Item talk:Q138498: Difference between revisions
From geokb
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5077671611", "orcid": "https://orcid.org/0000-0002-3265-6691", "display_name": "Benjamin N. Sulman", "display_name_alternatives": [ "Benjamin Sulman", "B. N. Sulman", "B. Sulman", "B. N. Taylor", "Benjamin N. Sulman" ], "works_count": 145, "cited_by_count": 5214, "summary_stats": { "2yr_mean_citedness": 8.083333333333334, "h_index": 31, "i10_inde...") |
No edit summary |
||
Line 1,314: | Line 1,314: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5077671611" | "_id": "https://openalex.org/A5077671611" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0002-3265-6691", | |||
"mainEntityOfPage": "https://orcid.org/0000-0002-3265-6691", | |||
"name": "Benjamin N. Sulman", | |||
"givenName": "Benjamin", | |||
"familyName": "Sulman", | |||
"address": { | |||
"addressCountry": "US", | |||
"@type": "PostalAddress" | |||
}, | |||
"alumniOf": { | |||
"@type": "Organization", | |||
"name": "University of Wisconsin Madison", | |||
"alternateName": "Atmospheric and Oceanic Sciences", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "5228" | |||
} | |||
}, | |||
"affiliation": { | |||
"@type": "Organization", | |||
"name": "Oak Ridge National Laboratory", | |||
"alternateName": "Environmental Sciences Division", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "6146" | |||
} | |||
}, | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2023ms003762", | |||
"name": "Subsurface Redox Interactions Regulate Ebullitive Methane Flux in Heterogeneous Mississippi River Deltaic Wetland", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85181667808" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2023ms003762" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.soilbio.2022.108893", | |||
"name": "Carbon acquisition ecological strategies to connect soil microbial biodiversity and carbon cycling", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.soilbio.2022.108893" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85143377884" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.soilbio.2023.109073", | |||
"name": "Ectomycorrhizal effects on decomposition are highly dependent on fungal traits, climate, and litter properties: A model-based assessment", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.soilbio.2023.109073" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85163171624" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2139/ssrn.4485247", | |||
"name": "Impact of Coastal Hydrologic Changes on Nutrient Cycling of Wetland Plants", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85162843412" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2139/ssrn.4485247" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.18760", | |||
"name": "Modeling strategies and data needs for representing coastal wetland vegetation in land surface models", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.18760" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85148017589" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2022gb007473", | |||
"name": "Soil Respiration Responses to Throughfall Exclusion Are Decoupled From Changes in Soil Moisture for Four Tropical Forests, Suggesting Processes for Ecosystem Models", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2022gb007473" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85153883598" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcbb.12914", | |||
"name": "A new bioenergy model that simulates the impacts of plant-microbial interactions, soil carbon protection, and mechanistic tillage on soil carbon cycling", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcbb.12914" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85122699016" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41561-022-00909-2", | |||
"name": "Confronting the water potential information gap", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41561-022-00909-2" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85126194190" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021jg006662", | |||
"name": "Simulated Hydrological Dynamics and Coupled Iron Redox Cycling Impact Methane Production in an Arctic Soil", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021jg006662" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85141062751" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2020ms002396", | |||
"name": "Integrating Arctic Plant Functional Types in a Land Surface Model Using Above\u2010 and Belowground Field Observations", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2020ms002396" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "other-id", | |||
"value": "1780297" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85105018596" | |||
} | |||
], | |||
"sameAs": "https://www.osti.gov/biblio/1780297" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5440/1696794", | |||
"name": "Integrating New Arctic Plant Functional Types in a Land Surface Model Using Above- and Belowground Field Observations: Modeling Archive", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5440/1696794" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "other-id", | |||
"value": "1696794" | |||
} | |||
], | |||
"sameAs": "https://www.osti.gov/biblio/1696794" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/eap.2290", | |||
"name": "Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85101618700" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "other-id", | |||
"value": "1771905" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/eap.2290" | |||
} | |||
], | |||
"sameAs": "https://www.osti.gov/biblio/1771905" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41586-021-03306-8", | |||
"name": "A trade-off between plant and soil carbon storage under elevated CO<inf>2</inf>", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41586-021-03306-8" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85103354739" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.15584", | |||
"name": "Biological mechanisms may contribute to soil carbon saturation patterns", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.15584" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85102698360" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10533-021-00819-2", | |||
