Item talk:Q142465: Difference between revisions
From geokb
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5079622706", "orcid": "https://orcid.org/0000-0003-4007-1500", "display_name": "Jeremy C. Ely", "display_name_alternatives": [ "Jeremy C. Ely", "J. Ely", "J. C. Ely", "Jeremy Ely" ], "works_count": 126, "cited_by_count": 1672, "summary_stats": { "2yr_mean_citedness": 3.0, "h_index": 24, "i10_index": 35 }, "ids": { "openalex": "https://ope...") |
No edit summary |
||
Line 1,157: | Line 1,157: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5079622706" | "_id": "https://openalex.org/A5079622706" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0003-4007-1500", | |||
"mainEntityOfPage": "https://orcid.org/0000-0003-4007-1500", | |||
"givenName": "Jeremy", | |||
"familyName": "Ely", | |||
"address": { | |||
"addressCountry": "GB", | |||
"@type": "PostalAddress" | |||
}, | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jqs.3628", | |||
"name": "Behavioural tendencies of the last British\u2013Irish Ice Sheet revealed by data\u2013model comparison", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jqs.3628" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2024gl109154", | |||
"name": "Accelerating Glacier Area Loss Across the Andes Since the Little Ice Age", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2024gl109154" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-024-49269-y", | |||
"name": "Accelerating glacier volume loss on Juneau Icefield driven by hypsometry and melt-accelerating feedbacks", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-024-49269-y" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/cp-20-701-2024", | |||
"name": "A Greenland-wide empirical reconstruction of paleo ice sheet retreat informed by ice extent markers: PaleoGrIS version 1.0", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/cp-20-701-2024" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-19220", | |||
"name": "The importance of bed roughness on ice sheet flow investigated using a full-Stokes ice flow model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-19220" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-16439", | |||
"name": "Contrasting regional ice margin dynamics of the Scandinavian Ice Sheet revealed by the landform record", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-16439" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-16440", | |||
"name": "Deglaciation pattern of the last Scandinavian Ice Sheet across Fennoscandia", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-16440" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-6044", | |||
"name": "A landform-driven simulation of deglaciation of the Scandinavian Ice Sheet and the PalGlac project’s progress on data-modelling integration", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-6044" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-11008", | |||
"name": "Application of a new statistically rigorous comparison tool of observed and modelled flow directions of the last British-Irish ice sheet over time", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-11008" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-11040", | |||
"name": "Insights into the LGM-to-present evolution of the Greenland Ice Sheet from a data evaluated ensemble of numerical model simulations", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-11040" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu24-9010", | |||
"name": "Snowfall over the Andes: a convection-permitting climate model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu24-9010" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.quascirev.2022.107680", | |||
"name": "Tunnel valley formation beneath deglaciating mid-latitude ice sheets: Observations and modelling", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.quascirev.2022.107680" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-17-4751-2023", | |||
"name": "Quantifying the uncertainty in the Eurasian ice-sheet geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-17-4751-2023" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.5658", | |||
"name": "Assessing ice sheet models against the landform record: The Likelihood of Accordant Lineations Analysis (LALA) tool", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.5658" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jqs.3523", | |||
"name": "Reconstruction of the palaeo\u2010sea level of Britain and Ireland arising from empirical constraints of ice extent: implications for regional sea level forecasts and North American ice sheet volume", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jqs.3523" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/cp-2023-60", | |||
"name": "A Greenland-wide empirical reconstruction of paleo ice-sheet retreat informed by ice extent markers: PaleoGrIS version 1.0", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/cp-2023-60" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu23-12767", | |||
"name": "Modelling the future of Nevado Coropuna (Peru), the world\u2019s largest tropical ice cap.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu23-12767" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1017/jog.2022.71", | |||
"name": "Effects of basal topography and ice-sheet surface slope in a subglacial glaciofluvial deposition model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1017/jog.2022.71" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.5529", | |||
"name": "Numerical modelling of subglacial ribs, drumlins, herringbones, and mega\u2010scale glacial lineations reveals their developmental trajectories and transitions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.5529" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2023-33-supplement", | |||
"name": "Supplementary material to \"Surface mass balance modelling of the Juneau Icefield highlights the potential for rapid ice loss by the mid-21st century\"", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2023-33-supplement" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2023-33", | |||
"name": "Surface mass balance modelling of the Juneau Icefield highlights the potential for rapid ice loss by the mid-21st century", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2023-33" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2023-5", | |||
"name": "Quantifying the Uncertainty in the Eurasian Ice-Sheet Geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2023-5" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.21203/rs.3.rs-2222758/v1", | |||
