Item talk:Q138705: Difference between revisions
From geokb
No edit summary |
No edit summary |
||
Line 796: | Line 796: | ||
"id": "https://openalex.org/T11880", | "id": "https://openalex.org/T11880", | ||
"display_name": "Estimation of Forest Biomass and Carbon Stocks", | "display_name": "Estimation of Forest Biomass and Carbon Stocks", | ||
"value": 8e-05, | "value": "8e-05", | ||
"subfield": { | "subfield": { | ||
"id": "https://openalex.org/subfields/2309", | "id": "https://openalex.org/subfields/2309", | ||
Line 1,225: | Line 1,225: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5076026599" | "_id": "https://openalex.org/A5076026599" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0003-4136-8971", | |||
"mainEntityOfPage": "https://orcid.org/0000-0003-4136-8971", | |||
"name": "Shawn P. Serbin", | |||
"givenName": "Shawn", | |||
"familyName": "Serbin", | |||
"alternateName": [ | |||
"Serbin, S.P.", | |||
"S.P. Serbin", | |||
"Shawn Serbin", | |||
"Dr. Shawn P. Serbin", | |||
"Serbin, SP" | |||
], | |||
"alumniOf": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Michigan State University", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "3078" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "University of Wisconsin Madison", | |||
"alternateName": "Forest and Wildlife Ecology", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "5228" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "University of Wisconsin Madison", | |||
"alternateName": "Nelson Institute for Environmental Studies", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "5228" | |||
} | |||
} | |||
], | |||
"affiliation": [ | |||
{ | |||
"@type": "Organization", | |||
"name": "Goddard Space Flight Center", | |||
"alternateName": "Biospheric Sciences Laboratory", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "ROR", | |||
"value": "https://ror.org/0171mag52" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "Brookhaven National Laboratory", | |||
"alternateName": "Environmental and Climate Sciences Department", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "8099" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "grid.202665.5", | |||
"name": "Brookhaven National Laboratory", | |||
"alternateName": "Environmental and Climate Sciences" | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "University of Wisconsin Madison", | |||
"alternateName": "Forest and Wildlife Ecology", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "5228" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "University of Illinois at Urbana-Champaign", | |||
"alternateName": "Plant Biology", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "14589" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"name": "University of Wisconsin Madison", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "5228" | |||
} | |||
} | |||
], | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.22541/essoar.172072808.80558309/v1", | |||
"name": "Topography and Functional Traits Control the Distribution of Key Shrub Plant Functional Types in Low-Arctic Tundra", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.22541/essoar.172072808.80558309/v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/2024.01.21.576284", | |||
"name": "Changes in spectral signature of leaves after desiccation: Implications for the prediction of leaf traits and plant-soil interaction in herbarium samples", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/2024.01.21.576284" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/2041-210x.14231", | |||
"name": "PiCAM: A Raspberry Pi\u2010based open\u2010source, low\u2010power camera system for monitoring plant phenology in Arctic environments", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/2041-210x.14231" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41598-023-44384-0", | |||
"name": "Mapping canopy traits over Qu\u00e9bec using airborne and spaceborne imaging spectroscopy", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41598-023-44384-0" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.19137", | |||
"name": "Seasonal trends in leaf\u2010level photosynthetic capacity and water use efficiency in a North American Eastern deciduous forest and their impact on canopy\u2010scale gas exchange", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.19137" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1175/2023bamsstateoftheclimate_intro.1", | |||
"name": "State of the Climate in 2022: Introduction", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1175/2023bamsstateoftheclimate_intro.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/ace637", | |||
"name": "Reducing uncertainty of high-latitude ecosystem models through identification of key parameters", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/ace637" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2023.113612", | |||
"name": "Mapping foliar photosynthetic capacity in sub-tropical and tropical forests with UAS-based imaging spectroscopy: Scaling from leaf to canopy", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2023.113612" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.18901", | |||
"name": "The effect of the vertical gradients of photosynthetic parameters on the CO2 assimilation and transpiration of a Panamanian tropical forest", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.18901" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/2023.05.09.538942", | |||
"name": "Integration of leaf spectral reflectance variability facilitates identification of plant leaves at different taxonomic levels", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/2023.05.09.538942" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.18770", | |||
"name": "Integrating plant physiology into simulation of fire behavior and effects", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.18770" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2022jg006833", | |||
"name": "Exploring Mission Design for Imaging Spectroscopy Retrievals for Land and Aquatic Ecosystems", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2022jg006833" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2022.113430", | |||
"name": "Integrating very-high-resolution UAS data and airborne imaging spectroscopy to map the fractional composition of Arctic plant functional types in Western Alaska", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2022.113430" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/pce.14524", | |||
"name": "Leaves as bottlenecks: The contribution of tree leaves to hydraulic resistance within the soil\u2212plant\u2212atmosphere continuum", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/pce.14524" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2022jg006935", | |||
"name": "Simulating Global Dynamic Surface Reflectances for Imaging Spectroscopy Spaceborne Missions: LPJ\u2010PROSAIL", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2022jg006935" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/1365-2745.13976", | |||
"name": "Remote sensing from unoccupied aerial systems: Opportunities to enhance Arctic plant ecology in a changing climate", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/1365-2745.13976" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1175/2022bamsstateoftheclimate.1", | |||
"name": "State of the Climate in 2021", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1175/2022bamsstateoftheclimate.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/treephys/tpac006", | |||
"name": "Late-day measurement of excised branches results in uncertainty in the estimation of two stomatal parameters derived from response curves in Populus deltoides Bartr.\u00a0\u00d7\u00a0Populus nigra L.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/treephys/tpac006" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/geb.13516", | |||
"name": "Towards mapping biodiversity from above: Can fusing lidar and hyperspectral remote sensing predict taxonomic, functional, and phylogenetic tree diversity in temperate forests?", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/geb.13516" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-15-4313-2022", | |||
"name": "Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-15-4313-2022" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.16103", | |||
"name": "An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness\u2010of\u2010fit across diverse data sets", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.16103" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/genetics/iyac065", | |||
"name": "High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean (Glycine max) nested association mapping population", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/genetics/iyac065" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-15-3233-2022", | |||
"name": "Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-15-3233-2022" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021ms002761", | |||
"name": "One Stomatal Model to Rule Them All? Toward Improved Representation of Carbon and Water Exchange in Global Models", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021ms002761" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/essoar.10510949.1", | |||
"name": "Exploring mission design for imaging spectroscopy retrievals for land and aquatic ecosystems", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/essoar.10510949.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/eap.2499", | |||
