Item talk:Q50669: Difference between revisions

From geokb
(Added profile data from https://www.usgs.gov/staff-profiles/prasad-thenkabail)
 
(Updated person data cache with ORCID information)
Line 1: Line 1:
orcid:
  activities:
    peer-reviews:
      group:
      - external-ids:
          external-id:
          - external-id-normalized: null
            external-id-normalized-error: null
            external-id-relationship: null
            external-id-type: peer-review
            external-id-url: null
            external-id-value: issn:2352-9385
        last-modified-date:
          value: 1696134743806
        peer-review-group:
        - external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 5991050c-9689-4fd0-9c01-db3be56c9b8c
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: source-work-id
              external-id-url:
                value: ''
              external-id-value: 5991050c-9689-4fd0-9c01-db3be56c9b8c
          last-modified-date:
            value: 1694406168187
          peer-review-summary:
          - completion-date:
              day: null
              month: null
              year:
                value: '2023'
            convening-organization:
              address:
                city: New York
                country: US
                region: NY
              disambiguated-organization:
                disambiguated-organization-identifier: '5993'
                disambiguation-source: RINGGOLD
              name: Elsevier, Inc.
            created-date:
              value: 1694406168187
            display-index: '0'
            external-ids:
              external-id:
              - external-id-normalized:
                  transient: true
                  value: 5991050c-9689-4fd0-9c01-db3be56c9b8c
                external-id-normalized-error: null
                external-id-relationship: self
                external-id-type: source-work-id
                external-id-url:
                  value: ''
                external-id-value: 5991050c-9689-4fd0-9c01-db3be56c9b8c
            last-modified-date:
              value: 1694406168187
            path: /0000-0002-2182-8822/peer-review/10932826
            put-code: 10932826
            review-group-id: issn:2352-9385
            review-type: review
            review-url: null
            reviewer-role: reviewer
            source:
              assertion-origin-client-id: null
              assertion-origin-name: null
              assertion-origin-orcid: null
              source-client-id:
                host: orcid.org
                path: 0000-0002-7423-0090
                uri: https://orcid.org/client/0000-0002-7423-0090
              source-name:
                value: 'Elsevier Editorial '
              source-orcid: null
            visibility: public
        - external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: daf8484c-7289-4c48-939d-c339cd17b1f8
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: source-work-id
              external-id-url:
                value: ''
              external-id-value: daf8484c-7289-4c48-939d-c339cd17b1f8
          last-modified-date:
            value: 1696134743806
          peer-review-summary:
          - completion-date:
              day: null
              month: null
              year:
                value: '2023'
            convening-organization:
              address:
                city: New York
                country: US
                region: NY
              disambiguated-organization:
                disambiguated-organization-identifier: '5993'
                disambiguation-source: RINGGOLD
              name: Elsevier, Inc.
            created-date:
              value: 1696134743806
            display-index: '0'
            external-ids:
              external-id:
              - external-id-normalized:
                  transient: true
                  value: daf8484c-7289-4c48-939d-c339cd17b1f8
                external-id-normalized-error: null
                external-id-relationship: self
                external-id-type: source-work-id
                external-id-url:
                  value: ''
                external-id-value: daf8484c-7289-4c48-939d-c339cd17b1f8
            last-modified-date:
              value: 1696134743806
            path: /0000-0002-2182-8822/peer-review/11175833
            put-code: 11175833
            review-group-id: issn:2352-9385
            review-type: review
            review-url: null
            reviewer-role: reviewer
            source:
              assertion-origin-client-id: null
              assertion-origin-name: null
              assertion-origin-orcid: null
              source-client-id:
                host: orcid.org
                path: 0000-0002-7423-0090
                uri: https://orcid.org/client/0000-0002-7423-0090
              source-name:
                value: 'Elsevier Editorial '
              source-orcid: null
            visibility: public
      - external-ids:
          external-id:
          - external-id-normalized: null
            external-id-normalized-error: null
            external-id-relationship: null
            external-id-type: peer-review
            external-id-url: null
            external-id-value: issn:0034-4257
        last-modified-date:
          value: 1692418946130
        peer-review-group:
        - external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 2da3d926-de03-442a-aed7-a0fb1f8e2233
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: source-work-id
              external-id-url:
                value: ''
              external-id-value: 2da3d926-de03-442a-aed7-a0fb1f8e2233
          last-modified-date:
            value: 1692418946130
          peer-review-summary:
          - completion-date:
              day: null
              month: null
              year:
                value: '2023'
            convening-organization:
              address:
                city: New York
                country: US
                region: NY
              disambiguated-organization:
                disambiguated-organization-identifier: '5993'
                disambiguation-source: RINGGOLD
              name: Elsevier, Inc.
            created-date:
              value: 1692418946130
            display-index: '0'
            external-ids:
              external-id:
              - external-id-normalized:
                  transient: true
                  value: 2da3d926-de03-442a-aed7-a0fb1f8e2233
                external-id-normalized-error: null
                external-id-relationship: self
                external-id-type: source-work-id
                external-id-url:
                  value: ''
                external-id-value: 2da3d926-de03-442a-aed7-a0fb1f8e2233
            last-modified-date:
              value: 1692418946130
            path: /0000-0002-2182-8822/peer-review/10636743
            put-code: 10636743
            review-group-id: issn:0034-4257
            review-type: review
            review-url: null
            reviewer-role: reviewer
            source:
              assertion-origin-client-id: null
              assertion-origin-name: null
              assertion-origin-orcid: null
              source-client-id:
                host: orcid.org
                path: 0000-0002-7423-0090
                uri: https://orcid.org/client/0000-0002-7423-0090
              source-name:
                value: 'Elsevier Editorial '
              source-orcid: null
            visibility: public
      last-modified-date:
        value: 1696134743806
      path: /0000-0002-2182-8822/peer-reviews
    works:
      group:
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.3390/rs15194894
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.3390/rs15194894
            external-id-value: 10.3390/rs15194894
        last-modified-date:
          value: 1697242138165
        work-summary:
        - created-date:
            value: 1696882949582
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs15194894
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs15194894
              external-id-value: 10.3390/rs15194894
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1696882949582
          path: /0000-0002-2182-8822/work/144011346
          publication-date:
            day:
              value: 09
            month:
              value: '10'
            year:
              value: '2023'
          put-code: 144011346
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\
                \ California\u2019s Water Savings"
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.3390/rs15194894
          visibility: public
        - created-date:
            value: 1697242138165
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs15194894
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs15194894
              external-id-value: 10.3390/rs15194894
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1697242138165
          path: /0000-0002-2182-8822/work/144390821
          publication-date:
            day: null
            month:
              value: '10'
            year:
              value: '2023'
          put-code: 144390821
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: APP-WRQOUAK78G5F7GMD
              uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
            source-name:
              value: Multidisciplinary Digital Publishing Institute
            source-orcid: null
          title:
            subtitle: null
            title:
              value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\
                \ California\u2019s Water Savings"
            translated-title: null