"name": "Continent-scale mapping reveals a rise in East Antarctic surface meltwater", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.21203/rs.3.rs-2222758/v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-022-33310-z", | |||
"name": "60 million years of glaciation in the Transantarctic Mountains", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-022-33310-z" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.5383", | |||
"name": "Topographic controls on ice flow and recession for Juneau Icefield (Alaska/British Columbia)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.5383" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/icg2022-157", | |||
"name": "Geomorphological constraints for tropical glacier retreat description and modelling: the MOTICE project in Nevado Coropuna and Quelcaya icecaps (Perú).", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/icg2022-157" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-7728", | |||
"name": "Further numerical simulations of subglacial bedform formation: Implications for interpreting palaeo-landscapes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-7728" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-8112", | |||
"name": "Investigating the Sensitivity of North Sea Glacial Isostatic Adjustment during the Last Interglacial to the Penultimate Deglaciation of Global Ice Sheets", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-8112" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-7694", | |||
"name": "Sensitivity of the Eurasian Ice Sheet: Improved model-data comparison routines", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-7694" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-11596", | |||
"name": "The effects of basal topography and ice-sheet surface slope in a subglacial glaciofluvial deposition model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-11596" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-4765", | |||
"name": "A new, multi-scale mapping approach for reconstructing the flow evolution of the Fennoscandian Ice Sheet using high-resolution digital elevation models.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-4765" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-2884", | |||
"name": "Monthly Antarctic-wide surface meltwater evolution between 2006 and 2021, and its links to climate", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-2884" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu22-777", | |||
"name": "Topographic controls on ice flow and recession for Juneau Icefield (Alaska/British Columbia)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu22-777" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-15-5785-2021", | |||
"name": "Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-15-5785-2021" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2021-177", | |||
"name": "Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2021-177" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2021-177-supplement", | |||
"name": "Supplementary material to "Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica"", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2021-177-supplement" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jqs.3273", | |||
"name": "Exploring the extent to which fluctuations in ice\u2010rafted debris reflect mass changes in the source ice sheet: a model\u2013observation comparison using the last British\u2013Irish Ice Sheet", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jqs.3273" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jqs.3275", | |||
"name": "Retreat dynamics of the eastern sector of the British\u2013Irish Ice Sheet during the last glaciation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jqs.3275" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020jf005755", | |||
"name": "Collapse of the Last Eurasian Ice Sheet in the North Sea Modulated by Combined Processes of Ice Flow, Surface Melt, and Marine Ice Sheet Instabilities", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020jf005755" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu21-7431", | |||
"name": "Continent-wide bimonthly mapping of Antarctic surface meltwater using Google Earth Engine", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu21-7431" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu21-2183", | |||
"name": "Exploring mechanisms and rates of tunnel valley formation beneath deglaciating mid-latitude ice sheets using high-resolution 3D seismic data and numerical modelling", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu21-2183" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-020-16685-9", | |||
"name": "Reply to: \u201cImpact of marine processes on flow dynamics of northern Antarctic Peninsula outlet glaciers\u201d by Rott et al.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-020-16685-9" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu2020-11290", | |||
"name": "Estimating the style and duration of former glaciation in the mountains of Britain and Ireland", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu2020-11290" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu2020-17484", | |||
"name": "Subglacial Drainage Routes of the Last Scandinavian Ice Sheet", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu2020-17484" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.pgeola.2019.02.008", | |||
"name": "Book Review", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.pgeola.2019.02.008" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.4688", | |||
"name": "The dynamics of mountain erosion: Cirque growth slows as landscapes age", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.4688" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41467-019-12039-2", | |||
"name": "Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41467-019-12039-2" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-12-933-2019", | |||
"name": "ATAT 1.1, the Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-12-933-2019" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/essd-2018-139-rc2", | |||
"name": "Review of Gowan et al. eology datasets of North America for use with ice sheet models", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/essd-2018-139-rc2" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-12-3635-2018", | |||
"name": "Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-12-3635-2018" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.quascirev.2018.06.009", | |||