"name": "Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/eap.2499" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021jg006697", | |||
"name": "Remote Sensing of Tundra Ecosystems using High Spectral Resolution Reflectance: Opportunities and Challenges", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021jg006697" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.15958", | |||
"name": "Reducing model uncertainty of climate change impacts on high latitude carbon assimilation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.15958" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-2021-414", | |||
"name": "Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-2021-414" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-2021-414-supplement", | |||
"name": "Supplementary material to "Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)"", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-2021-414-supplement" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.17762", | |||
"name": "New calculations for photosynthesis measurement systems: what's the impact for physiologists and modelers?", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.17762" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/essoar.10509562.1", | |||
"name": "The Impact of Seasonal Phenology on Photosynthetic Water Use Efficiency: an Evaluation of Patterns and Drivers in Temperate Deciduous Forests", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/essoar.10509562.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/essoar.10509039.1", | |||
"name": "Designing an Observing System to Study the Surface Biology and Geology of the Earth in the 2020s", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/essoar.10509039.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/essoar.10508585.1", | |||
"name": "Remote Sensing of Tundra Ecosystems using High Spectral Resolution Reflectance: Opportunities and Challenges", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/essoar.10508585.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-2021-236", | |||
"name": "A novel model\u2013data fusion approach to terrestrial carbon cycle reanalysis across the contiguous U.S using SIPNET and PEcAn state data assimilation system v. 1.7.2", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-2021-236" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/biosci/biab094", | |||
"name": "A New Approach to Evaluate and Reduce Uncertainty of Model-Based Biodiversity Projections for Conservation Policy Formulation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/biosci/biab094" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.17579", | |||
"name": "Spectroscopy outperforms leaf trait relationships for predicting photosynthetic capacity across different forest types", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.17579" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/jxb/erab295", | |||
"name": "A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/jxb/erab295" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/jxb/erab255", | |||
"name": "Detection of the metabolic response to drought stress using hyperspectral reflectance", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/jxb/erab255" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/treephys/tpab015", | |||
"name": "Seasonal trends in photosynthesis and leaf traits in scarlet oak", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/treephys/tpab015" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/ac1291", | |||
"name": "Landscape-scale characterization of Arctic tundra vegetation composition, structure, and function with a multi-sensor unoccupied aerial system", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/ac1291" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/pce.14056", | |||
"name": "Source:sink imbalance detected with leaf\u2010 and canopy\u2010level spectroscopy in a field\u2010grown crop", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/pce.14056" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021jg006273", | |||
"name": "Spectral Fidelity of Earth's Terrestrial and Aquatic Ecosystems", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021jg006273" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/btp.12964", | |||
"name": "Hydraulic architecture explains species moisture dependency but not mortality rates across a tropical rainfall gradient", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/btp.12964" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-14-2603-2021", | |||
"name": "Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-14-2603-2021" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.17092", | |||
"name": "Triose phosphate utilization limitation: an unnecessary complexity in terrestrial biosphere model representation of photosynthesis", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.17092" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/eap.2230", | |||
"name": "Leaf traits and canopy structure together explain canopy functional diversity: an airborne remote sensing approach", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/eap.2230" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.15366", | |||
"name": "Multi\u2010hypothesis comparison of Farquhar and Collatz photosynthesis models reveals the unexpected influence of empirical assumptions at leaf and global scales", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.15366" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/essoar.10505971.1", | |||
"name": "Response Manipulation vs Diurnal Observation: A Direct Comparison of Two Methods for Quantifying Stomatal Behavior in Tropical Forests", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/essoar.10505971.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2021.112349", | |||
"name": "NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2021.112349" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.25923/8n78-wp73", | |||
"name": "NOAA Arctic Report Card 2021: Tundra Greenness", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.25923/8n78-wp73" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/essoar.10504943.2", | |||
"name": "Evaluation of sensor characteristics on the retrieval of vegetation surface reflectance in high-latitude ecosystems", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/essoar.10504943.2" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.15409", | |||
"name": "Beyond Ecosystem Modeling: A Roadmap to Community Cyberinfrastructure for Ecological Data\u2010Model Integration", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.15409" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss39084.2020.9323295", | |||
"name": "NASA's Surface Biology and Geology Concept Study: Status and Next Steps", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss39084.2020.9323295" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "isbn", | |||
"value": "9781728163741" | |||
} | |||
], | |||
"sameAs": "https://www.worldcat.org/isbn/9781728163741" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1117/12.2567732", | |||
"name": "Toward comprehensive uncertainty predictions for remote imaging spectroscopy", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "isbn", | |||
"value": "9781510638150" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1117/12.2567732" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "isbn", | |||
"value": "9781510638143" | |||
} | |||
], | |||
"sameAs": [ | |||
"https://www.worldcat.org/isbn/9781510638150", | |||
"https://www.worldcat.org/isbn/9781510638143" | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs12162638", | |||
"name": "A Multi-Sensor Unoccupied Aerial System Improves Characterization of Vegetation Composition and Canopy Properties in the Arctic Tundra", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs12162638" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-17-3017-2020", | |||
"name": "Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-17-3017-2020" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/978-3-030-33157-3_3", | |||
"name": "Scaling Functional Traits from Leaves to Canopies", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/978-3-030-33157-3_3" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu2020-19665", | |||
"name": "A software framework for optimizing the design of spaceborne hyperspectral imager architectures", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu2020-19665" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/egusphere-egu2020-11293", | |||
"name": "Leaf functional diversity is not equivalent to canopy functional diversity: Mapping whole canopy traits with imaging spectroscopy and lidar fusion", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/egusphere-egu2020-11293" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/jxb/eraa068", | |||
"name": "Plot level rapid screening for photosynthetic parameters using proximal hyperspectral imaging", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/jxb/eraa068" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.20944/preprints202001.0176.v1", | |||
"name": "Beyond Modeling: A Roadmap to Community Cyberinfrastructure for Ecological Data-Model Integration", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.20944/preprints202001.0176.v1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-12-4133-2019", | |||
"name": "Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-12-4133-2019" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.14820", | |||