          type: journal-article
          url:
            value: https://www.mdpi.com/2072-4292/15/19/4894
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.3390/rs15041017
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.3390/rs15041017
            external-id-value: 10.3390/rs15041017
        last-modified-date:
          value: 1676595953253
        work-summary:
        - created-date:
            value: 1676281534897
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs15041017
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs15041017
              external-id-value: 10.3390/rs15041017
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1676281534897
          path: /0000-0002-2182-8822/work/128614764
          publication-date:
            day:
              value: '12'
            month:
              value: '02'
            year:
              value: '2023'
          put-code: 128614764
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Mapping Vegetation Index-Derived Actual Evapotranspiration across
                Croplands Using the Google Earth Engine Platform
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.3390/rs15041017
          visibility: public
        - created-date:
            value: 1676595953253
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs15041017
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs15041017
              external-id-value: 10.3390/rs15041017
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1676595953253
          path: /0000-0002-2182-8822/work/128961757
          publication-date:
            day: null
            month:
              value: '02'
            year:
              value: '2023'
          put-code: 128961757
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: APP-WRQOUAK78G5F7GMD
              uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
            source-name:
              value: Multidisciplinary Digital Publishing Institute
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Mapping Vegetation Index-Derived Actual Evapotranspiration across
                Croplands Using the Google Earth Engine Platform
            translated-title: null
          type: journal-article
          url:
            value: https://www.mdpi.com/2072-4292/15/4/1017
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.1080/15481603.2022.2088651
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.1080/15481603.2022.2088651
            external-id-value: 10.1080/15481603.2022.2088651
        last-modified-date:
          value: 1657723274603
        work-summary:
        - created-date:
            value: 1657723274603
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.1080/15481603.2022.2088651
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.1080/15481603.2022.2088651
              external-id-value: 10.1080/15481603.2022.2088651
          journal-title:
            value: GIScience & Remote Sensing
          last-modified-date:
            value: 1657723274603
          path: /0000-0002-2182-8822/work/115784484
          publication-date:
            day:
              value: '31'
            month:
              value: '12'
            year:
              value: '2022'
          put-code: 115784484
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Multiple agricultural cropland products of South Asia developed
                using Landsat-8 30 m and MODIS 250 m data using machine learning on
                the Google Earth Engine (GEE) cloud and spectral matching techniques
                (SMTs) in support of food and water security
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.1080/15481603.2022.2088651
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.3133/ofr20221001
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.3133/ofr20221001
            external-id-value: 10.3133/ofr20221001
        last-modified-date:
          value: 1654617415748
        work-summary:
        - created-date:
            value: 1649879426773
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3133/ofr20221001
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3133/ofr20221001
              external-id-value: 10.3133/ofr20221001
          journal-title: null
          last-modified-date:
            value: 1654617415748
          path: /0000-0002-2182-8822/work/111411967
          publication-date:
            day: null
            month: null
            year:
              value: '2022'
          put-code: 111411967
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: "Global food-security-support-analysis data at 30-m resolution\
                \ (GFSAD30) cropland-extent products\u2014Download Analysis"
            translated-title: null
          type: report
          url:
            value: https://doi.org/10.3133/ofr20221001
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.3390/rs13224704
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.3390/rs13224704
            external-id-value: 10.3390/rs13224704
        last-modified-date:
          value: 1654165420948
        work-summary:
        - created-date:
            value: 1637888518472
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs13224704
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs13224704
              external-id-value: 10.3390/rs13224704
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1654163896253
          path: /0000-0002-2182-8822/work/103773347
          publication-date:
            day: null
            month:
              value: '11'
            year:
              value: '2021'
          put-code: 103773347
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: APP-WRQOUAK78G5F7GMD
              uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
            source-name:
              value: Multidisciplinary Digital Publishing Institute
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Classifying Crop Types Using Two Generations of Hyperspectral
                Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
            translated-title: null
          type: journal-article
          url:
            value: https://www.mdpi.com/2072-4292/13/22/4704
          visibility: public
        - created-date:
            value: 1638353842888
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs13224704
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs13224704
              external-id-value: 10.3390/rs13224704
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1654165420948
          path: /0000-0002-2182-8822/work/104037871
          publication-date:
            day:
              value: '21'
            month:
              value: '11'
            year:
              value: '2021'
          put-code: 104037871
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Classifying Crop Types Using Two Generations of Hyperspectral
                Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.3390/rs13224704
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.3133/pp1868
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.3133/pp1868
            external-id-value: 10.3133/pp1868
        last-modified-date:
          value: 1654161873473
        work-summary:
        - created-date:
            value: 1637352786249
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3133/pp1868
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3133/pp1868
              external-id-value: 10.3133/pp1868
          journal-title: null
          last-modified-date:
            value: 1654161873473
          path: /0000-0002-2182-8822/work/103462916
          publication-date:
            day: null
            month: null
            year:
              value: '2021'
          put-code: 103462916
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Global cropland-extent product at 30-m resolution (GCEP30) derived
                from Landsat satellite time-series data for the year 2015 using multiple
                machine-learning algorithms on Google Earth Engine cloud
            translated-title: null
          type: report
          url:
            value: https://doi.org/10.3133/pp1868
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.1016/j.isprsjprs.2020.06.022
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.1016/j.isprsjprs.2020.06.022
            external-id-value: 10.1016/j.isprsjprs.2020.06.022
        last-modified-date:
          value: 1653931908071
        work-summary:
        - created-date:
            value: 1595087749186
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.1016/j.isprsjprs.2020.06.022
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.1016/j.isprsjprs.2020.06.022
              external-id-value: 10.1016/j.isprsjprs.2020.06.022
          journal-title:
            value: ISPRS Journal of Photogrammetry and Remote Sensing
          last-modified-date:
            value: 1653931908071
          path: /0000-0002-2182-8822/work/77502415
          publication-date:
            day: null
            month:
              value: 09
            year:
              value: '2020'
          put-code: 77502415
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Mapping croplands of Europe, Middle East, Russia, and Central
                Asia using Landsat, Random Forest, and Google Earth Engine
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.1016/j.isprsjprs.2020.06.022
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.1080/17538947.2019.1651912
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.1080/17538947.2019.1651912
            external-id-value: 10.1080/17538947.2019.1651912
        last-modified-date:
          value: 1653785800531
        work-summary:
        - created-date:
            value: 1567059297352
