Item talk:Q44512: Difference between revisions

From geokb
(Updated item talk page content)
No edit summary
Line 1: Line 1:
orcid:
ORCiD:
   meta:
   meta:
     status_code: 200
     status_code: 200
Line 579: Line 579:
         source: null
         source: null
         visibility: public
         visibility: public
usgs_staff_profile:
USGS Staff Profile:
   meta:
   '@context': https://schema.org
    url: https://www.usgs.gov/staff-profiles/itiya-p-aneece
  '@type': Person
     timestamp: '2024-01-30T09:51:11.704542'
  affiliation: []
     status_code: 200
  description:
   profile:
  - '@type': TextObject
     name: Itiya P Aneece
    abstract: Research Geographer with the Western Geographic Science Center
     name_qualifier: null
     additionalType: short description
    titles:
  - '@type': TextObject
    - Research Geographer
    abstract: Itiya Aneece is currently a Research Geographer at the U.S. Geological
     organizations:
      Survey (USGS) in Flagstaff, AZ, USA.
    - !!python/tuple
     additionalType: staff profile page introductory statement
       - Western Geographic Science Center
   - '@type': TextObject
       - https://www.usgs.gov/centers/western-geographic-science-center
     abstract: Dr. Itiya Aneece is a Research Geographer at the U.S. Geological Survey
     email: ianeece@usgs.gov
      Western Geographic Science Center using remote sensing to study globally dominant
     orcid: 0000-0002-1201-5459
      agricultural crops. She earned a PhD in Environmental Sciences from the University
    intro_statements:
      of Virginia, where she conducted her dissertation research on studying the impacts
    - Itiya Aneece is currently a Research Geographer at the U.S. Geological Survey
      of invasive plant species in abandoned agricultural fields using ground-level
      (USGS) in Flagstaff, AZ, USA.
      hyperspectral remote sensing. As a Mendenhall Postdoc, she used Hyperion images
     expertise_terms:
      to study globally major agricultural crops using Google Earth Engine. Her research
     - Remote Sensing
      interests include big data analysis, machine learning, cloud computing, and
     - Crops
      agricultural study.
     - Invasive Plant Species
     additionalType: personal statement
     - Big Data Analysis
  email: ianeece@usgs.gov
     - Machine Learning
  hasCredential: []
     - Hyperspectral remote sensing
  hasOccupation:
     - Machine learning and cloud computing
  - '@type': OrganizationalRole
    - Crop water productivity
     affiliatedOrganization:
    professional_experience: []
      '@type': Organization
     education: []
       name: Western Geographic Science Center
     affiliations: []
       url: https://www.usgs.gov/centers/western-geographic-science-center
    honors: []
     roleName: Research Geographer
     abstracts: []
    startDate: '2024-05-12T16:12:35.902849'
     personal_statement: At the USGS, she is working with the Western Geographic Science
  identifier:
       Center using hyperspectral and multispectral remote sensing to study globally
  - '@type': PropertyValue
       dominant agricultural crops. She is also working on a variety of projects with
    propertyID: GeoKB
      the Astrogeology Science Center. Dr. Aneece earned a PhD in Environmental Sciences
    value: https://geokb.wikibase.cloud/entity/Q44512
      from the University of Virginia, where she conducted her dissertation research
  - '@type': PropertyValue
      on studying the impacts of invasive plant species on secondary successional
    propertyID: ORCID
      dynamics in abandoned agricultural fields using ground-level hyperspectral remote
     value: 0000-0002-1201-5459
      sensing. She has also recently completed a Mendenhall Postdoctoral Fellowship
  jobTitle: Research Geographer
      within the Western Geographic Science Center, in which she studied crops using
  knowsAbout:
      Hyperion hyperspectral satellite data in Google Earth Engine.