"name": "The response of stomatal conductance to seasonal drought in tropical forests", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.14820" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.16123", | |||
"name": "From the Arctic to the tropics: multi\u2010biome prediction of leaf mass per area using leaf reflectance", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.16123" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1371/journal.pone.0216512", | |||
"name": "The influence of canopy radiation parameter uncertainty on model projections of terrestrial carbon and energy cycling", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1371/journal.pone.0216512" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2019.8897953", | |||
"name": "A UAS Platform for Assessing Spectral, Structural, and Thermal Patterns of Arctic Tundra Vegetation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2019.8897953" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "isbn", | |||
"value": "9781538691540" | |||
} | |||
], | |||
"sameAs": "https://www.worldcat.org/isbn/9781538691540" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.15750", | |||
"name": "Terrestrial biosphere models may overestimate Arctic CO2 assimilation if they do not account for decreased quantum yield and convexity at low temperature", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.15750" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.16029", | |||
"name": "Leaf reflectance spectroscopy captures variation in carboxylation capacity across species, canopy environment, and leaf age in lowland moist tropical forests", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.16029" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/pce.13574", | |||
"name": "The \u2018one\u2010point method\u2019 for estimating maximum carboxylation capacity of photosynthesis: a cautionary tale", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/pce.13574" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/fee.2031", | |||
"name": "Enhancing global change experiments through integration of remote-sensing techniques", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/fee.2031" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/jxb/erz061", | |||
"name": "Spectroscopy can predict key leaf traits associated with source\u2013sink balance and carbon\u2013nitrogen status", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/jxb/erz061" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/ele.13210", | |||
"name": "Global photosynthetic capacity is optimized to the environment", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/ele.13210" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.foreco.2018.11.017", | |||
"name": "Leaf area density from airborne LiDAR: Comparing sensors and resolutions in a temperate broadleaf forest ecosystem", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.foreco.2018.11.017" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/pce.13501", | |||
"name": "Homeostatic maintenance of non-structural carbohydrates during the 2015-2016 El Ni\u00f1o drought across a tropical forest precipitation gradient", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/pce.13501" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2018jg004504", | |||
"name": "What Limits Predictive Certainty of Long\u2010Term Carbon Uptake?", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2018jg004504" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/jxb/erx421", | |||
"name": "Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/jxb/erx421" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "APPLICATION OF PHOTON RECOLLISION PROBABILITY THEORY FOR COMPATIBILITY\n CHECK BETWEEN FOLIAGE CLUMPING AND LEAF AREA INDEX PRODUCTS OBTAINED\n FROM EARTH OBSERVATION DATA" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.14939", | |||
"name": "Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.14939" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000424284400014" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2018.05.026", | |||
"name": "Data synergy between leaf area index and clumping index Earth Observation products using photon recollision probability theory ", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2018.05.026" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2018.06.008", | |||
"name": "Mapping canopy defoliation by herbivorous insects at the individual tree level using bi-temporal airborne imaging spectroscopy and LiDAR measurements", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000440776000014" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2018.06.008" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2018.03.019", | |||
"name": "Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques ", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2018.03.019" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/gmd-11-3159-2018", | |||
"name": "The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-11-3159-2018" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/gmd-2018-71" | |||
} | |||
], | |||
"sameAs": "https://doi.org/10.5194/gmd-2018-71" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/eap.1733", | |||
"name": "Using imaging spectroscopy to detect variation in terrestrial ecosystem productivity across a water\u2010stressed landscape", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/eap.1733" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-14-4071-2017", | |||
"name": "A zero-power warming chamber for investigating plant responses to rising temperature", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-14-4071-2017" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.13910", | |||
"name": "Vegetation Demographics in Earth System Models: a review of progress and priorities", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.13910" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41559-017-0194", | |||
"name": "ISS observations offer insights into plant function", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41559-017-0194" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-2017-208", | |||
"name": "A zero power warming chamber for investigating plant responses to rising temperature", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-2017-208" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.13725", | |||
"name": "The phenology of leaf quality and its within-canopy variation are essential for accurate modeling of photosynthesis in tropical evergreen forests", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.13725" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "A roadmap for improving the representation of photosynthesis in Earth system models", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000389184600006" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.14051", | |||
"name": "Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.14051" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000402403900015" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2017.01.016", | |||
"name": "Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2017.01.016" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000397360500008" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.13815", | |||
"name": "A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000374286700034" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.13815" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs8030221", | |||
"name": "Associations of Leaf Spectra with Genetic and Phylogenetic Variation in Oaks: Prospects for Remote Detection of Biodiversity", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000373627400043" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs8030221" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/jee/tow066", | |||
"name": "Evidence for Compensatory Photosynthetic and Yield Response of Soybeans to Aphid Herbivory", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/jee/tow066" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2016.05.023", | |||
"name": "Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2016.05.023" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2016.03.026", | |||
"name": "Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests ", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2016.03.026" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/2041-210x.12596", | |||
"name": "Spectroscopic determination of ecologically relevant plant secondary metabolites", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/2041-210x.12596" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1890/14-2098.1", | |||
"name": "Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1890/14-2098.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/jstars.2015.2401515", | |||
"name": "An LUT-Based Inversion of DART Model to Estimate Forest LAI from Hyperspectral Data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000359264000071" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/jstars.2015.2401515" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11829-015-9367-y", | |||
"name": "Elevated temperature and periodic water stress alter growth and quality of common milkweed (Asclepias syriaca) and monarch (Danaus plexippus) larval performance", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11829-015-9367-y" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000351514300005" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1890/14-2098.1.sm", | |||