"name": "Progressive ductile shearing during till accretion within the deforming bed of a palaeo-ice stream", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.quascirev.2018.06.009" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2018-116", | |||
"name": "Marine Ice Sheet Instability and Ice Shelf Buttressing Influenced Deglaciation of the Minch Ice Stream, Northwest Scotland", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2018-116" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/tc-2018-116-supplement", | |||
"name": "Supplementary material to "Marine Ice Sheet Instability and Ice Shelf Buttressing Influenced Deglaciation of the Minch Ice Stream, Northwest Scotland"", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/tc-2018-116-supplement" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-2018-12-ac1", | |||
"name": "Author response to reviewers", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-2018-12-ac1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.4241", | |||
"name": "Using the size and position of drumlins to understand how they grow, interact and evolve", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.4241" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-2018-12", | |||
"name": "ATAT 1.0, an Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-2018-12" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-2018-12-supplement", | |||
"name": "Supplementary material to "ATAT 1.0, an Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data"", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-2018-12-supplement" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.4192", | |||
"name": "Spatial organization of drumlins", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.4192" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2016jf004154", | |||
"name": "The periodic topography of ice stream beds: Insights from the Fourier spectra of mega\u2010scale glacial lineations", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2016jf004154" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.4044", | |||
"name": "Using UAV acquired photography and structure from motion techniques for studying glacier landforms: application to the glacial flutes at Isfallsglaci\u00e4ren", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84988564500" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.4044" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2016jf004071", | |||
"name": "Insights on the formation of longitudinal surface structures on ice sheets from analysis of their spacing, spatial distribution, and relationship to ice thickness and flow", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2016jf004071" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/nature22049", | |||
"name": "Widespread movement of meltwater onto and across Antarctic ice shelves", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/nature22049" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.geomorph.2016.11.018", | |||
"name": "ACME, a GIS tool for Automated Cirque Metric Extraction", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.geomorph.2016.11.018" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84999663665" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.earscirev.2016.11.007", | |||
"name": "Devising quality assurance procedures for assessment of legacy geochronological data relating to deglaciation of the last British-Irish Ice Sheet", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.earscirev.2016.11.007" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85001949426" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.pgeola.2016.06.004", | |||
"name": "Book Review", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.pgeola.2016.06.004" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.geomorph.2016.01.001", | |||
"name": "Do subglacial bedforms comprise a size and shape continuum?", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.geomorph.2016.01.001" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84953897110" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/ncomms10723", | |||
"name": "Ice stream motion facilitated by a shallow-deforming and accreting bed", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84959016611" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/ncomms10723" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17445647.2016.1234981", | |||
"name": "The glacial geomorphology of the western cordilleran ice sheet and Ahklun ice cap, Southern Alaska", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17445647.2016.1234981" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84989234966" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.quascirev.2015.01.030", | |||
"name": "Discriminating between subglacial and proglacial lake sediments: an example from the D\u00e4nischer Wohld Peninsula, northern Germany", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84922695224" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.quascirev.2015.01.030" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17445647.2015.1010617", | |||
"name": "Flow-stripes and foliations of the Antarctic ice sheet", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17445647.2015.1010617" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84953357860" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17445647.2014.957251", | |||
"name": "Manual mapping of drumlins in synthetic landscapes to assess operator effectiveness", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84938420627" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17445647.2014.957251" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/esp.3532", | |||
"name": "Size, shape and spatial arrangement of mega-scale glacial lineations from a large and diverse dataset", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84906781840" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/esp.3532" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3189/2014jog14j110", | |||
"name": "Looking through drumlins: testing the application of ground-penetrating radar", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84926674982" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3189/2014jog14j110" | |||
} | |||
] | |||
} | |||
] | |||
}, | |||
"url": "https://www.sheffield.ac.uk/geography/staff/jeremy_ely", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Loop profile", | |||
"value": "311469" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "56040812500" | |||
} | |||
] | |||
} | } | ||
} | } |
