Item talk:Q45039: Difference between revisions
From geokb
(Added select OpenAlex data) |
No edit summary |
||
Line 1: | Line 1: | ||
{ | |||
"USGS Staff Profile": { | |||
"_id": "https://www.usgs.gov/staff-profiles/jesslyn-brown", | |||
"item": "https://geokb.wikibase.cloud/entity/Q45039", | |||
"last_update": "2024-05-12T00:00:00Z", | |||
"previous_address": null, | |||
"qid": "Q45039", | |||
"retrieved": "2024-05-12T00:00:00Z", | |||
"schema": { | |||
"@context": "https://schema.org", | |||
"@type": "Person", | |||
"affiliation": [], | |||
"description": [ | |||
{ | |||
"@type": "TextObject", | |||
"abstract": "Research Geographer with the Earth Resources Observation and Science (EROS) Center", | |||
"additionalType": "short description" | |||
}, | |||
{ | |||
"@type": "TextObject", | |||
"abstract": "Jesslyn Brown is a research geographer with the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, USA. Jess's main interests involve improving our understanding of changes in terrestrial vegetation related to climate and other driving forces and advancing the use of remote sensing imagery in applications.", | |||
"additionalType": "staff profile page introductory statement" | |||
}, | |||
{ | |||
"@type": "TextObject", | |||
"abstract": "Jesslyn Brown is a research geographer with the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, USA, where she has worked for 30 years. Since finishing her graduate program at the University of Nebraska\u2014Lincoln in 1990, she has worked in applied geographic research utilizing remote sensing approaches. Jess\u2019s main interests involve improving our understanding of changes in terrestrial vegetation related to climate and other driving forces and advancing the use of remotely sensed imagery for applications including drought early warning, tracking vegetation phenology (i.e., seasonal dynamics), and mapping land cover and land use. Jess was a member of the Global Land Cover Characteristics team that created the first map of global land cover at a 1-km resolution in the 1990s. From 2001 to 2017, she led multiple projects mainly focused on developing new monitoring tools to improve agricultural drought monitoring capabilities in the U.S. in a strong collaboration with the University of Nebraska-Lincoln\u2019s National Drought Mitigation Center. During that time, she also led efforts to investigate recent land use change specifically focused on irrigated agriculture across the country. In 2017, she began a new role leading the Land Change Monitoring Assessment and Projection (LCMAP) science team. LCMAP is a relatively new USGS initiative developing an end-to-end capability to use the deep Landsat record to continuously track and characterize changes in land cover state and condition and translate the information into assessments of current and historical processes of cover and change.", | |||
"additionalType": "personal statement" | |||
} | |||
], | |||
"email": "jfbrown@usgs.gov", | |||
"hasCredential": [], | |||
"hasOccupation": [ | |||
{ | |||
"@type": "OrganizationalRole", | |||
"affiliatedOrganization": { | |||
"@type": "Organization", | |||
"name": "Earth Resources Observation and Science (EROS) Center", | |||
"url": "https://www.usgs.gov/centers/eros" | |||
}, | |||
"roleName": "Research Geographer", | |||
"startDate": "2024-05-12T16:00:58.853613" | |||
} | |||
], | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "GeoKB", | |||
"value": "https://geokb.wikibase.cloud/entity/Q45039" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "ORCID", | |||
"value": "0000-0002-9976-1998" | |||
} | |||
], | |||
"jobTitle": "Research Geographer", | |||
"knowsAbout": [ | |||
{ | |||
"@type": "Thing", | |||
"additionalType": "self-claimed expertise", | |||
"name": "remote sensing" | |||
}, | |||
{ | |||
"@type": "Thing", | |||
"additionalType": "self-claimed expertise", | |||
"name": "geospatial analysis" | |||
}, | |||
{ | |||
"@type": "Thing", | |||
"additionalType": "self-claimed expertise", | |||
"name": "land use and land cover change" | |||
}, | |||
{ | |||
"@type": "Thing", | |||
"additionalType": "self-claimed expertise", | |||
"name": "vegetation phenology" | |||
}, | |||
{ | |||
"@type": "Thing", | |||
"additionalType": "self-claimed expertise", | |||
"name": "drought monitoring" | |||
}, | |||
{ | |||
"@type": "Thing", | |||
"additionalType": "self-claimed expertise", | |||
"name": "irrigated agriculture" | |||
} | |||
], | |||
"memberOf": { | |||
"@type": "OrganizationalRole", | |||
"member": { | |||
"@type": " |
Revision as of 19:31, 30 August 2024
{
"USGS Staff Profile": { "_id": "https://www.usgs.gov/staff-profiles/jesslyn-brown", "item": "https://geokb.wikibase.cloud/entity/Q45039", "last_update": "2024-05-12T00:00:00Z", "previous_address": null, "qid": "Q45039", "retrieved": "2024-05-12T00:00:00Z", "schema": { "@context": "https://schema.org", "@type": "Person", "affiliation": [], "description": [ { "@type": "TextObject", "abstract": "Research Geographer with the Earth Resources Observation and Science (EROS) Center", "additionalType": "short description" }, { "@type": "TextObject", "abstract": "Jesslyn Brown is a research geographer with the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, USA. Jess's main interests involve improving our understanding of changes in terrestrial vegetation related to climate and other driving forces and advancing the use of remote sensing imagery in applications.", "additionalType": "staff