"name": "Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000367210700010" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1890/14-2098.1.sm" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2015.05.024", | |||
"name": "Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000360510800008" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2015.05.024" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2015.04.014", | |||
"name": "Use of insect exclusion cages in soybean creates an altered microclimate and differential crop response", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2015.04.014" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000356114300005" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1890/13-2110.1", | |||
"name": "Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1890/13-2110.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2013jg002392", | |||
"name": "A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2013jg002392" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11120-013-9837-y", | |||
"name": "Using leaf optical properties to detect ozone effects on foliar biochemistry", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11120-013-9837-y" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.14358/pers.79.7.653", | |||
"name": "Utility of the Wavelet Transform for LAI Estimation Using Hyperspectral Data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.14358/pers.79.7.653" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1073/pnas.1300952110", | |||
"name": "Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1073/pnas.1300952110" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs5062639", | |||
"name": "Investigating the Utility of Wavelet Transforms for Inverting a 3-D Radiative Transfer Model Using Hyperspectral Data to Retrieve Forest LAI", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs5062639" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/pce.12118", | |||
"name": "Modelling C3 photosynthesis from the chloroplast to the ecosystem", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/pce.12118" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2013.01.022", | |||
"name": "Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2013.01.022" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.12159", | |||
"name": "Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.12159" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10980-012-9703-x", | |||
"name": "Detection of relative differences in phenology of forest species using Landsat and MODIS", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10980-012-9703-x" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1093/jxb/err294", | |||
"name": "Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1093/jxb/err294" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2011.10.026", | |||
"name": "Relationship of a Landsat cumulative disturbance index to canopy nitrogen and forest structure", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2011.10.026" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "wosuid", | |||
"value": "wos:000300517700004" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2747/0272-3646.31.1.1", | |||
"name": "PATTERNS OF CLIMATE CHANGE ACROSS WISCONSIN FROM 1950 TO 2006", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2747/0272-3646.31.1.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2008.08.001", | |||
"name": "Canopy dynamics and phenology of a boreal black spruce wildfire chronosequence", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2008.08.001" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1175/2008jamc1986.1", | |||
"name": "Spatiotemporal Mapping of Temperature and Precipitation for the Development of a Multidecadal Climatic Dataset for Wisconsin", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1175/2008jamc1986.1" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2008.04.016", | |||
"name": "Fire-induced changes in green-up and leaf maturity of the Canadian boreal forest", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2008.04.016" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/3/3/034003", | |||
"name": "Impacts of recent climate change on Wisconsin corn and soybean yield trends", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/3/3/034003" | |||
} | |||
} | |||
] | |||
}, | |||
"url": [ | |||
"https://www.bnl.gov/staff/shawnserbin/index.php", | |||
"http://www.researchgate.net/profile/Shawn_Serbin/" | |||
], | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "ResearcherID", | |||
"value": "B-6392-2009" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "SciProfiles", | |||
"value": "828741" | |||
} | |||
] | |||
} | } | ||
} | } |
Latest revision as of 19:55, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5076026599", "orcid": "https://orcid.org/0000-0003-4136-8971", "display_name": "Shawn Serbin", "display_name_alternatives": [ "G. Sheffield", "S. Serbin", "Shawn Paul Serbin", "Shawn P. Serbin", "S. P. Serbin", "Shawn Serbin", "Serbin, SP", "Dr. Shawn P. Serbin", "Shawn Serbin", "S.P. Serbin", "Serbin, S.P." ], "works_count": 350, "cited_by_count": 7447, "summary_stats": { "2yr_mean_citedness": 3.2857142857142856, "h_index": 43, "i10_index": 90 }, "ids": { "openalex": "https://openalex.org/A5076026599", "orcid": "https://orcid.org/0000-0003-4136-8971" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I200870766", "ror": "https://ror.org/02ex6cf31", "display_name": "Brookhaven National Laboratory", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1330989302", "https://openalex.org/I200870766", "https://openalex.org/I39565521", "https://openalex.org/I4210142672" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I1306266525", "ror": "https://ror.org/0171mag52", "display_name": "Goddard Space Flight Center", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1306266525", "https://openalex.org/I4210124779" ] }, "years": [ 2024, 2023 ] }, { "institution": { "id": "https://openalex.org/I59553526", "ror": "https://ror.org/05qghxh33", "display_name": "Stony Brook University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I59553526" ] }, "years": [ 2023, 2021, 2020, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I120156002", "ror": "https://ror.org/02e3zdp86", "display_name": "Boise State University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I120156002" ] }, "years": [ 2021 ] }, { "institution": { "id": "https://openalex.org/I135310074", "ror": "https://ror.org/01y2jtd41", "display_name": "University of Wisconsin\u2013Madison", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I135310074" ] }, "years": [ 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I1306266525", "ror": "https://ror.org/0171mag52", "display_name": "Goddard Space Flight Center", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1306266525", "https://openalex.org/I4210124779" ] } ], "topics": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "count": 93, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 65, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "count": 65, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 47, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10895", "display_name": "Species Distribution Modeling and Climate Change Impacts", "count": 38, "subfield": { "id": "https://openalex.org/subfields/2302", "display_name": "Ecological Modeling" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14365", "display_name": "Non-destructive Leaf Area Estimation Methods", "count": 32, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "count": 28, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11760", "display_name": "Impacts of Elevated CO2 and Ozone on Plant Physiology", "count": 27, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 25, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10017", "display_name": "Climate Change and Paleoclimatology", "count": 23, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11880", "display_name": "Estimation of Forest Biomass and Carbon Stocks", "count": 17, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "count": 15, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10640", "display_name": "Chemometrics in Analytical Chemistry and Food Technology", "count": 14, "subfield": { "id": "https://openalex.org/subfields/1602", "display_name": "Analytical Chemistry" }, "field": { "id": "https://openalex.org/fields/16", "display_name": "Chemistry" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "count": 14, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "count": 13, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13193", "display_name": "Geological Evolution of the Arctic Region", "count": 12, "subfield": { "id": "https://openalex.org/subfields/1907", "display_name": "Geology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10005", "display_name": "Biodiversity Conservation and Ecosystem Management", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "count": 11, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13388", "display_name": "Factors Affecting Sagebrush Ecosystems and Wildlife Conservation", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10487", "display_name": "Impact of Pollinator Decline on Ecosystems and Agriculture", "count": 8, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12180", "display_name": "Microbial Diversity in Antarctic Ecosystems", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11320", "display_name": "Stratospheric