434" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2014jg002717", "name": "Change in surface energy balance in Alaska due to fire and spring warming, based on upscaling eddy covariance measurements", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014jg002717" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84924978263" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-11-5877-2014", "name": "Delayed responses of an Arctic ecosystem to an extreme summer: Impacts on net ecosystem exchange and vegetation functioning", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-11-5877-2014" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84908584038" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10310-014-0448-z", "name": "Does summer warming reduce black spruce productivity in interior Alaska?", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84922000471" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10310-014-0448-z" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2014.06.002", "name": "Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84903594244" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2014.06.002" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2014jg002716", "name": "Inferring methane fluxes at a larch forest using Lagrangian, Eulerian, and hybrid inverse models", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84925002715" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014jg002716" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10874-014-9282-0", "name": "Is the empirical coefficient b for the relaxed eddy accumulation method constant?", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84904046217" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10874-014-9282-0" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.atmosenv.2013.10.054", "name": "Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84888258084" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.atmosenv.2013.10.054" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bgd-10-19189-2013", "name": "Delayed responses of an Arctic ecosystem to an extremely dry summer: impacts on net ecosystem exchange and vegetation functioning", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bgd-10-19189-2013" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10310-012-0378-6", "name": "Dataset of CarboEastAsia and uncertainties in the CO2 budget evaluation caused by different data processing", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873719977" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10310-012-0378-6" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11284-012-1019-4", "name": "Determination of the gas exchange phenology in an evergreen coniferous forest from 7 years of eddy covariance flux data using an extended big-leaf analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11284-012-1019-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84876995517" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1890/11-0875.1", "name": "Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84891290113" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/11-0875.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2013.04.029", "name": "High-precision measurements of the methane flux over a larch forest based on a hyperbolic relaxed eddy accumulation method using a laser spectrometer", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2013.04.029" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880326611" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs5116043", "name": "Recent changes in terrestrial gross primary productivity in asia from 1982 to 2011", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84904636101" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs5116043" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10310-012-0367-9", "name": "Site-level model-data synthesis of terrestrial carbon fluxes in the CarboEastAsia eddy-covariance observation network: Toward future modeling efforts", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873721170" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10310-012-0367-9" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11284-013-1072-7", "name": "The role of carbon flux and biometric observations in constraining a terrestrial ecosystem model: A case study in disturbed forests in East Asia", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84883799994" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11284-013-1072-7" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jgrg.20095", "name": "Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jgrg.20095" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84886656522" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.polar.2013.03.004", "name": "Variations in fraction of absorbed photosynthetically active radiation and comparisons with MODIS data in burned black spruce forests of interior Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.polar.2013.03.004" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879078962" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00704-012-0587-0", "name": "Continuous measurement of methane flux over a larch forest using a relaxed eddy accumulation method", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00704-012-0587-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84864474026" } ] }, { "@type": "CreativeWork", "name": "Influences of various calculation options on heat, water and carbon fluxes determined by open- and closed-path eddy covariance methods" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s00704-011-0564-z", "name": "Measurement of methane flux over an evergreen coniferous forest canopy using a relaxed eddy accumulation system with tuneable diode laser spectroscopy detection", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s00704-011-0564-z" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84862242333" } ] }, { "@type": "CreativeWork", "name": "Sensitivity and offset changes of a fast-response open-path infrared gas analyzer during long-term observations in an Arctic environment" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2012.03.017", "name": "The role of permafrost in water exchange of a black spruce forest in Interior Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2012.03.017" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84859919745" } ] }, { "@type": "CreativeWork", "name": "Development of a Portable Relaxed Eddy Accumulation Devise and Its Application for Terpenoid Flux Measurement Above a Larch Forest" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2151/sola.2011-027", "name": "Quick recovery of carbon dioxide exchanges in a burned black spruce forest in Interior Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2151/sola.2011-027" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84861819820" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecolmodel.2011.05.006", "name": "The sensitivity of carbon sequestration to harvesting and climate conditions in a temperate cypress forest: Observations and modeling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecolmodel.2011.05.006" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80051942397" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10546-010-9513-0", "name": "Influence of Source/Sink Distributions on Flux-Gradient Relationships in the Roughness Sublayer Over an Open Forest Canopy Under Unstable Conditions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77955711540" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10546-010-9513-0" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-7-2061-2010", "name": "Multi-model analysis of terrestrial carbon cycles in Japan: Limitations and implications of model calibration using eddy flux observations", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-7-2061-2010" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954362015" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/2010ei319.1", "name": "Satellite-based modeling of the carbon fluxes in mature black spruce forests in Alaska: A synthesis of the eddy covariance data and satellite remote sensing data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78650384065" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/2010ei319.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-7-959-2010", "name": "Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77949389085" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-7-959-2010" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2480/agrmet.65.4.1", "name": "A technique for high-accuracy flux measurement using a relaxed eddy accumulation system with an appropriate averaging strategy", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80051936123" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2480/agrmet.65.4.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2480/agrmet.65.4.6", "name": "Applications of MODIS-visible bands index, greenery ratio to estimate CO2 budget of a rice paddy in Japan", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2480/agrmet.65.4.6" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-81355156476" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2008.10.011", "name": "Response of the carbon cycle in sub-arctic black spruce forests to climate change: Reduction of a carbon sink related to the sensitivity of heterotrophic respiration", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-59249089700" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2008.10.011" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2480/agrmet.65.1.12", "name": "Satellite Observations of Decadal Scale CO2 Fluxes Over Black Spruce Forests in Alaska Associated with Climate Variability", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2480/agrmet.65.1.12" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879290448" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2480/agrmet.63.171", "name": "Applications of NOAA/AVHRR and Observed Fluxes to Estimate 3 Regional Carbon Fluxes over Black Spruce Forests in Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84987804615" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2480/agrmet.63.171" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1600-0889.2006.00233.x", "name": "Assessment of winter fluxes of CO2 and CH4 in boreal forest soils of central Alaska estimated by the profile method and the chamber method: A diagnosis of methane emission and implications for the regional carbon budget", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33947431077" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1600-0889.2006.00233.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1600-0889.2006.00205.x", "name": "Controlling factors on the interannual CO2 budget at a subarctic black spruce forest in interior Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33750037911" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1600-0889.2006.00205.x" } ] }, { "@type": "CreativeWork", "name": "Micrometeorological measurements of methane flux at a boreal forest in central Alaska", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33745752695" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2480/agrmet.62.9", "name": "Vertical Distribution of CO2 Flux within and Above a Larch Forest -Experimental and Numerical Approach-", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2480/agrmet.62.9" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84924979831" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2480/agrmet.60.25", "name": "Feature of Wind Profile in and above a Forest Canopy in a Complex Terrain", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2480/agrmet.60.25" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33745741100" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2480/agrmet.60.133", "name": "The Mechanism of Sensible Heat Transfer in and above a Forest", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80051917803" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2480/agrmet.60.133" } ] } ] }, "identifier": [ { "@type": "PropertyValue", "propertyID": "ResearcherID", "value": "O-1294-2018" }, { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "14033562700" }, { "@type": "PropertyValue", "propertyID": "Researcher Name Resolver ID", "value": "1000060508373" } ] }
}