profile page introductory statement" }, { "@type": "TextObject", "abstract": "Jesslyn Brown is a research geographer with the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, USA, where she has worked for 30 years. Since finishing her graduate program at the University of Nebraska\u2014Lincoln in 1990, she has worked in applied geographic research utilizing remote sensing approaches. Jess\u2019s main interests involve improving our understanding of changes in terrestrial vegetation related to climate and other driving forces and advancing the use of remotely sensed imagery for applications including drought early warning, tracking vegetation phenology (i.e., seasonal dynamics), and mapping land cover and land use. Jess was a member of the Global Land Cover Characteristics team that created the first map of global land cover at a 1-km resolution in the 1990s. From 2001 to 2017, she led multiple projects mainly focused on developing new monitoring tools to improve agricultural drought monitoring capabilities in the U.S. in a strong collaboration with the University of Nebraska-Lincoln\u2019s National Drought Mitigation Center. During that time, she also led efforts to investigate recent land use change specifically focused on irrigated agriculture across the country. In 2017, she began a new role leading the Land Change Monitoring Assessment and Projection (LCMAP) science team. LCMAP is a relatively new USGS initiative developing an end-to-end capability to use the deep Landsat record to continuously track and characterize changes in land cover state and condition and translate the information into assessments of current and historical processes of cover and change.", "additionalType": "personal statement" } ], "email": "jfbrown@usgs.gov", "hasCredential": [], "hasOccupation": [ { "@type": "OrganizationalRole", "affiliatedOrganization": { "@type": "Organization", "name": "Earth Resources Observation and Science (EROS) Center", "url": "https://www.usgs.gov/centers/eros" }, "roleName": "Research Geographer", "startDate": "2024-05-12T16:00:58.853613" } ], "identifier": [ { "@type": "PropertyValue", "propertyID": "GeoKB", "value": "https://geokb.wikibase.cloud/entity/Q45039" }, { "@type": "PropertyValue", "propertyID": "ORCID", "value": "0000-0002-9976-1998" } ], "jobTitle": "Research Geographer", "knowsAbout": [ { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "remote sensing" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "geospatial analysis" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "land use and land cover change" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "vegetation phenology" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "drought monitoring" }, { "@type": "Thing", "additionalType": "self-claimed expertise", "name": "irrigated agriculture" } ], "memberOf": { "@type": "OrganizationalRole", "member": { "@type": "Organization", "name": "U.S. Geological Survey" }, "name": "staff member", "startDate": "2024-05-12T16:00:58.848318" }, "name": "Jesslyn Brown", "url": "https://www.usgs.gov/staff-profiles/jesslyn-brown" }, "status_code": "200" }, "ORCID": { "@context": "http://schema.org", "@id": "https://orcid.org/0000-0002-9976-1998", "@reverse": { "creator": [ { "@id": "https://doi.org/10.1002/ecs2.4496", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ecs2.4496" }, "name": "Using seasonal climate scenarios in the ForageAhead annual forage production model for early drought impact assessment" }, { "@id": "https://doi.org/10.1088/1748-9326/acad15", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/acad15" }, "name": "Trends in tree cover change over three decades related to interannual climate variability and wildfire in California" }, { "@id": "https://doi.org/10.3390/land11020298", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/land11020298" }, "name": "Conterminous United States Land-Cover Change (1985\u20132016): New Insights from Annual Time Series" }, { "@id": "https://doi.org/10.1175/ei-d-21-0018.1", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/ei-d-21-0018.1" }, "name": "Temporal greenness trends in stable natural land cover and relationships with climatic variability across the conterminous United States" }, { "@id": "https://doi.org/10.3389/fclim.2021.689945", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fclim.2021.689945" }, "name": "Hotter Drought Escalates Tree Cover Declines in Blue Oak Woodlands of California" }, { "@id": "https://doi.org/10.3390/land10040394", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/land10040394" }, "name": "Exploring the Regional Dynamics of U.S. Irrigated Agriculture from 2002 to 2017" }, { "@id": "https://doi.org/10.3390/rs13061210", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs13061210" }, "name": "Exploring VIIRS Continuity with MODIS in an Expedited Capability for Monitoring Drought-Related Vegetation Conditions" }, { "@id": "https://doi.org/10.3390/rs12121919", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs12121919" }, "name": "Investigating the Effects of Land Use and Land Cover on the Relationship between Moisture and Reflectance Using Landsat Time Series" }, { "@id": "https://doi.org/10.1016/j.rse.2019.111356", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2019.111356" }, "name": "Lessons learned implementing an operational continuous United States national land change monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach" }, { "@id": "https://doi.org/10.3133/fs20203024", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/fs20203024" }, "name": "Land change monitoring, assessment, and projection" }, { "@id": "https://doi.org/10.1016/j.isprsjprs.2019.07.005", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.isprsjprs.2019.07.005" }, "name": "Mapping irrigated cropland extent across the conterminous United States at 30\u202fm resolution using a semi-automatic training approach on Google Earth Engine" }, { "@id": "https://doi.org/10.3390/rs11030328", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs11030328" }, "name": "Monitoring Landscape Dynamics in Central U.S. Grasslands with Harmonized Landsat-8 and Sentinel-2 Time Series Data" }, { "@type": "CreativeWork", "name": "Priority questions in multidisciplinary drought research" }, { "@id": "https://doi.org/10.3390/s18030880", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/s18030880" }, "name": "Challenges in Complementing Data from Ground-Based Sensors with Satellite-Derived Products to Measure Ecological Changes in Relation to Climate\u2014Lessons from Temperate Wetland-Upland Landscapes" }, { "@id": "https://doi.org/10.1016/j.jag.2017.06.013", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jag.2017.06.013" }, "name": "Effect of NOAA satellite orbital drift on AVHRR-derived phenological metrics" }, { "@id": "https://doi.org/10.1080/15481603.2017.1286728", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/15481603.2017.1286728" }, "name": "Building the vegetation drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: first results" }, { "@id": "https://doi.org/10.1016/j.agrformet.2015.12.065", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2015.12.065" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84952925779" } ], "name": "Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought" }, { "@id": "https://doi.org/10.3390/rs71215825", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs71215825" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84963628980" } ], "name": "Application-ready expedited MODIS data for operational land surface monitoring of vegetation condition" }, { "@id": "https://doi.org/10.1175/jamc-d-14-0048.1", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923005478" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/jamc-d-14-0048.1" } ], "name": "Assessing the vegetation condition impacts of the 2011 drought across the U.S. southern great plains using the vegetation drought response index (VegDRI)" }, { "@id": "https://doi.org/10.1016/j.ecolind.2014.05.033", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907311634" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecolind.2014.05.033" } ], "name": "Phenology and climate relationships in aspen (Populus tremuloides Michx.) forest and woodland communities of southwestern Colorado" }, { "@id": "https://doi.org/10.1016/j.agsy.2014.01.004", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84899917650" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agsy.2014.01.004" } ], "name": "Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture" }, { "@id": "https://doi.org/10.3133/fs20143052", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/fs20143052" }, "name": "Remote sensing of land surface phenology" }, { "@id": "https://doi.org/10.1080/17538947.2013.860196", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/17538947.2013.860196" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84888816658" } ], "name": "The integration of geophysical and enhanced Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index data into a rule-based, piecewise regression-tree model to estimate cheatgrass beginning of spring growth" }, { "@id": "https://doi.org/10.1109/argo-geoinformatics.2013.6621888", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84888873916" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/argo-geoinformatics.2013.6621888" } ], "name": "Variability and trends in irrigated and non-irrigated croplands in the central U.S." }, { "@id": "https://doi.org/10.3133/fs20103114", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/fs20103114" }, "name": "Drought Monitoring with VegDRI" }, { "@id": "https://doi.org/10.3390/rs2102388", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79958758269" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs2102388" } ], "name": "Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics" }, { "@id": "https://doi.org/10.3390/rs2020526", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80051776207" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs2020526" } ], "name": "Phenological classification of the United States: A geographic framework for extending multi-sensor time-series data" }, { "@id": "https://doi.org/10.2747/1548-1603.47.1.25", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2747/1548-1603.47.1.25" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77949899286" } ], "name": "The vegetation outlook (VegOut): A new method for predicting vegetation seasonal