Chemistry and Climate Change Impacts", "count": 7, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "count": 6, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "value": 0.000652, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14365", "display_name": "Non-destructive Leaf Area Estimation Methods", "value": 0.0004392, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11760", "display_name": "Impacts of Elevated CO2 and Ozone on Plant Physiology", "value": 0.0003394, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 0.0003237, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "value": 0.0002787, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "value": 0.0001908, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "value": 0.0001543, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10895", "display_name": "Species Distribution Modeling and Climate Change Impacts", "value": 0.0001334, "subfield": { "id": "https://openalex.org/subfields/2302", "display_name": "Ecological Modeling" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12643", "display_name": "Urban Metabolism and Sustainability Assessment", "value": 0.000124, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14310", "display_name": "Evolutionary Innovations and Conservation of Cycads", "value": 0.0001186, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "value": 9.8e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13398", "display_name": "Statistical Computing and Data Analysis in R", "value": 9.24e-05, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12180", "display_name": "Microbial Diversity in Antarctic Ecosystems", "value": 8.23e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11880", "display_name": "Estimation of Forest Biomass and Carbon Stocks", "value": "8e-05", "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "value": 7.76e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14359", "display_name": "Disaster Response Robotics and Environmental Management", "value": 7.1e-05, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "value": 6.98e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "value": 6.9e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "value": 6.57e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10766", "display_name": "Urban Heat Islands and Mitigation Strategies", "value": 5.99e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13377", "display_name": "Anticipating Critical Transitions in Ecosystems", "value": 5.91e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10640", "display_name": "Chemometrics in Analytical Chemistry and Food Technology", "value": 5.81e-05, "subfield": { "id": "https://openalex.org/subfields/1602", "display_name": "Analytical Chemistry" }, "field": { "id": "https://openalex.org/fields/16", "display_name": "Chemistry" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "value": 5.18e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13193", "display_name": "Geological Evolution of the Arctic Region", "value": 4.44e-05, "subfield": { "id": "https://openalex.org/subfields/1907", "display_name": "Geology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13388", "display_name": "Factors Affecting Sagebrush Ecosystems and Wildlife Conservation", "value": 4.37e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 82.9 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 76.9 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 73.4 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 72.0 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 71.1 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 60.9 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 58.0 }, { "id": "https://openalex.org/C62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 43.1 }, { "id": "https://openalex.org/C59822182", "wikidata": "https://www.wikidata.org/wiki/Q441", "display_name": "Botany", "level": 1, "score": 41.4 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 35.1 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 30.9 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 30.6 }, { "id": "https://openalex.org/C71924100", "wikidata": "https://www.wikidata.org/wiki/Q11190", "display_name": "Medicine", "level": 0, "score": 29.1 }, { "id": "https://openalex.org/C62520636", "wikidata": "https://www.wikidata.org/wiki/Q944", "display_name": "Quantum mechanics", "level": 1, "score": 28.6 }, { "id": "https://openalex.org/C110872660", "wikidata": "https://www.wikidata.org/wiki/Q37813", "display_name": "Ecosystem", "level": 2, "score": 26.3 }, { "id": "https://openalex.org/C185592680", "wikidata": "https://www.wikidata.org/wiki/Q2329", "display_name": "Chemistry", "level": 0, "score": 26.0 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 25.1 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 24.9 }, { "id": "https://openalex.org/C120665830", "wikidata": "https://www.wikidata.org/wiki/Q14620", "display_name": "Optics", "level": 1, "score": 22.9 }, { "id": "https://openalex.org/C142724271", "wikidata": "https://www.wikidata.org/wiki/Q7208", "display_name": "Pathology", "level": 1, "score": 22.6 }, { "id": "https://openalex.org/C2776133958", "wikidata": "https://www.wikidata.org/wiki/Q7918366", "display_name": "Vegetation (pathology)", "level": 2, "score": 22.0 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 21.7 } ], "counts_by_year": [ { "year": 2024, "works_count": 22, "cited_by_count": 776 }, { "year": 2023, "works_count": 26, "cited_by_count": 1197 }, { "year": 2022, "works_count": 38, "cited_by_count": 1167 }, { "year": 2021, "works_count": 47, "cited_by_count": 1208 }, { "year": 2020, "works_count": 34, "cited_by_count": 858 }, { "year": 2019, "works_count": 45, "cited_by_count": 950 }, { "year": 2018, "works_count": 29, "cited_by_count": 422 }, { "year": 2017, "works_count": 25, "cited_by_count": 261 }, { "year": 2016, "works_count": 24, "cited_by_count": 194 }, { "year": 2015, "works_count": 21, "cited_by_count": 188 }, { "year": 2014, "works_count": 9, "cited_by_count": 121 }, { "year": 2013, "works_count": 17, "cited_by_count": 83 }, { "year": 2012, "works_count": 6, "cited_by_count": 63 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5076026599", "updated_date": "2024-08-26T03:26:57.419310", "created_date": "2023-07-21", "_id": "https://openalex.org/A5076026599" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0003-4136-8971", "mainEntityOfPage": "https://orcid.org/0000-0003-4136-8971", "name": "Shawn P. Serbin", "givenName": "Shawn", "familyName": "Serbin", "alternateName": [ "Serbin, S.P.", "S.P. Serbin", "Shawn Serbin", "Dr. Shawn P. Serbin", "Serbin, SP" ], "alumniOf": [ { "@type": "Organization", "name": "Michigan State University", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "3078" } }, { "@type": "Organization", "name": "University of Wisconsin Madison", "alternateName": "Forest and Wildlife Ecology", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "5228" } }, { "@type": "Organization", "name": "University of Wisconsin Madison", "alternateName": "Nelson Institute for Environmental Studies", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "5228" } } ], "affiliation": [ { "@type": "Organization", "name": "Goddard Space Flight Center", "alternateName": "Biospheric Sciences Laboratory", "identifier": { "@type": "PropertyValue", "propertyID": "ROR", "value": "https://ror.org/0171mag52" } }, { "@type": "Organization", "name": "Brookhaven National Laboratory", "alternateName": "Environmental and Climate Sciences Department", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "8099" } }, { "@type": "Organization", "@id": "grid.202665.5", "name": "Brookhaven National Laboratory", "alternateName": "Environmental and Climate Sciences" }, { "@type": "Organization", "name": "University of Wisconsin Madison", "alternateName": "Forest and Wildlife Ecology", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "5228" } }, { "@type": "Organization", "name": "University of Illinois at Urbana-Champaign", "alternateName": "Plant Biology", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "14589" } }, { "@type": "Organization", "name": "University of Wisconsin Madison", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "5228" } } ], "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.22541/essoar.172072808.80558309/v1", "name": "Topography and Functional Traits Control the Distribution of Key Shrub Plant Functional Types in Low-Arctic Tundra", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.22541/essoar.172072808.80558309/v1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2024.01.21.576284", "name": "Changes in spectral signature of leaves after desiccation: Implications for the prediction of leaf traits and plant-soil interaction in herbarium samples", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2024.01.21.576284" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/2041-210x.14231", "name": "PiCAM: A Raspberry Pi\u2010based open\u2010source, low\u2010power camera system for monitoring plant phenology in Arctic environments", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/2041-210x.14231" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41598-023-44384-0", "name": "Mapping canopy traits over Qu\u00e9bec using airborne and spaceborne imaging spectroscopy", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41598-023-44384-0" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.19137", "name": "Seasonal trends in leaf\u2010level photosynthetic capacity and water use efficiency in a North American Eastern deciduous forest and their impact on canopy\u2010scale gas exchange", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.19137" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/2023bamsstateoftheclimate_intro.1", "name": "State of the Climate in 2022: Introduction", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/2023bamsstateoftheclimate_intro.