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.1080/17538947.2019.1651912
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.1080/17538947.2019.1651912
              external-id-value: 10.1080/17538947.2019.1651912
          journal-title:
            value: International Journal of Digital Earth
          last-modified-date:
            value: 1653785800531
          path: /0000-0002-2182-8822/work/61031875
          publication-date:
            day:
              value: '02'
            month:
              value: 08
            year:
              value: '2020'
          put-code: 61031875
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: A meta-analysis of global crop water productivity of three leading
                world crops (wheat, corn, and rice) in the irrigated areas over three
                decades
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.1080/17538947.2019.1651912
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.1080/15481603.2019.1690780
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.1080/15481603.2019.1690780
            external-id-value: 10.1080/15481603.2019.1690780
        last-modified-date:
          value: 1653808967548
        work-summary:
        - created-date:
            value: 1574409970523
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.1080/15481603.2019.1690780
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.1080/15481603.2019.1690780
              external-id-value: 10.1080/15481603.2019.1690780
          journal-title:
            value: GIScience & Remote Sensing
          last-modified-date:
            value: 1653808967548
          path: /0000-0002-2182-8822/work/64938316
          publication-date:
            day:
              value: '02'
            month:
              value: '04'
            year:
              value: '2020'
          put-code: 64938316
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Agricultural cropland extent and areas of South Asia derived
                using Landsat satellite 30-m time-series big-data using random forest
                machine learning algorithms on the Google Earth Engine cloud
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.1080/15481603.2019.1690780
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.3390/rs11151790
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.3390/rs11151790
            external-id-value: 10.3390/rs11151790
        last-modified-date:
          value: 1653778176597
        work-summary:
        - created-date:
            value: 1564590270850
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs11151790
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs11151790
              external-id-value: 10.3390/rs11151790
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1653777470269
          path: /0000-0002-2182-8822/work/60075773
          publication-date:
            day:
              value: '31'
            month:
              value: '07'
            year:
              value: '2019'
          put-code: 60075773
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Remote Sensing 10th Anniversary Best Paper Award
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.3390/rs11151790
          visibility: public
        - created-date:
            value: 1564963344227
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs11151790
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs11151790
              external-id-value: 10.3390/rs11151790
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1653778176597
          path: /0000-0002-2182-8822/work/60207500
          publication-date:
            day: null
            month:
              value: '07'
            year:
              value: '2019'
          put-code: 60207500
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: APP-WRQOUAK78G5F7GMD
              uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
            source-name:
              value: Multidisciplinary Digital Publishing Institute
            source-orcid: null
          title:
            subtitle: null
            title:
              value: <i>Remote Sensing</i> 10th Anniversary Best Paper Award
            translated-title: null
          type: journal-article
          url:
            value: https://www.mdpi.com/2072-4292/11/15/1790
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.3390/rs11010091
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.3390/rs11010091
            external-id-value: 10.3390/rs11010091
        last-modified-date:
          value: 1653759299557
        work-summary:
        - created-date:
            value: 1547258644017
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs11010091
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs11010091
              external-id-value: 10.3390/rs11010091
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1653675443514
          path: /0000-0002-2182-8822/work/52548763
          publication-date:
            day: null
            month:
              value: '01'
            year:
              value: '2019'
          put-code: 52548763
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: APP-WRQOUAK78G5F7GMD
              uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
            source-name:
              value: Multidisciplinary Digital Publishing Institute
            source-orcid: null
          title:
            subtitle: null
            title:
              value: A Bibliometric Profile of the <i>Remote Sensing Open Access Journal</i>
                Published by MDPI between 2009 and 2018
            translated-title: null
          type: journal-article
          url:
            value: http://www.mdpi.com/2072-4292/11/1/91
          visibility: public
        - created-date:
            value: 1556291405878
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs11010091
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs11010091
              external-id-value: 10.3390/rs11010091
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1653759299557
          path: /0000-0002-2182-8822/work/56826498
          publication-date:
            day:
              value: '07'
            month:
              value: '01'
            year:
              value: '2019'
          put-code: 56826498
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: A Bibliometric Profile of the Remote Sensing Open Access Journal
                Published by MDPI between 2009 and 2018
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.3390/rs11010091
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.3390/rs10122027
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.3390/rs10122027
            external-id-value: 10.3390/rs10122027
        last-modified-date:
          value: 1653670258295
        work-summary:
        - created-date:
            value: 1544780479769
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs10122027
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs10122027
              external-id-value: 10.3390/rs10122027
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1653669561586
          path: /0000-0002-2182-8822/work/51660905
          publication-date:
            day:
              value: '13'
            month:
              value: '12'
            year:
              value: '2018'
          put-code: 51660905
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Accuracies Achieved in Classifying Five Leading World Crop Types
                and their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral
                Narrowbands on Google Earth Engine
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.3390/rs10122027
          visibility: public
        - created-date:
            value: 1545098573258
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3390/rs10122027
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3390/rs10122027
              external-id-value: 10.3390/rs10122027
          journal-title:
            value: Remote Sensing
          last-modified-date:
            value: 1653670258295
          path: /0000-0002-2182-8822/work/51757004
          publication-date:
            day: null
            month:
              value: '12'
            year:
              value: '2018'
          put-code: 51757004
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: APP-WRQOUAK78G5F7GMD
              uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
            source-name:
              value: Multidisciplinary Digital Publishing Institute
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Accuracies Achieved in Classifying Five Leading World Crop Types
                and their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral
                Narrowbands on Google Earth Engine
            translated-title: null
          type: journal-article
          url:
            value: http://www.mdpi.com/2072-4292/10/12/2027
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.1080/15481603.2018.1482855
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.1080/15481603.2018.1482855
            external-id-value: 10.1080/15481603.2018.1482855
        last-modified-date:
          value: 1653614921953
        work-summary:
        - created-date:
            value: 1528278043059
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.1080/15481603.2018.1482855
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.1080/15481603.2018.1482855
              external-id-value: 10.1080/15481603.2018.1482855
          journal-title:
            value: GIScience & Remote Sensing
          last-modified-date:
            value: 1653614921953
          path: /0000-0002-2182-8822/work/45453145