"name": "Divergent controls of soil organic carbon between observations and process-based models", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10533-021-00819-2" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85110448832" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3389/ffgc.2021.676191", | |||
"name": "Editorial: Forest Rhizosphere Interactions: Cascading Consequences for Ecosystem-Level Carbon and Nutrient Cycling", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3389/ffgc.2021.676191" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85106431442" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/nph.16866", | |||
"name": "Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO<inf>2</inf>", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/nph.16866" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85092938048" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.15795", | |||
"name": "Leveraging observed soil heterotrophic respiration fluxes as a novel constraint on global-scale models", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.15795" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85111829759" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021gl094514", | |||
"name": "Mycorrhizal Distributions Impact Global Patterns of Carbon and Nutrient Cycling", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021gl094514" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85116829059" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.15580", | |||
"name": "Response to \u2018Stochastic and deterministic interpretation of pool models\u2019", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85103238883" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.15580" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.15850", | |||
"name": "Response to \u201cConnectivity and pore accessibility in models of soil carbon cycling\u201d", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.15850" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85113477624" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/essd-13-1843-2021", | |||
"name": "SoDaH: The SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85105592791" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/essd-13-1843-2021" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.15365", | |||
"name": "From pools to flow: The PROMISE framework for new insights on soil carbon cycling in a changing world", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "other-id", | |||
"value": "1731052" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85092556206" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.15365" | |||
} | |||
], | |||
"sameAs": "https://www.osti.gov/biblio/1731052" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3389/fenvs.2020.00146", | |||
"name": "Land Use and Land Cover Affect the Depth Distribution of Soil Carbon: Insights From a Large Database of Soil Profiles", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "other-id", | |||
"value": "1650678" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3389/fenvs.2020.00146" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85090496846" | |||
} | |||
], | |||
"sameAs": "https://www.osti.gov/biblio/1650678" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2020.107930", | |||
"name": "Redefining droughts for the U.S. Corn Belt: The dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of Maize and Soybean", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85079836133" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "other-id", | |||
"value": "1776482" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2020.107930" | |||
} | |||
], | |||
"sameAs": "https://www.osti.gov/biblio/1776482" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2019gl085543", | |||
"name": "Arctic Soil Governs Whether Climate Change Drives Global Losses or Gains in Soil Carbon", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "other-id", | |||
"value": "1580127" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85077041801" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2019gl085543" | |||
} | |||
], | |||
"sameAs": "https://www.osti.gov/biblio/1580127" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/1365-2435.13510", | |||
"name": "Plant roots stimulate the decomposition of complex, but not simple, soil carbon", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85077905965" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "other-id", | |||
"value": "1609047" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/1365-2435.13510" | |||
} | |||
], | |||
"sameAs": "https://www.osti.gov/biblio/1609047" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2018gb005973", | |||
"name": "Diverse Mycorrhizal Associations Enhance Terrestrial C Storage in a Global Model", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2018gb005973" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85064556014" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-16-1187-2019", | |||
"name": "On the role of soil water retention characteristic on aerobic microbial respiration", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-16-1187-2019" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85063280013" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "other-id", | |||
"value": "1505309" | |||
} | |||
], | |||
"sameAs": "https://www.osti.gov/biblio/1505309" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/b978-0-12-813493-1.00010-7", | |||
"name": "The role of the physical properties of soil in determining biogeochemical responses to soil warming", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85081581891" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/b978-0-12-813493-1.00010-7" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10533-018-0509-z", | |||
"name": "Multiple models and experiments underscore large uncertainty in soil carbon dynamics", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85055256509" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10533-018-0509-z" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41586-018-0539-7", | |||