  - '@type': Thing
     additionalType: self-claimed expertise
     name: Remote Sensing
  - '@type': Thing
     additionalType: self-claimed expertise
    name: Crops
  - '@type': Thing
     additionalType: self-claimed expertise
    name: Invasive Plant Species
  - '@type': Thing
     additionalType: self-claimed expertise
    name: Big Data Analysis
  - '@type': Thing
     additionalType: self-claimed expertise
    name: Machine Learning
  - '@type': Thing
     additionalType: self-claimed expertise
    name: Hyperspectral remote sensing
  - '@type': Thing
     additionalType: self-claimed expertise
    name: Machine learning and cloud computing
  - '@type': Thing
     additionalType: self-claimed expertise
     name: Crop water productivity
  memberOf:
     '@type': OrganizationalRole
     member:
       '@type': Organization
       name: U.S. Geological Survey
    name: staff member
    startDate: '2024-05-12T16:12:35.900189'
  name: Itiya P Aneece
  url: https://www.usgs.gov/staff-profiles/itiya-p-aneece

Revision as of 17:55, 12 May 2024

ORCiD:

 meta:
   status_code: 200
   timestamp: '2023-10-20T08:42:11.067904'
   url: https://orcid.org/0000-0002-1201-5459
 orcid:
   activities:
     works:
       group:
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs15194894
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs15194894
             external-id-value: 10.3390/rs15194894
         last-modified-date:
           value: 1697242138600
         work-summary:
         - created-date:
             value: 1696873829176
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.3390/rs15194894
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.3390/rs15194894
               external-id-value: 10.3390/rs15194894
           journal-title:
             value: Remote Sensing
           last-modified-date:
             value: 1696873829176
           path: /0000-0002-1201-5459/work/144002947
           publication-date:
             day:
               value: 09
             month:
               value: '10'
             year:
               value: '2023'
           put-code: 144002947
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\
                 \ California\u2019s Water Savings"
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.3390/rs15194894
           visibility: public
         - created-date:
             value: 1697242138600
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.3390/rs15194894
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.3390/rs15194894
               external-id-value: 10.3390/rs15194894
           journal-title:
             value: Remote Sensing
           last-modified-date:
             value: 1697242138600
           path: /0000-0002-1201-5459/work/144390823
           publication-date:
             day: null
             month:
               value: '10'
             year:
               value: '2023'
           put-code: 144390823
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: APP-WRQOUAK78G5F7GMD
               uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
             source-name:
               value: Multidisciplinary Digital Publishing Institute
             source-orcid: null
           title:
             subtitle: null
             title:
               value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\
                 \ California\u2019s Water Savings"
             translated-title: null
           type: journal-article
           url:
             value: https://www.mdpi.com/2072-4292/15/19/4894
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1109/jstars.2022.3204223
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1109/JSTARS.2022.3204223
             external-id-value: 10.1109/JSTARS.2022.3204223
         last-modified-date:
           value: 1663789139405
         work-summary:
         - created-date:
             value: 1662416891548
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1109/jstars.2022.3204223
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1109/JSTARS.2022.3204223
               external-id-value: 10.1109/JSTARS.2022.3204223
           journal-title:
             value: IEEE Journal of Selected Topics in Applied Earth Observations
               and Remote Sensing
           last-modified-date:
             value: 1663789139405
           path: /0000-0002-1201-5459/work/118486022
           publication-date:
             day: null
             month: null
             year:
               value: '2022'
           put-code: 118486022
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: New Generation Hyperspectral Data From DESIS Compared to High
                 Spatial Resolution PlanetScope Data for Crop Type Classification
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1109/JSTARS.2022.3204223
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/17538947.2019.1651912
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1080/17538947.2019.1651912
             external-id-value: 10.1080/17538947.2019.1651912
         last-modified-date:
           value: 1653785800639
         work-summary:
         - created-date:
             value: 1567059364554
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1080/17538947.2019.1651912
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1080/17538947.2019.1651912
               external-id-value: 10.1080/17538947.2019.1651912
           journal-title:
             value: International Journal of Digital Earth
           last-modified-date:
             value: 1653785800639
           path: /0000-0002-1201-5459/work/61031898
           publication-date:
             day:
               value: '02'
             month:
               value: 08
             year:
               value: '2020'
           put-code: 61031898
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: A meta-analysis of global crop water productivity of three
                 leading world crops (wheat, corn, and rice) in the irrigated areas