          publication-date:
            day:
              value: '02'
            month:
              value: '11'
            year:
              value: '2018'
          put-code: 45453145
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: Mapping cropland fallow areas in myanmar to scale up sustainable
                intensification of pulse crops in the farming system
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.1080/15481603.2018.1482855
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.1080/17538947.2016.1267269
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.1080/17538947.2016.1267269
            external-id-value: 10.1080/17538947.2016.1267269
        last-modified-date:
          value: 1653524417129
        work-summary:
        - created-date:
            value: 1506303679991
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.1080/17538947.2016.1267269
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.1080/17538947.2016.1267269
              external-id-value: 10.1080/17538947.2016.1267269
          journal-title:
            value: International Journal of Digital Earth
          last-modified-date:
            value: 1653524417129
          path: /0000-0002-2182-8822/work/37080331
          publication-date:
            day:
              value: '02'
            month:
              value: 09
            year:
              value: '2017'
          put-code: 37080331
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: "Spectral matching techniques (SMTs) and automated cropland classification\
                \ algorithms (ACCAs) for mapping croplands of Australia using MODIS\
                \ 250-m time-series (2000\u20132015) data"
            translated-title: null
          type: journal-article
          url:
            value: https://doi.org/10.1080/17538947.2016.1267269
          visibility: public
      - external-ids:
          external-id:
          - external-id-normalized:
              transient: true
              value: 10.3133/ofr20161038
            external-id-normalized-error: null
            external-id-relationship: self
            external-id-type: doi
            external-id-url:
              value: https://doi.org/10.3133/ofr20161038
            external-id-value: 10.3133/ofr20161038
        last-modified-date:
          value: 1653524417122
        work-summary:
        - created-date:
            value: 1506303679857
          display-index: '0'
          external-ids:
            external-id:
            - external-id-normalized:
                transient: true
                value: 10.3133/ofr20161038
              external-id-normalized-error: null
              external-id-relationship: self
              external-id-type: doi
              external-id-url:
                value: https://doi.org/10.3133/ofr20161038
              external-id-value: 10.3133/ofr20161038
          journal-title: null
          last-modified-date:
            value: 1653524417122
          path: /0000-0002-2182-8822/work/37080330
          publication-date:
            day: null
            month: null
            year:
              value: '2016'
          put-code: 37080330
          source:
            assertion-origin-client-id: null
            assertion-origin-name: null
            assertion-origin-orcid: null
            source-client-id:
              host: orcid.org
              path: 0000-0001-9884-1913
              uri: https://orcid.org/client/0000-0001-9884-1913
            source-name:
              value: Crossref
            source-orcid: null
          title:
            subtitle: null
            title:
              value: A software tool for rapid flood inundation mapping
            translated-title: null
          type: report
          url:
            value: https://doi.org/10.3133/ofr20161038
          visibility: public
      last-modified-date:
        value: 1697242138165
      path: /0000-0002-2182-8822/works
  history:
    claimed: true
    completion-date: null
    creation-method: DIRECT
    deactivation-date: null
    last-modified-date:
      value: 1697242138149
    source: null
    submission-date:
      value: 1466795312431
    verified-email: true
    verified-primary-email: true
  person:
    name:
      created-date:
        value: 1466795312660
      credit-name: null
      family-name:
        value: Thenkabail
      given-names:
        value: Prasad
      last-modified-date:
        value: 1616534654819
      path: 0000-0002-2182-8822
      source: null
      visibility: public
usgs_staff_profile:
usgs_staff_profile:
   meta:
   meta:

Revision as of 12:37, 20 October 2023

orcid:

 activities:
   peer-reviews:
     group:
     - external-ids:
         external-id:
         - external-id-normalized: null
           external-id-normalized-error: null
           external-id-relationship: null
           external-id-type: peer-review
           external-id-url: null
           external-id-value: issn:2352-9385
       last-modified-date:
         value: 1696134743806
       peer-review-group:
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 5991050c-9689-4fd0-9c01-db3be56c9b8c
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: source-work-id
             external-id-url:
               value: 
             external-id-value: 5991050c-9689-4fd0-9c01-db3be56c9b8c
         last-modified-date:
           value: 1694406168187
         peer-review-summary:
         - completion-date:
             day: null
             month: null
             year:
               value: '2023'
           convening-organization:
             address:
               city: New York
               country: US
               region: NY
             disambiguated-organization:
               disambiguated-organization-identifier: '5993'
               disambiguation-source: RINGGOLD
             name: Elsevier, Inc.
           created-date:
             value: 1694406168187
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 5991050c-9689-4fd0-9c01-db3be56c9b8c
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: source-work-id
               external-id-url:
                 value: 
               external-id-value: 5991050c-9689-4fd0-9c01-db3be56c9b8c
           last-modified-date:
             value: 1694406168187
           path: /0000-0002-2182-8822/peer-review/10932826
           put-code: 10932826
           review-group-id: issn:2352-9385
           review-type: review
           review-url: null
           reviewer-role: reviewer
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0002-7423-0090
               uri: https://orcid.org/client/0000-0002-7423-0090
             source-name:
               value: 'Elsevier Editorial '
             source-orcid: null
           visibility: public
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: daf8484c-7289-4c48-939d-c339cd17b1f8
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: source-work-id
             external-id-url:
               value: 
             external-id-value: daf8484c-7289-4c48-939d-c339cd17b1f8
         last-modified-date:
           value: 1696134743806
         peer-review-summary:
         - completion-date:
             day: null
             month: null
             year:
               value: '2023'
           convening-organization:
             address:
               city: New York
               country: US
               region: NY
             disambiguated-organization:
               disambiguated-organization-identifier: '5993'
               disambiguation-source: RINGGOLD
             name: Elsevier, Inc.
           created-date:
             value: 1696134743806
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: daf8484c-7289-4c48-939d-c339cd17b1f8
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: source-work-id
               external-id-url:
                 value: 
               external-id-value: daf8484c-7289-4c48-939d-c339cd17b1f8
           last-modified-date:
             value: 1696134743806
           path: /0000-0002-2182-8822/peer-review/11175833
           put-code: 11175833
           review-group-id: issn:2352-9385
           review-type: review
           review-url: null
           reviewer-role: reviewer
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0002-7423-0090
               uri: https://orcid.org/client/0000-0002-7423-0090
             source-name:
               value: 'Elsevier Editorial '
             source-orcid: null
           visibility: public
     - external-ids:
         external-id:
         - external-id-normalized: null
           external-id-normalized-error: null
           external-id-relationship: null
           external-id-type: peer-review
           external-id-url: null
           external-id-value: issn:0034-4257
       last-modified-date:
         value: 1692418946130
       peer-review-group:
       - external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 2da3d926-de03-442a-aed7-a0fb1f8e2233
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: source-work-id
             external-id-url:
               value: 
             external-id-value: 2da3d926-de03-442a-aed7-a0fb1f8e2233
         last-modified-date:
           value: 1692418946130
         peer-review-summary:
         - completion-date:
             day: null
             month: null
             year:
               value: '2023'
           convening-organization:
             address:
               city: New York
               country: US
               region: NY
             disambiguated-organization:
               disambiguated-organization-identifier: '5993'
               disambiguation-source: RINGGOLD
             name: Elsevier, Inc.