"name": "Hydraulic diversity of forests regulates ecosystem resilience during drought", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85054068713" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41586-018-0539-7" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.13979", | |||
"name": "Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85035085025" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.13979" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/hess-22-3311-2018", | |||
"name": "Harnessing big data to rethink land heterogeneity in Earth system models", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/hess-22-3311-2018" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85048634159" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/1365-2745.12921", | |||
"name": "Interactions among decaying leaf litter, root litter and soil organic matter vary with mycorrhizal type", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85041961459" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/1365-2745.12921" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.soilbio.2017.10.017", | |||
"name": "Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.soilbio.2017.10.017" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85032368094" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.soilbio.2018.07.002", | |||
"name": "Root litter decomposition slows with soil depth", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85049729129" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.soilbio.2018.07.002" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/gcb.13926", | |||
"name": "Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85042143469" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.13926" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10533-017-0414-x", | |||
"name": "Wetland flux controls: how does interacting water table levels and temperature influence carbon dioxide and methane fluxes in northern Wisconsin?", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85039751074" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10533-017-0414-x" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/ele.12802", | |||
"name": "Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85021753003" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/ele.12802" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2016.06.002", | |||
"name": "Comparing methods for partitioning a decade of carbon dioxide and water vapor fluxes in a temperate forest", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84976260187" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2016.06.002" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2016gl069416", | |||
"name": "High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84990187877" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2016gl069416" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/nclimate3114", | |||
"name": "The increasing importance of atmospheric demand for ecosystem water and carbon fluxes", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/nclimate3114" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84992623476" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2015gb005188", | |||
"name": "Explicitly representing soil microbial processes in Earth system models", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84946543320" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2015gb005188" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/nclimate2436", | |||
"name": "Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO 2", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84926019270" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/nclimate2436" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10021-012-9624-1", | |||
"name": "Modeling Soil and Biomass Carbon Responses to Declining Water Table in a Wetland-Rich Landscape", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10021-012-9624-1" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84876324061" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2011jg001862", | |||
"name": "Impact of hydrological variations on modeling of peatland CO<inf>2</inf> fluxes: Results from the North American Carbon Program site synthesis", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84863350754" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2011jg001862" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-9-4215-2012", | |||
"name": "Modelling contrasting responses of wetland productivity to changes in water table depth", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-9-4215-2012" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84868667119" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2010gl044018", | |||
"name": "CO<inf>2</inf> fluxes at northern fens and bogs have opposite responses to inter-annual fluctuations in water table", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2010gl044018" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77957696041" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Contrasting carbon dioxide fluxes between a drying shrub wetland in Northern Wisconsin, USA, and nearby forests", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77957720758" | |||
} | |||
} | |||
] | |||
}, | |||
"url": "https://benjaminsulmanresearch.wordpress.com", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "36544482000" | |||
} | |||
} | } | ||
} | } |