Latest revision as of 21:37, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5079622706", "orcid": "https://orcid.org/0000-0003-4007-1500", "display_name": "Jeremy C. Ely", "display_name_alternatives": [ "Jeremy C. Ely", "J. Ely", "J. C. Ely", "Jeremy Ely" ], "works_count": 126, "cited_by_count": 1672, "summary_stats": { "2yr_mean_citedness": 3.0, "h_index": 24, "i10_index": 35 }, "ids": { "openalex": "https://openalex.org/A5079622706", "orcid": "https://orcid.org/0000-0003-4007-1500", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=56040812500&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I91136226", "ror": "https://ror.org/05krs5044", "display_name": "University of Sheffield", "country_code": "GB", "type": "education", "lineage": [ "https://openalex.org/I91136226" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I91136226", "ror": "https://ror.org/05krs5044", "display_name": "University of Sheffield", "country_code": "GB", "type": "education", "lineage": [ "https://openalex.org/I91136226" ] } ], "topics": [ { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 98, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10017", "display_name": "Climate Change and Paleoclimatology", "count": 69, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10535", "display_name": "Landslide Hazards and Risk Assessment", "count": 40, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13176", "display_name": "Injuries in Alpine Skiing and Snowboarding", "count": 27, "subfield": { "id": "https://openalex.org/subfields/2740", "display_name": "Pulmonary and Respiratory Medicine" }, "field": { "id": "https://openalex.org/fields/27", "display_name": "Medicine" }, "domain": { "id": "https://openalex.org/domains/4", "display_name": "Health Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 20, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12180", "display_name": "Microbial Diversity in Antarctic Ecosystems", "count": 14, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "count": 12, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10965", "display_name": "Sedimentary Processes in Earth's Geology", "count": 7, "subfield": { "id": "https://openalex.org/subfields/1904", "display_name": "Earth-Surface Processes" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10421", "display_name": "Human Evolution and Behavioral Modernity", "count": 4, "subfield": { "id": "https://openalex.org/subfields/3314", "display_name": "Anthropology" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10577", "display_name": "Ecological Dynamics of Riverine Landscapes", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11609", "display_name": "Applications of Ground-Penetrating Radar in Geoscience and Engineering", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "count": 2, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10001", "display_name": "Tectonic and Geochronological Evolution of Orogens", "count": 2, "subfield": { "id": "https://openalex.org/subfields/1908", "display_name": "Geophysics" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12456", "display_name": "Geotourism and Geoheritage Conservation", "count": 1, "subfield": { "id": "https://openalex.org/subfields/1907", "display_name": "Geology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12343", "display_name": "Geography Education and Spatial Thinking", "count": 1, "subfield": { "id": "https://openalex.org/subfields/3305", "display_name": "Geography, Planning and Development" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T12696", "display_name": "Icing Mitigation Techniques for Wind Turbines and Aircraft", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12821", "display_name": "Tectonic Evolution of Carpathian-Pannonian Region", "count": 1, "subfield": { "id": "https://openalex.org/subfields/1908", "display_name": "Geophysics" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14472", "display_name": "Integrating Ecology and Environmental Ethics for Earth Stewardship", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12205", "display_name": "Clustering of Time Series Data and Algorithms", "count": 1, "subfield": { "id": "https://openalex.org/subfields/1711", "display_name": "Signal Processing" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13375", "display_name": "Integrated Water Resources Management", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11968", "display_name": "Genetic and Physiological Adaptations to High-Altitude Environments", "count": 1, "subfield": { "id": "https://openalex.org/subfields/1311", "display_name": "Genetics" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12162", "display_name": "Theory and Applications of Cellular Automata", "count": 1, "subfield": { "id": "https://openalex.org/subfields/1703", "display_name": "Computational Theory and Mathematics" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10996", "display_name": "Mesh Generation Algorithms", "count": 1, "subfield": { "id": "https://openalex.org/subfields/1704", "display_name": "Computer Graphics and Computer-Aided Design" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10757", "display_name": "Volunteered Geographic Information and Geospatial Crowdsourcing", "count": 1, "subfield": { "id": "https://openalex.org/subfields/3305", "display_name": "Geography, Planning and Development" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "value": 0.0003842, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13176", "display_name": "Injuries in Alpine Skiing and Snowboarding", "value": 0.0002145, "subfield": { "id": "https://openalex.org/subfields/2740", "display_name": "Pulmonary and Respiratory Medicine" }, "field": { "id": "https://openalex.org/fields/27", "display_name": "Medicine" }, "domain": { "id": "https://openalex.org/domains/4", "display_name": "Health Sciences" } }, { "id": "https://openalex.org/T12180", "display_name": "Microbial Diversity in Antarctic Ecosystems", "value": 0.0001645, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10535", "display_name": "Landslide Hazards and Risk Assessment", "value": 0.000142, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "value": 0.0001186, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10017", "display_name": "Climate Change and Paleoclimatology", "value": 0.0001063, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11459", "display_name": "Arctic Sea Ice Variability and Decline", "value": 8.29e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12456", "display_name": "Geotourism and Geoheritage Conservation", "value": 