           created-date:
             value: 1692418946130
           display-index: '0'
           external-ids:
             external-id:
             - external-id-normalized:
                 transient: true
                 value: 2da3d926-de03-442a-aed7-a0fb1f8e2233
               external-id-normalized-error: null
               external-id-relationship: self
               external-id-type: source-work-id
               external-id-url:
                 value: 
               external-id-value: 2da3d926-de03-442a-aed7-a0fb1f8e2233
           last-modified-date:
             value: 1692418946130
           path: /0000-0002-2182-8822/peer-review/10636743
           put-code: 10636743
           review-group-id: issn:0034-4257
           review-type: review
           review-url: null
           reviewer-role: reviewer
           source:
             assertion-origin-client-id: null
             assertion-origin-name: null
             assertion-origin-orcid: null
             source-client-id:
               host: orcid.org
               path: 0000-0002-7423-0090
               uri: https://orcid.org/client/0000-0002-7423-0090
             source-name:
               value: 'Elsevier Editorial '
             source-orcid: null
           visibility: public
     last-modified-date:
       value: 1696134743806
     path: /0000-0002-2182-8822/peer-reviews
   works:
     group:
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3390/rs15194894
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.3390/rs15194894
           external-id-value: 10.3390/rs15194894
       last-modified-date:
         value: 1697242138165
       work-summary:
       - created-date:
           value: 1696882949582
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs15194894
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs15194894
             external-id-value: 10.3390/rs15194894
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1696882949582
         path: /0000-0002-2182-8822/work/144011346
         publication-date:
           day:
             value: 09
           month:
             value: '10'
           year:
             value: '2023'
         put-code: 144011346
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\
               \ California\u2019s Water Savings"
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.3390/rs15194894
         visibility: public
       - created-date:
           value: 1697242138165
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs15194894
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs15194894
             external-id-value: 10.3390/rs15194894
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1697242138165
         path: /0000-0002-2182-8822/work/144390821
         publication-date:
           day: null
           month:
             value: '10'
           year:
             value: '2023'
         put-code: 144390821
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: APP-WRQOUAK78G5F7GMD
             uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
           source-name:
             value: Multidisciplinary Digital Publishing Institute
           source-orcid: null
         title:
           subtitle: null
           title:
             value: "Crop Water Productivity from Cloud-Based Landsat Helps Assess\
               \ California\u2019s Water Savings"
           translated-title: null
         type: journal-article
         url:
           value: https://www.mdpi.com/2072-4292/15/19/4894
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3390/rs15041017
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.3390/rs15041017
           external-id-value: 10.3390/rs15041017
       last-modified-date:
         value: 1676595953253
       work-summary:
       - created-date:
           value: 1676281534897
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs15041017
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs15041017
             external-id-value: 10.3390/rs15041017
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1676281534897
         path: /0000-0002-2182-8822/work/128614764
         publication-date:
           day:
             value: '12'
           month:
             value: '02'
           year:
             value: '2023'
         put-code: 128614764
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Mapping Vegetation Index-Derived Actual Evapotranspiration across
               Croplands Using the Google Earth Engine Platform
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.3390/rs15041017
         visibility: public
       - created-date:
           value: 1676595953253
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs15041017
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs15041017
             external-id-value: 10.3390/rs15041017
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1676595953253
         path: /0000-0002-2182-8822/work/128961757
         publication-date:
           day: null
           month:
             value: '02'
           year:
             value: '2023'
         put-code: 128961757
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: APP-WRQOUAK78G5F7GMD
             uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
           source-name:
             value: Multidisciplinary Digital Publishing Institute
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Mapping Vegetation Index-Derived Actual Evapotranspiration across
               Croplands Using the Google Earth Engine Platform
           translated-title: null
         type: journal-article
         url:
           value: https://www.mdpi.com/2072-4292/15/4/1017
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1080/15481603.2022.2088651
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.1080/15481603.2022.2088651
           external-id-value: 10.1080/15481603.2022.2088651
       last-modified-date:
         value: 1657723274603
       work-summary:
       - created-date:
           value: 1657723274603
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/15481603.2022.2088651
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1080/15481603.2022.2088651
             external-id-value: 10.1080/15481603.2022.2088651
         journal-title:
           value: GIScience & Remote Sensing
         last-modified-date:
           value: 1657723274603
         path: /0000-0002-2182-8822/work/115784484
         publication-date:
           day:
             value: '31'
           month:
             value: '12'
           year:
             value: '2022'
         put-code: 115784484
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Multiple agricultural cropland products of South Asia developed
               using Landsat-8 30 m and MODIS 250 m data using machine learning on
               the Google Earth Engine (GEE) cloud and spectral matching techniques
               (SMTs) in support of food and water security
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.1080/15481603.2022.2088651
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3133/ofr20221001
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.3133/ofr20221001
           external-id-value: 10.3133/ofr20221001
       last-modified-date:
         value: 1654617415748
       work-summary:
       - created-date:
           value: 1649879426773
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3133/ofr20221001
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3133/ofr20221001
             external-id-value: 10.3133/ofr20221001
         journal-title: null
         last-modified-date:
           value: 1654617415748
         path: /0000-0002-2182-8822/work/111411967
         publication-date:
           day: null
           month: null
           year:
             value: '2022'
         put-code: 111411967
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: "Global food-security-support-analysis data at 30-m resolution\
               \ (GFSAD30) cropland-extent products\u2014Download Analysis"
           translated-title: null
         type: report
         url:
           value: https://doi.org/10.3133/ofr20221001
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3390/rs13224704
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.3390/rs13224704
           external-id-value: 10.3390/rs13224704
       last-modified-date:
         value: 1654165420948
       work-summary:
       - created-date:
           value: 1637888518472
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs13224704
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs13224704
             external-id-value: 10.3390/rs13224704
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1654163896253
         path: /0000-0002-2182-8822/work/103773347
         publication-date:
           day: null
           month:
             value: '11'
           year:
             value: '2021'
         put-code: 103773347
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: APP-WRQOUAK78G5F7GMD
             uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
           source-name:
             value: Multidisciplinary Digital Publishing Institute
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Classifying Crop Types Using Two Generations of Hyperspectral
               Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
           translated-title: null
         type: journal-article
         url:
           value: https://www.mdpi.com/2072-4292/13/22/4704
         visibility: public
       - created-date:
           value: 1638353842888
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs13224704
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs13224704
             external-id-value: 10.3390/rs13224704
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1654165420948
         path: /0000-0002-2182-8822/work/104037871
         publication-date:
           day:
             value: '21'
           month:
             value: '11'
           year:
             value: '2021'
         put-code: 104037871
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Classifying Crop Types Using Two Generations of Hyperspectral
               Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.3390/rs13224704
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3133/pp1868
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.3133/pp1868
           external-id-value: 10.3133/pp1868
       last-modified-date:
         value: 1654161873473
       work-summary:
       - created-date:
           value: 1637352786249