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/ace637", "name": "Reducing uncertainty of high-latitude ecosystem models through identification of key parameters", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/ace637" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2023.113612", "name": "Mapping foliar photosynthetic capacity in sub-tropical and tropical forests with UAS-based imaging spectroscopy: Scaling from leaf to canopy", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2023.113612" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.18901", "name": "The effect of the vertical gradients of photosynthetic parameters on the CO2 assimilation and transpiration of a Panamanian tropical forest", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.18901" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2023.05.09.538942", "name": "Integration of leaf spectral reflectance variability facilitates identification of plant leaves at different taxonomic levels", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2023.05.09.538942" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.18770", "name": "Integrating plant physiology into simulation of fire behavior and effects", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.18770" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022jg006833", "name": "Exploring Mission Design for Imaging Spectroscopy Retrievals for Land and Aquatic Ecosystems", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022jg006833" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2022.113430", "name": "Integrating very-high-resolution UAS data and airborne imaging spectroscopy to map the fractional composition of Arctic plant functional types in Western Alaska", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2022.113430" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/pce.14524", "name": "Leaves as bottlenecks: The contribution of tree leaves to hydraulic resistance within the soil\u2212plant\u2212atmosphere continuum", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/pce.14524" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022jg006935", "name": "Simulating Global Dynamic Surface Reflectances for Imaging Spectroscopy Spaceborne Missions: LPJ\u2010PROSAIL", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022jg006935" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1365-2745.13976", "name": "Remote sensing from unoccupied aerial systems: Opportunities to enhance Arctic plant ecology in a changing climate", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2745.13976" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/2022bamsstateoftheclimate.1", "name": "State of the Climate in 2021", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/2022bamsstateoftheclimate.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpac006", "name": "Late-day measurement of excised branches results in uncertainty in the estimation of two stomatal parameters derived from response curves in Populus deltoides Bartr.\u00a0\u00d7\u00a0Populus nigra L.", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpac006" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/geb.13516", "name": "Towards mapping biodiversity from above: Can fusing lidar and hyperspectral remote sensing predict taxonomic, functional, and phylogenetic tree diversity in temperate forests?", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/geb.13516" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-15-4313-2022", "name": "Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-15-4313-2022" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.16103", "name": "An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness\u2010of\u2010fit across diverse data sets", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.16103" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/genetics/iyac065", "name": "High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean (Glycine max) nested association mapping population", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/genetics/iyac065" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-15-3233-2022", "name": "Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-15-3233-2022" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021ms002761", "name": "One Stomatal Model to Rule Them All? Toward Improved Representation of Carbon and Water Exchange in Global Models", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021ms002761" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/essoar.10510949.1", "name": "Exploring mission design for imaging spectroscopy retrievals for land and aquatic ecosystems", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10510949.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/eap.2499", "name": "Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/eap.2499" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021jg006697", "name": "Remote Sensing of Tundra Ecosystems using High Spectral Resolution Reflectance: Opportunities and Challenges", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021jg006697" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15958", "name": "Reducing model uncertainty of climate change impacts on high latitude carbon assimilation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15958" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-2021-414", "name": "Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-2021-414" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-2021-414-supplement", "name": "Supplementary material to "Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)"", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-2021-414-supplement" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.17762", "name": "New calculations for photosynthesis measurement systems: what's the impact for physiologists and modelers?", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.17762" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/essoar.10509562.1", "name": "The Impact of Seasonal Phenology on Photosynthetic Water Use Efficiency: an Evaluation of Patterns and Drivers in Temperate Deciduous Forests", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10509562.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/essoar.10509039.1", "name": "Designing an Observing System to Study the Surface Biology and Geology of the Earth in the 2020s", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10509039.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/essoar.10508585.1", "name": "Remote Sensing of Tundra Ecosystems using High Spectral Resolution Reflectance: Opportunities and Challenges", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10508585.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-2021-236", "name": "A novel model\u2013data fusion approach to terrestrial carbon cycle reanalysis across the contiguous U.S using SIPNET and PEcAn state data assimilation system v. 1.7.2", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-2021-236" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/biosci/biab094", "name": "A New Approach to Evaluate and Reduce Uncertainty of Model-Based Biodiversity Projections for Conservation Policy Formulation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/biosci/biab094" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.17579", "name": "Spectroscopy outperforms leaf trait relationships for predicting photosynthetic capacity across different forest types", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.17579" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/jxb/erab295", "name": "A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/jxb/erab295" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/jxb/erab255", "name": "Detection of the metabolic response to drought stress using hyperspectral reflectance", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/jxb/erab255" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/treephys/tpab015", "name": "Seasonal trends in photosynthesis and leaf traits in scarlet oak", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/treephys/tpab015" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/ac1291", "name": "Landscape-scale characterization of Arctic tundra vegetation composition, structure, and function with a multi-sensor unoccupied aerial system", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/ac1291" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/pce.14056", "name": "Source:sink imbalance detected with leaf\u2010 and canopy\u2010level spectroscopy in a field\u2010grown crop", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/pce.14056" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021jg006273", "name": "Spectral Fidelity of Earth's Terrestrial and Aquatic Ecosystems", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021jg006273" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/btp.12964", "name": "Hydraulic architecture explains species moisture dependency but not mortality rates across a tropical rainfall gradient", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/btp.12964" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-14-2603-2021", "name": "Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-14-2603-2021" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.17092", "name": "Triose phosphate utilization limitation: an unnecessary complexity in terrestrial biosphere model representation of photosynthesis", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.17092" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/eap.2230", "name": "Leaf traits and canopy structure together explain canopy functional diversity: an airborne remote sensing approach", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/eap.2230" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15366", "name": "Multi\u2010hypothesis comparison of Farquhar and Collatz photosynthesis models reveals the unexpected influence of empirical assumptions at leaf and global scales", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15366" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/essoar.10505971.1", "name": "Response Manipulation vs Diurnal Observation: A Direct Comparison of Two Methods for Quantifying Stomatal Behavior in Tropical Forests", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10505971.