4.82e-05, "subfield": { "id": "https://openalex.org/subfields/1907", "display_name": "Geology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10965", "display_name": "Sedimentary Processes in Earth's Geology", "value": 2.66e-05, "subfield": { "id": "https://openalex.org/subfields/1904", "display_name": "Earth-Surface Processes" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10421", "display_name": "Human Evolution and Behavioral Modernity", "value": 2.61e-05, "subfield": { "id": "https://openalex.org/subfields/3314", "display_name": "Anthropology" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T12343", "display_name": "Geography Education and Spatial Thinking", "value": 2.29e-05, "subfield": { "id": "https://openalex.org/subfields/3305", "display_name": "Geography, Planning and Development" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T12696", "display_name": "Icing Mitigation Techniques for Wind Turbines and Aircraft", "value": 2.01e-05, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10577", "display_name": "Ecological Dynamics of Riverine Landscapes", "value": 1.64e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11609", "display_name": "Applications of Ground-Penetrating Radar in Geoscience and Engineering", "value": 1.43e-05, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12821", "display_name": "Tectonic Evolution of Carpathian-Pannonian Region", "value": 1.43e-05, "subfield": { "id": "https://openalex.org/subfields/1908", "display_name": "Geophysics" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14472", "display_name": "Integrating Ecology and Environmental Ethics for Earth Stewardship", "value": 1.24e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12205", "display_name": "Clustering of Time Series Data and Algorithms", "value": 1.14e-05, "subfield": { "id": "https://openalex.org/subfields/1711", "display_name": "Signal Processing" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13375", "display_name": "Integrated Water Resources Management", "value": 9.5e-06, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11968", "display_name": "Genetic and Physiological Adaptations to High-Altitude Environments", "value": 9.4e-06, "subfield": { "id": "https://openalex.org/subfields/1311", "display_name": "Genetics" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12162", "display_name": "Theory and Applications of Cellular Automata", "value": 9.2e-06, "subfield": { "id": "https://openalex.org/subfields/1703", "display_name": "Computational Theory and Mathematics" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10996", "display_name": "Mesh Generation Algorithms", "value": 8.4e-06, "subfield": { "id": "https://openalex.org/subfields/1704", "display_name": "Computer Graphics and Computer-Aided Design" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "value": 6.7e-06, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10757", "display_name": "Volunteered Geographic Information and Geospatial Crowdsourcing", "value": 6.1e-06, "subfield": { "id": "https://openalex.org/subfields/3305", "display_name": "Geography, Planning and Development" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T11354", "display_name": "Evolutionary Dynamics of Mammals and Their Ancestors", "value": 5.9e-06, "subfield": { "id": "https://openalex.org/subfields/1911", "display_name": "Paleontology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10142", "display_name": "Formal Methods in Software Verification and Control", "value": 5.8e-06, "subfield": { "id": "https://openalex.org/subfields/1703", "display_name": "Computational Theory and Mathematics" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 96.8 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 90.5 }, { "id": "https://openalex.org/C114793014", "wikidata": "https://www.wikidata.org/wiki/Q52109", "display_name": "Geomorphology", "level": 1, "score": 88.9 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 86.5 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 80.2 }, { "id": "https://openalex.org/C151730666", "wikidata": "https://www.wikidata.org/wiki/Q7205", "display_name": "Paleontology", "level": 1, "score": 80.2 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 75.4 }, { "id": "https://openalex.org/C49204034", "wikidata": "https://www.wikidata.org/wiki/Q52139", "display_name": "Climatology", "level": 1, "score": 70.6 }, { "id": "https://openalex.org/C153294291", "wikidata": "https://www.wikidata.org/wiki/Q25261", "display_name": "Meteorology", "level": 1, "score": 69.8 }, { "id": "https://openalex.org/C100970517", "wikidata": "https://www.wikidata.org/wiki/Q52107", "display_name": "Physical geography", "level": 1, "score": 63.5 }, { "id": "https://openalex.org/C136894858", "wikidata": "https://www.wikidata.org/wiki/Q213926", "display_name": "Sea ice", "level": 2, "score": 61.1 }, { "id": "https://openalex.org/C197435368", "wikidata": "https://www.wikidata.org/wiki/Q493109", "display_name": "Cryosphere", "level": 3, "score": 59.5 }, { "id": "https://openalex.org/C81820708", "wikidata": "https://www.wikidata.org/wiki/Q2540532", "display_name": "Ice stream", "level": 4, "score": 57.1 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 51.6 }, { "id": "https://openalex.org/C123750103", "wikidata": "https://www.wikidata.org/wiki/Q12599", "display_name": "Ice sheet", "level": 2, "score": 51.6 }, { "id": "https://openalex.org/C100834320", "wikidata": "https://www.wikidata.org/wiki/Q35666", "display_name": "Glacier", "level": 2, "score": 50.0 }, { "id": "https://openalex.org/C15739521", "wikidata": "https://www.wikidata.org/wiki/Q602963", "display_name": "Glacial period", "level": 2, "score": 48.4 }, { "id": "https://openalex.org/C16335420", "wikidata": "https://www.wikidata.org/wiki/Q18205270", "display_name": "Antarctic sea ice", "level": 4, "score": 31.0 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 31.0 }, { "id": "https://openalex.org/C161798024", "wikidata": "https://www.wikidata.org/wiki/Q3651008", "display_name": "Arctic ice pack", "level": 3, "score": 31.0 }, { "id": "https://openalex.org/C518008717", "wikidata": "https://www.wikidata.org/wiki/Q25322", "display_name": "Arctic", "level": 2, "score": 31.0 }, { "id": "https://openalex.org/C87547467", "wikidata": "https://www.wikidata.org/wiki/Q46966", "display_name": "Ice shelf", "level": 4, "score": 30.2 }, { "id": "https://openalex.org/C58640448", "wikidata": "https://www.wikidata.org/wiki/Q42515", "display_name": "Cartography", "level": 1, "score": 27.0 }, { "id": "https://openalex.org/C196735533", "wikidata": "https://www.wikidata.org/wiki/Q1378564", "display_name": "Drift