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3133/pp1868
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3133/pp1868
             external-id-value: 10.3133/pp1868
         journal-title: null
         last-modified-date:
           value: 1654161873473
         path: /0000-0002-2182-8822/work/103462916
         publication-date:
           day: null
           month: null
           year:
             value: '2021'
         put-code: 103462916
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Global cropland-extent product at 30-m resolution (GCEP30) derived
               from Landsat satellite time-series data for the year 2015 using multiple
               machine-learning algorithms on Google Earth Engine cloud
           translated-title: null
         type: report
         url:
           value: https://doi.org/10.3133/pp1868
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1016/j.isprsjprs.2020.06.022
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.1016/j.isprsjprs.2020.06.022
           external-id-value: 10.1016/j.isprsjprs.2020.06.022
       last-modified-date:
         value: 1653931908071
       work-summary:
       - created-date:
           value: 1595087749186
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1016/j.isprsjprs.2020.06.022
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1016/j.isprsjprs.2020.06.022
             external-id-value: 10.1016/j.isprsjprs.2020.06.022
         journal-title:
           value: ISPRS Journal of Photogrammetry and Remote Sensing
         last-modified-date:
           value: 1653931908071
         path: /0000-0002-2182-8822/work/77502415
         publication-date:
           day: null
           month:
             value: 09
           year:
             value: '2020'
         put-code: 77502415
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Mapping croplands of Europe, Middle East, Russia, and Central
               Asia using Landsat, Random Forest, and Google Earth Engine
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.1016/j.isprsjprs.2020.06.022
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1080/17538947.2019.1651912
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.1080/17538947.2019.1651912
           external-id-value: 10.1080/17538947.2019.1651912
       last-modified-date:
         value: 1653785800531
       work-summary:
       - created-date:
           value: 1567059297352
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/17538947.2019.1651912
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1080/17538947.2019.1651912
             external-id-value: 10.1080/17538947.2019.1651912
         journal-title:
           value: International Journal of Digital Earth
         last-modified-date:
           value: 1653785800531
         path: /0000-0002-2182-8822/work/61031875
         publication-date:
           day:
             value: '02'
           month:
             value: 08
           year:
             value: '2020'
         put-code: 61031875
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: A meta-analysis of global crop water productivity of three leading
               world crops (wheat, corn, and rice) in the irrigated areas over three
               decades
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.1080/17538947.2019.1651912
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1080/15481603.2019.1690780
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.1080/15481603.2019.1690780
           external-id-value: 10.1080/15481603.2019.1690780
       last-modified-date:
         value: 1653808967548
       work-summary:
       - created-date:
           value: 1574409970523
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/15481603.2019.1690780
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1080/15481603.2019.1690780
             external-id-value: 10.1080/15481603.2019.1690780
         journal-title:
           value: GIScience & Remote Sensing
         last-modified-date:
           value: 1653808967548
         path: /0000-0002-2182-8822/work/64938316
         publication-date:
           day:
             value: '02'
           month:
             value: '04'
           year:
             value: '2020'
         put-code: 64938316
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Agricultural cropland extent and areas of South Asia derived
               using Landsat satellite 30-m time-series big-data using random forest
               machine learning algorithms on the Google Earth Engine cloud
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.1080/15481603.2019.1690780
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3390/rs11151790
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.3390/rs11151790
           external-id-value: 10.3390/rs11151790
       last-modified-date:
         value: 1653778176597
       work-summary:
       - created-date:
           value: 1564590270850
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs11151790
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs11151790
             external-id-value: 10.3390/rs11151790
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1653777470269
         path: /0000-0002-2182-8822/work/60075773
         publication-date:
           day:
             value: '31'
           month:
             value: '07'
           year:
             value: '2019'
         put-code: 60075773
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Remote Sensing 10th Anniversary Best Paper Award
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.3390/rs11151790
         visibility: public
       - created-date:
           value: 1564963344227
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs11151790
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs11151790
             external-id-value: 10.3390/rs11151790
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1653778176597
         path: /0000-0002-2182-8822/work/60207500
         publication-date:
           day: null
           month:
             value: '07'
           year:
             value: '2019'
         put-code: 60207500
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: APP-WRQOUAK78G5F7GMD
             uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
           source-name:
             value: Multidisciplinary Digital Publishing Institute
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Remote Sensing 10th Anniversary Best Paper Award
           translated-title: null
         type: journal-article
         url:
           value: https://www.mdpi.com/2072-4292/11/15/1790
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3390/rs11010091
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.3390/rs11010091
           external-id-value: 10.3390/rs11010091
       last-modified-date:
         value: 1653759299557
       work-summary:
       - created-date:
           value: 1547258644017
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs11010091
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs11010091
             external-id-value: 10.3390/rs11010091
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1653675443514
         path: /0000-0002-2182-8822/work/52548763
         publication-date:
           day: null
           month:
             value: '01'
           year:
             value: '2019'
         put-code: 52548763
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: APP-WRQOUAK78G5F7GMD
             uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
           source-name:
             value: Multidisciplinary Digital Publishing Institute
           source-orcid: null
         title:
           subtitle: null
           title:
             value: A Bibliometric Profile of the Remote Sensing Open Access Journal
               Published by MDPI between 2009 and 2018
           translated-title: null
         type: journal-article
         url:
           value: http://www.mdpi.com/2072-4292/11/1/91
         visibility: public
       - created-date:
           value: 1556291405878
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs11010091
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs11010091
             external-id-value: 10.3390/rs11010091
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1653759299557
         path: /0000-0002-2182-8822/work/56826498
         publication-date:
           day:
             value: '07'
           month:
             value: '01'
           year:
             value: '2019'
         put-code: 56826498
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: A Bibliometric Profile of the Remote Sensing Open Access Journal
               Published by MDPI between 2009 and 2018
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.3390/rs11010091
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3390/rs10122027
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.3390/rs10122027
           external-id-value: 10.3390/rs10122027
       last-modified-date:
         value: 1653670258295
       work-summary:
       - created-date:
           value: 1544780479769
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs10122027
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs10122027
             external-id-value: 10.3390/rs10122027
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1653669561586
         path: /0000-0002-2182-8822/work/51660905
         publication-date:
           day:
             value: '13'
           month:
             value: '12'
           year:
             value: '2018'
         put-code: 51660905
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Accuracies Achieved in Classifying Five Leading World Crop Types
               and their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral
               Narrowbands on Google Earth Engine
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.3390/rs10122027
         visibility: public
       - created-date:
           value: 1545098573258
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3390/rs10122027
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3390/rs10122027
             external-id-value: 10.3390/rs10122027
         journal-title:
           value: Remote Sensing
         last-modified-date:
           value: 1653670258295
         path: /0000-0002-2182-8822/work/51757004
         publication-date:
           day: null
           month:
             value: '12'
           year:
             value: '2018'
         put-code: 51757004
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: APP-WRQOUAK78G5F7GMD