Latest revision as of 19:43, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5077671611", "orcid": "https://orcid.org/0000-0002-3265-6691", "display_name": "Benjamin N. Sulman", "display_name_alternatives": [ "Benjamin Sulman", "B. N. Sulman", "B. Sulman", "B. N. Taylor", "Benjamin N. Sulman" ], "works_count": 145, "cited_by_count": 5214, "summary_stats": { "2yr_mean_citedness": 8.083333333333334, "h_index": 31, "i10_index": 43 }, "ids": { "openalex": "https://openalex.org/A5077671611", "orcid": "https://orcid.org/0000-0002-3265-6691", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=36544482000&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I1289243028", "ror": "https://ror.org/01qz5mb56", "display_name": "Oak Ridge National Laboratory", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1289243028", "https://openalex.org/I1330989302", "https://openalex.org/I39565521", "https://openalex.org/I4210159294" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2016 ] }, { "institution": { "id": "https://openalex.org/I2800421839", "ror": "https://ror.org/02rcrvv70", "display_name": "Government of the United States of America", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I2800421839" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I20089843", "ror": "https://ror.org/00hx57361", "display_name": "Princeton University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I20089843" ] }, "years": [ 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2012 ] }, { "institution": { "id": "https://openalex.org/I156087764", "ror": "https://ror.org/00d9ah105", "display_name": "University of California, Merced", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I156087764" ] }, "years": [ 2020, 2019, 2018 ] }, { "institution": { "id": "https://openalex.org/I4210119109", "ror": "https://ror.org/02k40bc56", "display_name": "Indiana University Bloomington", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I4210119109", "https://openalex.org/I592451" ] }, "years": [ 2018, 2016, 2015, 2014 ] }, { "institution": { "id": "https://openalex.org/I4210127096", "ror": "https://ror.org/034cgwt87", "display_name": "Eugene O'Neill Theater Center", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210127096" ] }, "years": [ 2016 ] }, { "institution": { "id": "https://openalex.org/I191217947", "ror": "https://ror.org/03vmn1898", "display_name": "NOAA Geophysical Fluid Dynamics Laboratory", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1308126019", "https://openalex.org/I1343035065", "https://openalex.org/I191217947", "https://openalex.org/I2802992173" ] }, "years": [ 2014 ] }, { "institution": { "id": "https://openalex.org/I1308126019", "ror": "https://ror.org/02z5nhe81", "display_name": "National Oceanic and Atmospheric Administration", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1308126019", "https://openalex.org/I1343035065" ] }, "years": [ 2014 ] }, { "institution": { "id": "https://openalex.org/I204593131", "ror": "https://ror.org/00390t168", "display_name": "College of Charleston", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I204593131" ] }, "years": [ 2014 ] }, { "institution": { "id": "https://openalex.org/I135310074", "ror": "https://ror.org/01y2jtd41", "display_name": "University of Wisconsin\u2013Madison", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I135310074" ] }, "years": [ 2012, 2010, 2009, 2008 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I1289243028", "ror": "https://ror.org/01qz5mb56", "display_name": "Oak Ridge National Laboratory", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1289243028", "https://openalex.org/I1330989302", "https://openalex.org/I39565521", "https://openalex.org/I4210159294" ] } ], "topics": [ { "id": "https://openalex.org/T10004", "display_name": "Soil Carbon Dynamics and Nutrient Cycling in Ecosystems", "count": 49, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "count": 43, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 20, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "count": 19, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 17, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10779", "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "count": 15, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11311", "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11791", "display_name": "Marine Microbial Diversity and Biogeography", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10995", "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10017", "display_name": "Climate Change and Paleoclimatology", "count": 11, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10451", "display_name": "Mycorrhizal Fungi and Plant Interactions", "count": 10, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10005", "display_name": "Biodiversity Conservation and Ecosystem Management", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12713", "display_name": "Saproxylic Insect Ecology and Forest Management", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1109", "display_name": "Insect Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12003", "display_name": "Development and Impacts of Bioenergy Crops", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1102", "display_name": "Agronomy and Crop Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13193", "display_name": "Geological Evolution of the Arctic Region", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1907", "display_name": "Geology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10894", "display_name": "Groundwater Flow and Transport Modeling", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10066", "display_name": "Diversity and Function of Gut Microbiome", "count": 3, "subfield": { "id": "https://openalex.org/subfields/1312", "display_name": "Molecular Biology" }, "field": { "id": "https://openalex.org/fields/13", "display_name": "Biochemistry, Genetics and Molecular Biology" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10139", "display_name": "Environmental Impact of Heavy Metal Contamination", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2310", "display_name": "Pollution" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11880", "display_name": "Estimation of Forest Biomass and Carbon Stocks", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "value": 0.0003537, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10004", "display_name": "Soil Carbon Dynamics and Nutrient Cycling in Ecosystems", "value": 0.0002306, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10779", "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "value": 0.0001251, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "value": 0.0001008, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 9.96e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11311", "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "value": 8.07e-05, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "value": 5.58e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10451", "display_name": "Mycorrhizal Fungi and Plant Interactions", "value": 5.17e-05, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "value": 