ice", "level": 4, "score": 25.4 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 23.8 } ], "counts_by_year": [ { "year": 2024, "works_count": 14, "cited_by_count": 218 }, { "year": 2023, "works_count": 14, "cited_by_count": 294 }, { "year": 2022, "works_count": 13, "cited_by_count": 235 }, { "year": 2021, "works_count": 10, "cited_by_count": 243 }, { "year": 2020, "works_count": 6, "cited_by_count": 158 }, { "year": 2019, "works_count": 13, "cited_by_count": 162 }, { "year": 2018, "works_count": 13, "cited_by_count": 144 }, { "year": 2017, "works_count": 18, "cited_by_count": 87 }, { "year": 2016, "works_count": 11, "cited_by_count": 61 }, { "year": 2015, "works_count": 4, "cited_by_count": 16 }, { "year": 2014, "works_count": 8, "cited_by_count": 4 }, { "year": 2013, "works_count": 2, "cited_by_count": 0 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5079622706", "updated_date": "2024-08-20T02:40:56.347530", "created_date": "2023-07-21", "_id": "https://openalex.org/A5079622706" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0003-4007-1500", "mainEntityOfPage": "https://orcid.org/0000-0003-4007-1500", "givenName": "Jeremy", "familyName": "Ely", "address": { "addressCountry": "GB", "@type": "PostalAddress" }, "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jqs.3628", "name": "Behavioural tendencies of the last British\u2013Irish Ice Sheet revealed by data\u2013model comparison", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jqs.3628" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2024gl109154", "name": "Accelerating Glacier Area Loss Across the Andes Since the Little Ice Age", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2024gl109154" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41467-024-49269-y", "name": "Accelerating glacier volume loss on Juneau Icefield driven by hypsometry and melt-accelerating feedbacks", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-024-49269-y" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/cp-20-701-2024", "name": "A Greenland-wide empirical reconstruction of paleo ice sheet retreat informed by ice extent markers: PaleoGrIS version 1.0", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/cp-20-701-2024" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-19220", "name": "The importance of bed roughness on ice sheet flow investigated using a full-Stokes ice flow model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-19220" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-16439", "name": "Contrasting regional ice margin dynamics of the Scandinavian Ice Sheet revealed by the landform record", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-16439" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-16440", "name": "Deglaciation pattern of the last Scandinavian Ice Sheet across Fennoscandia", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-16440" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-6044", "name": "A landform-driven simulation of deglaciation of the Scandinavian Ice Sheet and the PalGlac project’s progress on data-modelling integration", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-6044" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-11008", "name": "Application of a new statistically rigorous comparison tool of observed and modelled flow directions of the last British-Irish ice sheet over time", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-11008" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-11040", "name": "Insights into the LGM-to-present evolution of the Greenland Ice Sheet from a data evaluated ensemble of numerical model simulations", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-11040" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu24-9010", "name": "Snowfall over the Andes: a convection-permitting climate model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu24-9010" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2022.107680", "name": "Tunnel valley formation beneath deglaciating mid-latitude ice sheets: Observations and modelling", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2022.107680" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-17-4751-2023", "name": "Quantifying the uncertainty in the Eurasian ice-sheet geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-17-4751-2023" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/esp.5658", "name": "Assessing ice sheet models against the landform record: The Likelihood of Accordant Lineations Analysis (LALA) tool", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/esp.5658" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jqs.3523", "name": "Reconstruction of the palaeo\u2010sea level of Britain and Ireland arising from empirical constraints of ice extent: implications for regional sea level forecasts and North American ice sheet volume", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jqs.3523" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/cp-2023-60", "name": "A Greenland-wide empirical reconstruction of paleo ice-sheet retreat informed by ice extent markers: PaleoGrIS version 1.0", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/cp-2023-60" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu23-12767", "name": "Modelling the future of Nevado Coropuna (Peru), the world\u2019s largest tropical ice cap.", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu23-12767" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1017/jog.2022.71", "name": "Effects of basal topography and ice-sheet surface slope in a subglacial glaciofluvial deposition model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1017/jog.2022.71" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/esp.5529", "name": "Numerical modelling of subglacial ribs, drumlins, herringbones, and mega\u2010scale glacial lineations reveals their developmental trajectories and transitions", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/esp.5529" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-2023-33-supplement", "name": "Supplementary material to \"Surface mass balance modelling of the Juneau Icefield highlights the potential for rapid ice loss by the mid-21st century\"", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-2023-33-supplement" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-2023-33", "name": "Surface mass balance modelling of the Juneau Icefield highlights the potential for rapid ice loss by the mid-21st century", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-2023-33" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-2023-5", "name": "Quantifying the Uncertainty in the Eurasian Ice-Sheet Geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6)", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-2023-5" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.21203/rs.3.rs-2222758/v1", "name": "Continent-scale mapping reveals a rise in East Antarctic surface meltwater", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.21203/rs.3.rs-2222758/v1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41467-022-33310-z", "name": "60 million years of glaciation in the Transantarctic Mountains", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-022-33310-z" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/esp.5383", "name": "Topographic controls on ice flow and recession for Juneau Icefield (Alaska/British Columbia)", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/esp.5383" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/icg2022-157", "name": "Geomorphological constraints for tropical glacier retreat description and modelling: the MOTICE project in Nevado Coropuna and Quelcaya icecaps (Perú).", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/icg2022-157" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu22-7728", "name": "Further numerical simulations of subglacial bedform formation: Implications for interpreting palaeo-landscapes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu22-7728" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu22-8112", "name": "Investigating the Sensitivity of North Sea Glacial Isostatic Adjustment during the Last Interglacial to the Penultimate Deglaciation of Global Ice Sheets", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu22-8112" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu22-7694", "name": "Sensitivity of the Eurasian Ice Sheet: Improved model-data comparison routines", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu22-7694" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu22-11596", "name": "The effects of basal topography and ice-sheet surface slope in a subglacial glaciofluvial deposition model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu22-11596" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu22-4765", "name": "A new, multi-scale mapping approach for reconstructing the flow evolution of the Fennoscandian Ice Sheet using high-resolution digital elevation models.", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu22-4765" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu22-2884", "name": "Monthly Antarctic-wide surface meltwater evolution between 2006 and 2021, and its links to climate", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu22-2884" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu22-777", "name": "Topographic controls on ice flow and recession for Juneau Icefield (Alaska/British Columbia)", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu22-777" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-15-5785-2021", "name": "Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-15-5785-2021" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-2021-177", "name": "Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-2021-177" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-2021-177-supplement", "name": "Supplementary material to "Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica"", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-2021-177-supplement" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jqs.3273", "name": "Exploring the extent to which fluctuations in ice\u2010rafted debris reflect mass changes in the source ice sheet: a model\u2013observation comparison using the last British\u2013Irish Ice Sheet", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jqs.3273" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jqs.3275", "name": "Retreat dynamics of the eastern sector of the British\u2013Irish Ice Sheet during the last glaciation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jqs.3275" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020jf005755", "name": "Collapse of the Last Eurasian Ice Sheet in the North Sea Modulated by Combined Processes of Ice Flow, Surface Melt, and Marine Ice Sheet Instabilities", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020jf005755" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu21-7431", "name": "Continent-wide bimonthly mapping of Antarctic surface meltwater using Google Earth Engine", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu21-7431" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu21-2183", "name": "Exploring mechanisms and rates of tunnel valley formation beneath deglaciating mid-latitude ice sheets using high-resolution 3D seismic data and numerical modelling", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu21-2183" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41467-020-16685-9", "name": "Reply to: \u201cImpact of marine processes on flow dynamics of northern Antarctic Peninsula outlet glaciers\u201d by Rott et al.", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-020-16685-9" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu2020-11290", "name": "Estimating the style and duration of former glaciation in the mountains of Britain and Ireland", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu2020-11290" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu2020-17484", "name": "Subglacial Drainage Routes of the Last Scandinavian Ice Sheet", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu2020-17484" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.pgeola.2019.02.008", "name": "Book Review", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.pgeola.2019.02.008" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/esp.4688", "name": "The dynamics of mountain erosion: Cirque growth slows as landscapes age", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/esp.4688" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41467-019-12039-2", "name": "Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41467-019-12039-2" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-12-933-2019", "name": "ATAT 1.1, the Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-12-933-2019" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/essd-2018-139-rc2", "name": "Review of Gowan et al. eology datasets of North America for use with ice sheet models", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/essd-2018-139-rc2" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-12-3635-2018", "name": "Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-12-3635-2018" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2018.06.009", "name": "Progressive ductile shearing during till accretion within the deforming bed of a palaeo-ice stream", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2018.06.009" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-2018-116", "name": "Marine Ice Sheet Instability and Ice Shelf Buttressing Influenced Deglaciation of the Minch Ice Stream, Northwest Scotland", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-2018-116" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/tc-2018-116-supplement", "name": "Supplementary material to "Marine Ice Sheet Instability and Ice Shelf Buttressing Influenced Deglaciation of the Minch Ice Stream, Northwest Scotland"", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/tc-2018-116-supplement" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-2018-12-ac1", "name": "Author response to reviewers", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-2018-12-ac1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/esp.4241", "name": "Using the size and position of drumlins to understand how they grow, interact and evolve", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/esp.4241" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-2018-12", "name": "ATAT 1.0, an Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-2018-12" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-2018-12-supplement", "name": "Supplementary material to "ATAT 1.0, an Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data"", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-2018-12-supplement" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/esp.4192", "name": "Spatial organization of drumlins", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/esp.4192" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2016jf004154", "name": "The periodic topography of ice stream beds: Insights from the Fourier spectra of mega\u2010scale glacial lineations", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2016jf004154" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/esp.4044", "name": "Using UAV acquired photography and structure from motion techniques for studying glacier landforms: application to the glacial flutes at Isfallsglaci\u00e4ren", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84988564500" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/esp.4044" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2016jf004071", "name": "Insights on the formation of longitudinal surface structures on ice sheets from analysis of their spacing, spatial distribution, and relationship to ice thickness and flow", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2016jf004071" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/nature22049", "name": "Widespread movement of meltwater onto and across Antarctic ice shelves", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nature22049" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.geomorph.2016.11.018", "name": "ACME, a GIS tool for Automated Cirque Metric Extraction", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.geomorph.2016.11.018" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84999663665" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.earscirev.2016.11.007", "name": "Devising quality assurance procedures for assessment of legacy geochronological data relating to deglaciation of the last British-Irish Ice Sheet", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.earscirev.2016.11.007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85001949426" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.pgeola.2016.06.004", "name": "Book Review", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.pgeola.2016.06.004" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.geomorph.2016.01.001", "name": "Do subglacial bedforms comprise a size and shape continuum?", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.geomorph.2016.01.001" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84953897110" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/ncomms10723", "name": "Ice stream motion facilitated by a shallow-deforming and accreting bed", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84959016611" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/ncomms10723" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/17445647.2016.1234981", "name": "The glacial geomorphology of the western cordilleran ice sheet and Ahklun ice cap, Southern Alaska", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/17445647.2016.1234981" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84989234966" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.quascirev.2015.01.030", "name": "Discriminating between subglacial and proglacial lake sediments: an example from the D\u00e4nischer Wohld Peninsula, northern Germany", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84922695224" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.quascirev.2015.01.030" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/17445647.2015.1010617", "name": "Flow-stripes and foliations of the Antarctic ice sheet", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/17445647.2015.1010617" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84953357860" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/17445647.2014.957251", "name": "Manual mapping of drumlins in synthetic landscapes to assess operator effectiveness", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84938420627" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/17445647.2014.957251" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/esp.3532", "name": "Size, shape and spatial arrangement of mega-scale glacial lineations from a large and diverse dataset", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84906781840" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/esp.3532" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3189/2014jog14j110", "name": "Looking through drumlins: testing the application of ground-penetrating radar", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84926674982" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3189/2014jog14j110" } ] } ] }, "url": "https://www.sheffield.ac.uk/geography/staff/jeremy_ely", "identifier": [ { "@type": "PropertyValue", "propertyID": "Loop profile", "value": "311469" }, { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "56040812500" } ] }
}