             uri: https://orcid.org/client/APP-WRQOUAK78G5F7GMD
           source-name:
             value: Multidisciplinary Digital Publishing Institute
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Accuracies Achieved in Classifying Five Leading World Crop Types
               and their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral
               Narrowbands on Google Earth Engine
           translated-title: null
         type: journal-article
         url:
           value: http://www.mdpi.com/2072-4292/10/12/2027
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1080/15481603.2018.1482855
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.1080/15481603.2018.1482855
           external-id-value: 10.1080/15481603.2018.1482855
       last-modified-date:
         value: 1653614921953
       work-summary:
       - created-date:
           value: 1528278043059
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/15481603.2018.1482855
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1080/15481603.2018.1482855
             external-id-value: 10.1080/15481603.2018.1482855
         journal-title:
           value: GIScience & Remote Sensing
         last-modified-date:
           value: 1653614921953
         path: /0000-0002-2182-8822/work/45453145
         publication-date:
           day:
             value: '02'
           month:
             value: '11'
           year:
             value: '2018'
         put-code: 45453145
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: Mapping cropland fallow areas in myanmar to scale up sustainable
               intensification of pulse crops in the farming system
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.1080/15481603.2018.1482855
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.1080/17538947.2016.1267269
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.1080/17538947.2016.1267269
           external-id-value: 10.1080/17538947.2016.1267269
       last-modified-date:
         value: 1653524417129
       work-summary:
       - created-date:
           value: 1506303679991
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.1080/17538947.2016.1267269
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.1080/17538947.2016.1267269
             external-id-value: 10.1080/17538947.2016.1267269
         journal-title:
           value: International Journal of Digital Earth
         last-modified-date:
           value: 1653524417129
         path: /0000-0002-2182-8822/work/37080331
         publication-date:
           day:
             value: '02'
           month:
             value: 09
           year:
             value: '2017'
         put-code: 37080331
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: "Spectral matching techniques (SMTs) and automated cropland classification\
               \ algorithms (ACCAs) for mapping croplands of Australia using MODIS\
               \ 250-m time-series (2000\u20132015) data"
           translated-title: null
         type: journal-article
         url:
           value: https://doi.org/10.1080/17538947.2016.1267269
         visibility: public
     - external-ids:
         external-id:
         - external-id-normalized:
             transient: true
             value: 10.3133/ofr20161038
           external-id-normalized-error: null
           external-id-relationship: self
           external-id-type: doi
           external-id-url:
             value: https://doi.org/10.3133/ofr20161038
           external-id-value: 10.3133/ofr20161038
       last-modified-date:
         value: 1653524417122
       work-summary:
       - created-date:
           value: 1506303679857
         display-index: '0'
         external-ids:
           external-id:
           - external-id-normalized:
               transient: true
               value: 10.3133/ofr20161038
             external-id-normalized-error: null
             external-id-relationship: self
             external-id-type: doi
             external-id-url:
               value: https://doi.org/10.3133/ofr20161038
             external-id-value: 10.3133/ofr20161038
         journal-title: null
         last-modified-date:
           value: 1653524417122
         path: /0000-0002-2182-8822/work/37080330
         publication-date:
           day: null
           month: null
           year:
             value: '2016'
         put-code: 37080330
         source:
           assertion-origin-client-id: null
           assertion-origin-name: null
           assertion-origin-orcid: null
           source-client-id:
             host: orcid.org
             path: 0000-0001-9884-1913
             uri: https://orcid.org/client/0000-0001-9884-1913
           source-name:
             value: Crossref
           source-orcid: null
         title:
           subtitle: null
           title:
             value: A software tool for rapid flood inundation mapping
           translated-title: null
         type: report
         url:
           value: https://doi.org/10.3133/ofr20161038
         visibility: public
     last-modified-date:
       value: 1697242138165
     path: /0000-0002-2182-8822/works
 history:
   claimed: true
   completion-date: null
   creation-method: DIRECT
   deactivation-date: null
   last-modified-date:
     value: 1697242138149
   source: null
   submission-date:
     value: 1466795312431
   verified-email: true
   verified-primary-email: true
 person:
   name:
     created-date:
       value: 1466795312660
     credit-name: null
     family-name:
       value: Thenkabail
     given-names:
       value: Prasad
     last-modified-date:
       value: 1616534654819
     path: 0000-0002-2182-8822
     source: null
     visibility: public

usgs_staff_profile:

 meta:
   status_code: 200
   timestamp: '2023-09-30T17:41:04.485631'
   url: https://www.usgs.gov/staff-profiles/prasad-thenkabail
 profile:
   abstracts:
   - "As a result of Dr. Thenkabail\u2019s scientific accomplishments, standing,\
     \ and stature, he is a highly sought-after speaker. Since 2011, he has given\
     \ 117 talks (averaging ~12 per year) of which 40% (47/117) were invited. He\
     \ has been invited as a speaker in Bahrain, Brazil, Canada, China, Egypt, Germany,\
     \ India, Indonesia, Israel, Myanmar, Thailand, Vietnam, and various places in\
     \ USA (e.g., Purdue, OSU)."
   affiliations:
   - Editor-in-Chief, Remote Sensing Open Access Journal; 2011-present.
   - Associate Editor, American Society of Photogrammetric Engineering and Remote
     Sensing (PE&RS), a Journal of the Imaging and Geospatial Information Society
     (ASPRS).
   - Editorial Advisory Board, International Society of Photogrammetry and Remote
     Sensing (ISPRS) Journal of Photo. & Remote Sensing, 2014-present.
   - Editorial Board Member, Remote Sensing of Environment (2007-2016)
   - 'Core member,  NASA South/Southeast Asia Research Initiative (SARI):  2014-present'
   - Member, American Society of Photogrammetry and Remote Sensing (1988-present)
   - 'Chair: International Society of Photogrammetry and Remote Sensing (ISPRS) Working
     Group WG VIII/7: Land cover and its dynamics, including Agricultural & Urban
     Land Use (2013-2016)'
   - Global Coordinator, Committee for Earth Observing Systems Agriculture Societal
     Beneficial Areas (CEOA SBA) (2010-2013)
   - "Co-lead, IEEE \u201CWater for the World\u201D (2007-2011)"
   - Member, Landsat Science Team (2007-2011)
   education:
   - 1992 - Doctor of Philosophy (PhD) in Agricultural Engineering, The Ohio State
     University, Columbus, Ohio, USA.
   - 1983 - Master of Engineering (M.E.) in Hydraulics and Water Resources Engineering,
     Mysore University (India).
   - 1981 - Bachelor of Civil Engineering (B.E.), Mysore University (India).
   email: pthenkabail@usgs.gov
   expertise_terms:
   - geospatial analysis
   - maps and atlases
   - remote sensing
   - spatial analysis
   - forest resources
   - natural resource management
   - water resources
   - ecosystems
   - environmental assessment
   - forest ecosystems
   - freshwater ecosystems
   - wetland ecosystems
   - climate change
   - droughts
   - global cropland mapping
   - hydrology
   - food security
   - floods
   - hyperspectral remote sensing
   - groundwater
   - irrigation
   - machine learning and cloud computing
   - water budget
   - crop water productivity
   - water use
   - water security
   - vegetation
   honors:
   - 2023  Fellow, American Society of Photogrammetric Engineering and Remote Sensing
     (ASPRS)
   - 2023 Talbert Abrahms Grand Award, highest paper award from American Society
     of Photogrammetric Enginering and Remote Sensing (ASPRS).
   - 2022 - PESEP Scholar. The NASA-ISRO Professional Engineer and Scientist Exchange
     Program (PESEP). USA (NASA) and India (ISRO) scientific exchange scientist for
     2022-2023.
   - 2020 - Proposal evaluation panel for Israeli Ministry of Science and Technology,
     to their bi-national Italy-Israel joint laboratory in Precision Agriculture.
   - "2019 - Advisory Board member, Taylor and Francis Inc., online library collection\
     \ to support the United Nations\u2019 Sustainable Development Goals (UN SDGs)."
   - 2019 - USGS STAR award for supervision
   - 2019 - Member, NASA Surface Biology Geology (SBG)-Applications. For the SBG
     hyperspectral remote sensing mission (replacing former HyspIRI program).
   - 2019 - Member, NASA Calibration and Validation Working Group. For the SBG hyperspectral
     remote sensing mission (replacing former HyspIRI program).
   - 2019 - USGS 10-year service recognition
   - 2018 - The Excellent Reviewer of Remote Sensing of Environment
   - 2018 - Honored by the Arabian Gulf University, Bahrain and the Dubai-based International
     Center for Biosaline Agriculture (ICBA) for giving the keynote lecture.
   - 2016 - NASA Group Achievement Award, 2016. (Member of Team) Fallowed Area Map
   - '2015 - ASPRS Best Scientific Paper Award, 2015: ASPRS ERDAS award for best
     scientific paper in remote sensing (given annually for the papers published
     in American Society of Photogrammetry'
   - 2015 - Task Force Member NASA, SARI, 2015-present. South Asia Regional Initiative
     (SARI), A response to regional needs in Land Cover/Land Use Change (LCLUC) Science
     and Education (NASA)
   - '2015 - Innovations Inventory, PARIS21, 2015: Remote Sensing Data for Drought
     Assessment and Monitoring monograph authors (as first author) is in the PARIS21.'