                 over three decades
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1080/17538947.2019.1651912
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs10122027
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs10122027
             external-id-value: 10.3390/rs10122027
         last-modified-date:
           value: 1653670258289
         work-summary:
         - created-date:
             value: 1545098572555
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.3390/rs10122027
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.3390/rs10122027
               external-id-value: 10.3390/rs10122027
           journal-title:
             value: Remote Sensing
           last-modified-date:
             value: 1653670258289
           path: /0000-0002-1201-5459/work/51757003
           publication-date:
             day: null
             month:
               value: '12'
             year:
               value: '2018'
           put-code: 51757003
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: APP-WRQOUAK78G5F7GMD
               uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
             source-name:
               value: Multidisciplinary Digital Publishing Institute
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Accuracies Achieved in Classifying Five Leading World Crop
                 Types and their Growth Stages Using Optimal Earth Observing-1 Hyperion
                 Hyperspectral Narrowbands on Google Earth Engine
             translated-title: null
           type: journal-article
           url:
             value: http://www.mdpi.com/2072-4292/10/12/2027
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1002/ece3.2876
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1002/ece3.2876
             external-id-value: 10.1002/ece3.2876
         last-modified-date:
           value: 1694969845426
         work-summary:
         - created-date:
             value: 1493088947662
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1002/ece3.2876
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url:
                 value: https://doi.org/10.1002/ece3.2876
               external-id-value: 10.1002/ece3.2876
           journal-title:
             value: Ecology and Evolution
           last-modified-date:
             value: 1694969845426
           path: /0000-0002-1201-5459/work/32121770
           publication-date:
             day: null
             month:
               value: '05'
             year:
               value: '2017'
           put-code: 32121770
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0001-9884-1913
               uri: https://orcid.org/client/0000-0001-9884-1913
             source-name:
               value: Crossref
             source-orcid: null
           title:
             subtitle: null
             title:
               value: "Correlating species and spectral diversities using hyperspectral\
                 \ remote sensing in early\u2010successional fields"
             translated-title: null
           type: journal-article
           url:
             value: https://doi.org/10.1002/ece3.2876
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/01431161.2016.1259682
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url: null
             external-id-value: 10.1080/01431161.2016.1259682
         last-modified-date:
           value: 1653495522174
         work-summary:
         - created-date:
             value: 1493137923542
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1080/01431161.2016.1259682
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url: null
               external-id-value: 10.1080/01431161.2016.1259682
           journal-title:
             value: International Journal of Remote Sensing
           last-modified-date:
             value: 1653495522174
           path: /0000-0002-1201-5459/work/32141180
           publication-date:
             day: null
             month:
               value: '11'
             year:
               value: '2016'
           put-code: 32141180
           source:
             assertion-origin-client-id: null
             assertion-origin-name:
               value: Itiya Aneece
             assertion-origin-orcid:
               host: orcid.org
               path: 0000-0002-1201-5459
               uri: https://orcid.org/0000-0002-1201-5459
             source-client-id:
               host: orcid.org
               path: 0000-0002-3054-1567
               uri: https://orcid.org/client/0000-0002-3054-1567
             source-name:
               value: Crossref Metadata Search
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Identifying invasive plant species using field spectroscopy
                 in the VNIR region in successional systems of north-central Virginia
             translated-title: null
           type: journal-article
           url: null
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/00091383.2016.1198186
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url: null
             external-id-value: 10.1080/00091383.2016.1198186
         last-modified-date:
           value: 1653495521648
         work-summary:
         - created-date:
             value: 1493137885069
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.1080/00091383.2016.1198186
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url: null
               external-id-value: 10.1080/00091383.2016.1198186
           journal-title:
             value: 'Change: The Magazine of Higher Learning'
           last-modified-date:
             value: 1653495521648
           path: /0000-0002-1201-5459/work/32141087
           publication-date:
             day:
               value: '03'
             month:
               value: '07'
             year:
               value: '2016'
           put-code: 32141087
           source:
             assertion-origin-client-id: null