greenness" }, { "@id": "https://doi.org/10.1111/j.1365-2486.2009.01910.x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-70149091491" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2009.01910.x" } ], "name": "Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006" }, { "@id": "https://doi.org/10.1029/2008gl035772", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-60149083938" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2008gl035772" } ], "name": "Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data" }, { "@id": "https://doi.org/10.2747/1548-1603.45.1.16", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-41449106514" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2747/1548-1603.45.1.16" } ], "name": "The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation" }, { "@id": "https://doi.org/10.1029/2006gl029127", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34249910365" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2006gl029127" } ], "name": "A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84869029411" }, "name": "Range condition as input to water quality monitoring in the northern plains" }, { "@id": "https://doi.org/10.1016/j.isprsjprs.2005.02.003", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-20444441158" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.isprsjprs.2005.02.003" } ], "name": "A new approach for predicting drought-related vegetation stress: Integrating satellite, climate, and biophysical data over the U.S. central plains" }, { "@id": "https://doi.org/10.1109/amtrsi.2005.1469863", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33745248079" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/amtrsi.2005.1469863" } ], "name": "Trend analysis of time-series phenology derived from satellite data" }, { "@id": "https://doi.org/10.1007/978-94-007-0632-3_23", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/978-94-007-0632-3_23" }, "name": "Remote Sensing Phenology" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035574761" }, "name": "Interactive visualization of vegetation dynamics" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034655807" }, "name": "Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0032823507" }, "name": "An analysis of the IGBP global land-cover characterization process" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0032851988" }, "name": "The global land-cover characteristics database: The users' perspective" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031625943" }, "name": "Mapping global grassland ecosystems: A comparison of four data sets" }, { "@id": "https://doi.org/10.3133/ofr95652", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3133/ofr95652" }, "name": "Integrating multisource land use and land cover data" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0029531447" }, "name": "Seasonal land-cover regions of the US" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0029481912" }, "name": "Validation of national land-cover characteristics data for regional water-quality assessment" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028583883" }, "name": "Designing global land cover databases to maximize utility: the US prototype" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028591653" }, "name": "Measuring phenological variability from satellite imagery" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027832945" }, "name": "The use of NOAA AVHRR data for assessment of the urban heat island effect" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027788852" }, "name": "The use of a vegetation index for assessment of the urban heat island effect" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027334820" }, "name": "Using multisource data in global land-cover characterization: concepts, requirements, and methods" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0026359302" }, "name": "Development of a land-cover characteristics database for the conterminous US" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0025531914" }, "name": "Satellite-derived indices for monitoring global phytoclimatology" }, { "@id": "https://doi.org/10.4324/9780203302217_chapter_4", "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.4324/9780203302217_chapter_4" }, "name": "Geographic data for environmental modelling and assessment" } ] }, "@type": "Person", "address": { "@type": "PostalAddress", "addressCountry": "US" }, "affiliation": { "@id": "https://doi.org/10.13039/100000201", "@type": "Organization", "alternateName": "U.S. Geological Survey", "name": "U.S. Department of the Interior" }, "familyName": "Brown", "givenName": "Jesslyn", "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "7409455753" }, "mainEntityOfPage": "https://orcid.org/0000-0002-9976-1998", "url": [ "http://phenology.cr.usgs.gov", "https://www.usgs.gov/land-resources/eros/droughtstress/science/vegdri", "https://www.usgs.gov/land-resources/eros/droughtstress/science/modis-irrigated-agriculture", "https://www.usgs.gov/core-science-systems/eros/lcmap" ] }, "OpenAlex": { "created_date": "2023-07-21", "display_name": "Jesslyn F. Brown", "display_name_alternatives": [ "J. F. BROWN", "J.F. Brown", "Jesslyn F. Brown", "J. Brown", "Jesslyn Brown" ], "ids": { "openalex": "https://openalex.org/A5079268644", "orcid": "https://orcid.org/0000-0002-9976-1998", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=7409455753&partnerID=MN8TOARS" }, "last_known_institutions": [ { "country_code": "US", "display_name": "United States Geological Survey", "id": "https://openalex.org/I1286329397", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ], "ror": "https://ror.org/035a68863", "type": "government" } ], "orcid": "https://orcid.org/0000-0002-9976-1998", "topics": [ { "count": 51, "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10111", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 