   - 2013 - Panel chair, 2013, USGS RGE. For the Spring 2013 GIS and Remote Sensing
     USGS Research Grade Evaluation (RGE) panel.
   - "2008 - ASPRS President\u2019s award for practical papers: American Society\
     \ of Photogrammetry and Remote Sensing (ASPRS) John I. Davidson President\u2019\
     s Award for practical papers, 2008."
   - 2007 - Special achievement in GIS award from ESRI, awarded by ESRI President
     Mr. Jack Dangermond during the 2007 annual ESRI conference in San Diego.
   - "2006 - Best team award for my remote sensing and GIS team @ the International\
     \ Water Management Institute (IWMI) during Institute\u2019s Annual Research\
     \ Meeting 2006."
   - "2005 - Best paper award (5 best paper awards given) by International Water\
     \ Management Institute (IWMI) during Institute\u2019s Annual Research Meeting\
     \ 2005."
   - "2004 - Best paper award (5 best paper awards given) by International Water\
     \ Management Institute (IWMI) during Institute\u2019s Annual Research Meeting\
     \ 2004."
   - 2001 - Member, Scientific Advisory Board, Rapideye, a Private German Satellite
     Company.
   - 1994 - Autometric award for outstanding paper by American Society of Photogrammetry
     and Remote Sensing (ASPRS).
   intro_statements:
   - "Dr. Prasad S. Thenkabail, Senior Scientist (ST), United States Geological Survey\
     \ (USGS), is a world-recognized expert in remote sensing science with major\
     \ contributions in the field sustained for nearly 40 years. Dr. Thenkabail\u2019\
     s career scientific achievements can be gauged by successfully making the list\
     \ of world\u2019s top 1% of scientists across fields (22 scientific fields and\
     \ 176 sub-fields)."
   name: Prasad S. Thenkabail, PhD
   name_qualifier: null
   orcid: 0000-0002-2182-8822
   organization_link: https://www.usgs.gov/centers/western-geographic-science-center
   organization_name: Western Geographic Science Center
   personal_statement: "Dr. Thenkabail has conductedpioneering researchinhyperspectral\
     \ remote sensing of vegetationand in that ofglobal croplands and their water\
     \ use for food security. Inhyperspectral remote sensinghe has done cutting-edge\
     \ research with wide implications in advancing remote sensing science in application\
     \ to agriculture and vegetation. This body of work led to more than ten peer-reviewed\
     \ research publications with high impact. For example, a single paper entitled\
     \ \u201CHyperspectral vegetation indices and their relationships with agricultural\
     \ crop characteristics\u201D has received 1500 citations (3/14/23). In studies\
     \ ofglobal croplands for food and water security, he has led the release of\
     \ the world\u2019s first Landsat-derived: 1. global cropland extent product\
     \ @ 30m (GCEP30), and 2. global rainfed and irrigated area product @ 30m (LGRIP30).\
     \ This work demonstrates a \u201Cparadigm shift\u201D in how remote sensing\
     \ science is conducted. As per Google Scholar, the papers Dr. Thenkabail's research\
     \ are cited 14,235 times. His h-index is 58 and i10-index is 113.Dr. Thenkabail\u2019\
     s contributions to series of leading edited books on remote sensing science\
     \ places him as a world leader in remote sensing science advances. He editedthree-volume\
     \ bookentitledRemote Sensing Handbookpublished by Taylor and Francis, with 82\
     \ chapters and more than 2000 pages, widely considered a \u201Cmagnus opus\u201D\
     \ encyclopedic standard reference for students, scholars, practitioners, and\
     \ major experts in remote sensing science. He has recently completed editingHyperspectral\
     \ Remote Sensing of Vegetationpublishedbooks by Taylor and Francis in four volumes\
     \ with 50 chapters.This is the second edition that is currently in press and\
     \ is a follow-up on the earlier single-volumeHyperspectral Remote Sensing of\
     \ Vegetation. He has also edited a book onRemote Sensing of Global Croplands\
     \ for Food Security.He obtained his PhD from the Ohio State University in 1992\
     \ and has 168 publications including 9 books, 146 peer-reviewed journal articles,\
     \ and 13 major data releases. Dr. Thenkabail is at the center ofrendering scientific\
     \ service to the world\u2019s remote sensing communityin roles that includeEditor-in-Chief\
     \ (2011-present)of Remote Sensing Open Access Journal andAssociate Editor (2017-present)of\
     \ American Society\u2019s Journal Photogrammetric Engineering and Remote Sensing.\
     \ Dr. Thenkabail was recognized as Fellow of the American Society of Photogrammetry\
     \ and Remote Sensing (ASPRS) in 2023. His scientific papers have won several\
     \ awards over the years demonstrating world class highest quality research.\
     \ These include: 2023 Talbert Abrams Grand Award, the highest scientific paper\
     \ award of the ASPRS, 2015 ASPRS ERDAS award for best scientific paper in remote\
     \ sensing, and 1994 Autometric Award for the outstanding paper in remote sensing.\
     \ He was a Landsat Science Team Member (2007-2011)."
   professional_experience:
   - 2022 - present - Senior Scientist (ST), United States Geological Survey (USGS)
   - 'Oct. 2008-2022 - USGS: Supervisory Research Geographer-15 (2017-present), Research
     Geographer-15 (2011-2017), Research Geographer-14 (2008-2011), United States
     Geological Survey (USGS), Flagstaff, AZ.USA.'
   - 'March 2003-Sept. 2008 - IWMI: Principal Researcher, Global Research Division
     group and Head of Remote Sensing and GIS Unit, International Water Management
     Institute (IWMI), Colombo, Sri Lanka.'
   - 'April 1997-March 2003 - Yale University: Associate Research Scientist, Center
     for Earth Observation, Yale University, New Haven, CT,USA.'
   - 'Nov. 1995-March 1997 - ICIMOD: Remote Sensing Specialist, International Center
     for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal.'
   - 'July 1992-Nov. 1995 - IITA: Remote Sensing Specialist, International Institute
     of Tropical Agriculture, Ibadan, Nigeria.'
   - 'Sept. 1998-June 1992 - OSU: Graduate Research Assistant, The Ohio State University,
     Columbus, Ohio.'
   - 'Dec. 1984-Nov. 1986 - Mysore and Bangalore University: Teaching hydraulics
     and water resources, India.'
   - The countries he has worked in include China, Cambodia, Indonesia, Israel, Syria,
     United States, Canada, Brazil, Uzbekistan, Bangladesh, India, Myanmar, Nepal,
     Sri Lanka, Republic of Benin, Burkina Faso, Cameroon, Central African Republic,
     Cote d'Ivoire, Gambia, Ghana, Mali, Nigeria, Senegal, Togo, Mozambique, and
     South Africa.
   title: Senior Scientist (ST)