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2021.112349", "name": "NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2021.112349" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.25923/8n78-wp73", "name": "NOAA Arctic Report Card 2021: Tundra Greenness", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.25923/8n78-wp73" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/essoar.10504943.2", "name": "Evaluation of sensor characteristics on the retrieval of vegetation surface reflectance in high-latitude ecosystems", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/essoar.10504943.2" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15409", "name": "Beyond Ecosystem Modeling: A Roadmap to Community Cyberinfrastructure for Ecological Data\u2010Model Integration", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15409" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss39084.2020.9323295", "name": "NASA's Surface Biology and Geology Concept Study: Status and Next Steps", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss39084.2020.9323295" }, { "@type": "PropertyValue", "propertyID": "isbn", "value": "9781728163741" } ], "sameAs": "https://www.worldcat.org/isbn/9781728163741" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.2567732", "name": "Toward comprehensive uncertainty predictions for remote imaging spectroscopy", "identifier": [ { "@type": "PropertyValue", "propertyID": "isbn", "value": "9781510638150" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.2567732" }, { "@type": "PropertyValue", "propertyID": "isbn", "value": "9781510638143" } ], "sameAs": [ "https://www.worldcat.org/isbn/9781510638150", "https://www.worldcat.org/isbn/9781510638143" ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs12162638", "name": "A Multi-Sensor Unoccupied Aerial System Improves Characterization of Vegetation Composition and Canopy Properties in the Arctic Tundra", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs12162638" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-17-3017-2020", "name": "Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-17-3017-2020" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/978-3-030-33157-3_3", "name": "Scaling Functional Traits from Leaves to Canopies", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/978-3-030-33157-3_3" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu2020-19665", "name": "A software framework for optimizing the design of spaceborne hyperspectral imager architectures", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu2020-19665" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/egusphere-egu2020-11293", "name": "Leaf functional diversity is not equivalent to canopy functional diversity: Mapping whole canopy traits with imaging spectroscopy and lidar fusion", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/egusphere-egu2020-11293" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/jxb/eraa068", "name": "Plot level rapid screening for photosynthetic parameters using proximal hyperspectral imaging", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/jxb/eraa068" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.20944/preprints202001.0176.v1", "name": "Beyond Modeling: A Roadmap to Community Cyberinfrastructure for Ecological Data-Model Integration", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.20944/preprints202001.0176.v1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-12-4133-2019", "name": "Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES)", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-12-4133-2019" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.14820", "name": "The response of stomatal conductance to seasonal drought in tropical forests", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.14820" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.16123", "name": "From the Arctic to the tropics: multi\u2010biome prediction of leaf mass per area using leaf reflectance", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.16123" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1371/journal.pone.0216512", "name": "The influence of canopy radiation parameter uncertainty on model projections of terrestrial carbon and energy cycling", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1371/journal.pone.0216512" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2019.8897953", "name": "A UAS Platform for Assessing Spectral, Structural, and Thermal Patterns of Arctic Tundra Vegetation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2019.8897953" }, { "@type": "PropertyValue", "propertyID": "isbn", "value": "9781538691540" } ], "sameAs": "https://www.worldcat.org/isbn/9781538691540" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.15750", "name": "Terrestrial biosphere models may overestimate Arctic CO2 assimilation if they do not account for decreased quantum yield and convexity at low temperature", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.15750" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.16029", "name": "Leaf reflectance spectroscopy captures variation in carboxylation capacity across species, canopy environment, and leaf age in lowland moist tropical forests", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.16029" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/pce.13574", "name": "The \u2018one\u2010point method\u2019 for estimating maximum carboxylation capacity of photosynthesis: a cautionary tale", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/pce.13574" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/fee.2031", "name": "Enhancing global change experiments through integration of remote-sensing techniques", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/fee.2031" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/jxb/erz061", "name": "Spectroscopy can predict key leaf traits associated with source\u2013sink balance and carbon\u2013nitrogen status", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/jxb/erz061" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/ele.13210", "name": "Global photosynthetic capacity is optimized to the environment", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/ele.13210" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.foreco.2018.11.017", "name": "Leaf area density from airborne LiDAR: Comparing sensors and resolutions in a temperate broadleaf forest ecosystem", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.foreco.2018.11.017" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/pce.13501", "name": "Homeostatic maintenance of non-structural carbohydrates during the 2015-2016 El Ni\u00f1o drought across a tropical forest precipitation gradient", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/pce.13501" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2018jg004504", "name": "What Limits Predictive Certainty of Long\u2010Term Carbon Uptake?", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018jg004504" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/jxb/erx421", "name": "Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/jxb/erx421" } }, { "@type": "CreativeWork", "name": "APPLICATION OF PHOTON RECOLLISION PROBABILITY THEORY FOR COMPATIBILITY\n CHECK BETWEEN FOLIAGE CLUMPING AND LEAF AREA INDEX PRODUCTS OBTAINED\n FROM EARTH OBSERVATION DATA" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.14939", "name": "Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.14939" }, { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000424284400014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2018.05.026", "name": "Data synergy between leaf area index and clumping index Earth Observation products using photon recollision probability theory ", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2018.05.026" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2018.06.008", "name": "Mapping canopy defoliation by herbivorous insects at the individual tree level using bi-temporal airborne imaging spectroscopy and LiDAR measurements", "identifier": [ { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000440776000014" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2018.06.008" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2018.03.019", "name": "Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques ", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2018.03.019" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/gmd-11-3159-2018", "name": "The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-11-3159-2018" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/gmd-2018-71" } ], "sameAs": "https://doi.org/10.5194/gmd-2018-71" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/eap.1733", "name": "Using imaging spectroscopy to detect variation in terrestrial ecosystem productivity across a water\u2010stressed landscape", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/eap.1733" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-14-4071-2017", "name": "A zero-power warming chamber for investigating plant responses to rising temperature", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-14-4071-2017" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13910", "name": "Vegetation Demographics in Earth System Models: a review of progress and priorities", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13910" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41559-017-0194", "name": "ISS observations offer insights into plant function", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41559-017-0194" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-2017-208", "name": "A zero power warming chamber for investigating plant responses to rising temperature", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-2017-208" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13725", "name": "The phenology of leaf quality and its within-canopy variation are essential for accurate modeling of photosynthesis in tropical evergreen forests", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13725" } }, { "@type": "CreativeWork", "name": "A roadmap for improving the representation of photosynthesis in Earth system models", "identifier": { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000389184600006" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.14051", "name": "Convergence in relationships between leaf traits, spectra and age across diverse canopy environments and two contrasting tropical forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.14051" }, { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000402403900015" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2017.01.016", "name": "Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2017.01.016" }, { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000397360500008" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.13815", "name": "A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000374286700034" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.13815" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs8030221", "name": "Associations of Leaf Spectra with Genetic and Phylogenetic Variation in Oaks: Prospects for Remote Detection of Biodiversity", "identifier": [ { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000373627400043" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs8030221" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/jee/tow066", "name": "Evidence for Compensatory Photosynthetic and Yield Response of Soybeans to Aphid Herbivory", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/jee/tow066" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2016.05.023", "name": "Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2016.05.023" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2016.03.026", "name": "Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests ", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2016.03.026" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/2041-210x.12596", "name": "Spectroscopic determination of ecologically relevant plant secondary metabolites", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/2041-210x.12596" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1890/14-2098.1", "name": "Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/14-2098.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2015.2401515", "name": "An LUT-Based Inversion of DART Model to Estimate Forest LAI from Hyperspectral Data", "identifier": [ { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000359264000071" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2015.2401515" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11829-015-9367-y", "name": "Elevated temperature and periodic water stress alter growth and quality of common milkweed (Asclepias syriaca) and monarch (Danaus plexippus) larval performance", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11829-015-9367-y" }, { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000351514300005" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1890/14-2098.1.sm", "name": "Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties", "identifier": [ { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000367210700010" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/14-2098.1.sm" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2015.05.024", "name": "Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy", "identifier": [ { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000360510800008" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2015.05.024" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2015.04.014", "name": "Use of insect exclusion cages in soybean creates an altered microclimate and differential crop response", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2015.04.014" }, { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000356114300005" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1890/13-2110.1", "name": "Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/13-2110.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2013jg002392", "name": "A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2013jg002392" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11120-013-9837-y", "name": "Using leaf optical properties to detect ozone effects on foliar biochemistry", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11120-013-9837-y" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.14358/pers.79.7.653", "name": "Utility of the Wavelet Transform for LAI Estimation Using Hyperspectral Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.14358/pers.79.7.653" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1073/pnas.1300952110", "name": "Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1073/pnas.1300952110" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs5062639", "name": "Investigating the Utility of Wavelet Transforms for Inverting a 3-D Radiative Transfer Model Using Hyperspectral Data to Retrieve Forest LAI", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs5062639" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/pce.12118", "name": "Modelling C3 photosynthesis from the chloroplast to the ecosystem", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/pce.12118" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2013.01.022", "name": "Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2013.01.022" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.12159", "name": "Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.12159" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10980-012-9703-x", "name": "Detection of relative differences in phenology of forest species using Landsat and MODIS", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10980-012-9703-x" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1093/jxb/err294", "name": "Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1093/jxb/err294" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2011.10.026", "name": "Relationship of a Landsat cumulative disturbance index to canopy nitrogen and forest structure", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2011.10.026" }, { "@type": "PropertyValue", "propertyID": "wosuid", "value": "wos:000300517700004" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2747/0272-3646.31.1.1", "name": "PATTERNS OF CLIMATE CHANGE ACROSS WISCONSIN FROM 1950 TO 2006", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2747/0272-3646.31.1.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2008.08.001", "name": "Canopy dynamics and phenology of a boreal black spruce wildfire chronosequence", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2008.08.001" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1175/2008jamc1986.1", "name": "Spatiotemporal Mapping of Temperature and Precipitation for the Development of a Multidecadal Climatic Dataset for Wisconsin", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1175/2008jamc1986.1" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2008.04.016", "name": "Fire-induced changes in green-up and leaf maturity of the Canadian boreal forest", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2008.04.016" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/3/3/034003", "name": "Impacts of recent climate change on Wisconsin corn and soybean yield trends", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/3/3/034003" } } ] }, "url": [ "https://www.bnl.gov/staff/shawnserbin/index.php", "http://www.researchgate.net/profile/Shawn_Serbin/" ], "identifier": [ { "@type": "PropertyValue", "propertyID": "ResearcherID", "value": "B-6392-2009" }, { "@type": "PropertyValue", "propertyID": "SciProfiles", "value": "828741" } ] }
}