             assertion-origin-name:
               value: Itiya Aneece
             assertion-origin-orcid:
               host: orcid.org
               path: 0000-0002-1201-5459
               uri: https://orcid.org/0000-0002-1201-5459
             source-client-id:
               host: orcid.org
               path: 0000-0002-3054-1567
               uri: https://orcid.org/client/0000-0002-3054-1567
             source-name:
               value: Crossref Metadata Search
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Does the Document Matter? The Evolving Role of Syllabi in Higher
                 Education
             translated-title: null
           type: journal-article
           url: null
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs71215850
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url: null
             external-id-value: 10.3390/rs71215850
         last-modified-date:
           value: 1653495522052
         work-summary:
         - created-date:
             value: 1493137919087
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 10.3390/rs71215850
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: doi
               external-id-url: null
               external-id-value: 10.3390/rs71215850
           journal-title:
             value: Remote Sensing
           last-modified-date:
             value: 1653495522052
           path: /0000-0002-1201-5459/work/32141160
           publication-date:
             day: null
             month: null
             year:
               value: '2015'
           put-code: 32141160
           source:
             assertion-origin-client-id: null
             assertion-origin-name:
               value: Itiya Aneece
             assertion-origin-orcid:
               host: orcid.org
               path: 0000-0002-1201-5459
               uri: https://orcid.org/0000-0002-1201-5459
             source-client-id:
               host: orcid.org
               path: 0000-0002-3054-1567
               uri: https://orcid.org/client/0000-0002-3054-1567
             source-name:
               value: Crossref Metadata Search
             source-orcid: null
           title:
             subtitle: null
             title:
               value: Distinguishing Early Successional Plant Communities Using Ground-Level
                 Hyperspectral Data
             translated-title: null
           type: journal-article
           url: null
           visibility: public
       last-modified-date:
         value: 1697242138600
       path: /0000-0002-1201-5459/works
   history:
     claimed: true
     completion-date: null
     creation-method: MEMBER_REFERRED
     deactivation-date: null
     last-modified-date:
       value: 1697242138593
     source: null
     submission-date:
       value: 1441381610857
     verified-email: true
     verified-primary-email: true
   person:
     name:
       created-date:
         value: 1460757225450
       credit-name: null
       family-name:
         value: Aneece
       given-names:
         value: Itiya
       last-modified-date:
         value: 1460757225450
       path: 0000-0002-1201-5459
       source: null
       visibility: public

USGS Staff Profile:

 '@context': https://schema.org
 '@type': Person
 affiliation: []
 description:
 - '@type': TextObject
   abstract: Research Geographer with the Western Geographic Science Center
   additionalType: short description
 - '@type': TextObject
   abstract: Itiya Aneece is currently a Research Geographer at the U.S. Geological
     Survey (USGS) in Flagstaff, AZ, USA.
   additionalType: staff profile page introductory statement
 - '@type': TextObject
   abstract: Dr. Itiya Aneece is a Research Geographer at the U.S. Geological Survey
     Western Geographic Science Center using remote sensing to study globally dominant
     agricultural crops. She earned a PhD in Environmental Sciences from the University
     of Virginia, where she conducted her dissertation research on studying the impacts
     of invasive plant species in abandoned agricultural fields using ground-level
     hyperspectral remote sensing. As a Mendenhall Postdoc, she used Hyperion images
     to study globally major agricultural crops using Google Earth Engine. Her research
     interests include big data analysis, machine learning, cloud computing, and
     agricultural study.
   additionalType: personal statement
 email: ianeece@usgs.gov
 hasCredential: []
 hasOccupation:
 - '@type': OrganizationalRole
   affiliatedOrganization:
     '@type': Organization
     name: Western Geographic Science Center
     url: https://www.usgs.gov/centers/western-geographic-science-center
   roleName: Research Geographer
   startDate: '2024-05-12T16:12:35.902849'
 identifier:
 - '@type': PropertyValue
   propertyID: GeoKB
   value: https://geokb.wikibase.cloud/entity/Q44512
 - '@type': PropertyValue
   propertyID: ORCID
   value: 0000-0002-1201-5459
 jobTitle: Research Geographer
 knowsAbout:
 - '@type': Thing
   additionalType: self-claimed expertise
   name: Remote Sensing
 - '@type': Thing
   additionalType: self-claimed expertise
   name: Crops
 - '@type': Thing
   additionalType: self-claimed expertise
   name: Invasive Plant Species
 - '@type': Thing
   additionalType: self-claimed expertise
   name: Big Data Analysis
 - '@type': Thing
   additionalType: self-claimed expertise
   name: Machine Learning
 - '@type': Thing
   additionalType: self-claimed expertise
   name: Hyperspectral remote sensing
 - '@type': Thing
   additionalType: self-claimed expertise
   name: Machine learning and cloud computing
 - '@type': Thing
   additionalType: self-claimed expertise
   name: Crop water productivity
 memberOf:
   '@type': OrganizationalRole
   member:
     '@type': Organization
     name: U.S. Geological Survey
   name: staff member
   startDate: '2024-05-12T16:12:35.900189'
 name: Itiya P Aneece
 url: https://www.usgs.gov/staff-profiles/itiya-p-aneece