27, "display_name": "Global Forest Drought Response and Climate Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10266", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 18, "display_name": "Species Distribution Modeling and Climate Change Impacts", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10895", "subfield": { "display_name": "Ecological Modeling", "id": "https://openalex.org/subfields/2302" } }, { "count": 16, "display_name": "Global Analysis of Ecosystem Services and Land Use", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10226", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 14, "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T13890", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 14, "display_name": "Global Drought Monitoring and Assessment", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11186", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 10, "display_name": "Factors Affecting Sagebrush Ecosystems and Wildlife Conservation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T13388", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 8, "display_name": "Climate Change and Variability Research", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10029", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 8, "display_name": "Mapping Forests with Lidar Remote Sensing", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11164", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 6, "display_name": "Urban Heat Islands and Mitigation Strategies", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10766", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 6, "display_name": "Global Methane Emissions and Impacts", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11588", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 6, "display_name": "Adaptation to Climate Change in Agriculture", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Agricultural and Biological Sciences", "id": "https://openalex.org/fields/11" }, "id": "https://openalex.org/T10439", "subfield": { "display_name": "Ecology, Evolution, Behavior and Systematics", "id": "https://openalex.org/subfields/1105" } }, { "count": 5, "display_name": "Digital Soil Mapping Techniques", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10770", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 5, "display_name": "Arctic Permafrost Dynamics and Climate Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11333", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 4, "display_name": "Impact of Climate Change on Forest Wildfires", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10555", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 4, "display_name": "Volunteered Geographic Information and Geospatial Crowdsourcing", "domain": { "display_name": "Social Sciences", "id": "https://openalex.org/domains/2" }, "field": { "display_name": "Social Sciences", "id": "https://openalex.org/fields/33" }, "id": "https://openalex.org/T10757", "subfield": { "display_name": "Geography, Planning and Development", "id": "https://openalex.org/subfields/3305" } }, { "count": 3, "display_name": "Causes and Impacts of Climate Change Over Millennia", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11594", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 3, "display_name": "Resilience of Traditional Irrigation Communities in Southwest USA", "domain": { "display_name": "Social Sciences", "id": "https://openalex.org/domains/2" }, "field": { "display_name": "Social Sciences", "id": "https://openalex.org/fields/33" }, "id": "https://openalex.org/T13939", "subfield": { "display_name": "Anthropology", "id": "https://openalex.org/subfields/3314" } }, { "count": 3, "display_name": "Applications of 3D City Models", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T12698", "subfield": { "display_name": "Building and Construction", "id": "https://openalex.org/subfields/2215" } }, { "count": 3, "display_name": "Hydrological Modeling and Water Resource Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10330", "subfield": { "display_name": "Water Science and Technology", "id": "https://openalex.org/subfields/2312" } }, { "count": 3, "display_name": "Machine Learning for Mineral Prospectivity Mapping", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Computer Science", "id": "https://openalex.org/fields/17" }, "id": "https://openalex.org/T12157", "subfield": { "display_name": "Artificial Intelligence", "id": "https://openalex.org/subfields/1702" } }, { "count": 2, "display_name": "Biodiversity Conservation and Ecosystem Management", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10005", "subfield": { "display_name": "Nature and Landscape Conservation", "id": "https://openalex.org/subfields/2309" } }, { "count": 2, "display_name": "Geological Modeling and Uncertainty Analysis", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T13067", "subfield": { "display_name": "Geochemistry and Petrology", "id": "https://openalex.org/subfields/1906" } }, { "count": 2, "display_name": "Analysis of Land Cover and Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T14468", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 2, "display_name": "Wildlife Ecology and Conservation Biology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10199", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } } ], "updated_date": "2024-05-20T13:28:32.410154" }
}