4.99e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11791", "display_name": "Marine Microbial Diversity and Biogeography", "value": 4.65e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12003", "display_name": "Development and Impacts of Bioenergy Crops", "value": 4.5e-05, "subfield": { "id": "https://openalex.org/subfields/1102", "display_name": "Agronomy and Crop Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12643", "display_name": "Urban Metabolism and Sustainability Assessment", "value": 4.13e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "value": 3.93e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11331", "display_name": "Waterborne Disease Outbreaks and Pathogen Transport", "value": 3.64e-05, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10555", "display_name": "Impact of Climate Change on Forest Wildfires", "value": 3.45e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12713", "display_name": "Saproxylic Insect Ecology and Forest Management", "value": 3.36e-05, "subfield": { "id": "https://openalex.org/subfields/1109", "display_name": "Insect Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T13591", "display_name": "Management of Perennial Pasture Systems in Australia", "value": 3.14e-05, "subfield": { "id": "https://openalex.org/subfields/1107", "display_name": "Forestry" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T14329", "display_name": "Climate Change and Environmental Science", "value": 3.01e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13377", "display_name": "Anticipating Critical Transitions in Ecosystems", "value": 2.95e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10029", "display_name": "Climate Change and Variability Research", "value": 2.76e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "value": 2.59e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12896", "display_name": "Evaluation of Environmental Impact in Agriculture", "value": 2.45e-05, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "value": 2.34e-05, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11937", "display_name": "Data Sharing and Stewardship in Science", "value": 2.32e-05, "subfield": { "id": "https://openalex.org/subfields/1710", "display_name": "Information Systems" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14468", "display_name": "Analysis of Land Cover and Ecosystems", "value": 2.01e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 89.7 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 88.3 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 87.6 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 82.8 }, { "id": "https://openalex.org/C110872660", "wikidata": "https://www.wikidata.org/wiki/Q37813", "display_name": "Ecosystem", "level": 2, "score": 58.6 }, { "id": "https://openalex.org/C185592680", "wikidata": "https://www.wikidata.org/wiki/Q2329", "display_name": "Chemistry", "level": 0, "score": 54.5 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 51.7 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 48.3 }, { "id": "https://openalex.org/C178790620", "wikidata": "https://www.wikidata.org/wiki/Q11351", "display_name": "Organic chemistry", "level": 1, "score": 47.6 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 44.1 }, { "id": "https://openalex.org/C159390177", "wikidata": "https://www.wikidata.org/wiki/Q9161265", "display_name": "Soil science", "level": 1, "score": 42.8 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 42.1 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 41.4 }, { "id": "https://openalex.org/C159750122", "wikidata": "https://www.wikidata.org/wiki/Q96621023", "display_name": "Soil water", "level": 2, "score": 37.9 }, { "id": "https://openalex.org/C192562407", "wikidata": "https://www.wikidata.org/wiki/Q228736", "display_name": "Materials science", "level": 0, "score": 33.8 }, { "id": "https://openalex.org/C187320778", "wikidata": "https://www.wikidata.org/wiki/Q1349130", "display_name": "Geotechnical engineering", "level": 1, "score": 30.3 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 29.7 }, { "id": "https://openalex.org/C107872376", "wikidata": "https://www.wikidata.org/wiki/Q321355", "display_name": "Environmental chemistry", "level": 1, "score": 28.3 }, { "id": "https://openalex.org/C76886044", "wikidata": "https://www.wikidata.org/wiki/Q2883300", "display_name": "Hydrology (agriculture)", "level": 2, "score": 26.2 }, { "id": "https://openalex.org/C91586092", "wikidata": "https://www.wikidata.org/wiki/Q757520", "display_name": "Atmospheric sciences", "level": 1, "score": 25.5 }, { "id": "https://openalex.org/C39464130", "wikidata": "https://www.wikidata.org/wiki/Q7554898", "display_name": "Soil carbon", "level": 3, "score": 24.8 }, { "id": "https://openalex.org/C59822182", "wikidata": "https://www.wikidata.org/wiki/Q441", "display_name": "Botany", "level": 1, "score": 23.4 }, { "id": "https://openalex.org/C159985019", "wikidata": "https://www.wikidata.org/wiki/Q181790", "display_name": "Composite material", "level": 1, "score": 21.4 }, { "id": "https://openalex.org/C6939412", "wikidata": "https://www.wikidata.org/wiki/Q167751", "display_name": "Carbon cycle", "level": 3, "score": 20.7 } ], "counts_by_year": [ { "year": 2024, "works_count": 15, "cited_by_count": 1151 }, { "year": 2023, "works_count": 12, "cited_by_count": 1385 }, { "year": 2022, "works_count": 7, "cited_by_count": 1161 }, { "year": 2021, "works_count": 17, "cited_by_count": 1053 }, { "year": 2020, "works_count": 12, "cited_by_count": 659 }, { "year": 2019, "works_count": 16, "cited_by_count": 582 }, { "year": 2018, "works_count": 16, "cited_by_count": 336 }, { "year": 2017, "works_count": 10, "cited_by_count": 200 }, { "year": 2016, "works_count": 13, "cited_by_count": 105 }, { "year": 2015, "works_count": 4, "cited_by_count": 72 }, { "year": 2014, "works_count": 6, "cited_by_count": 48 }, { "year": 2013, "works_count": 2, "cited_by_count": 21 }, { "year": 2012, "works_count": 5, "cited_by_count": 26 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5077671611", "updated_date": "2024-08-20T22:48:29.194488", "created_date": "2023-07-21", "_id": "https://openalex.org/A5077671611" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0002-3265-6691", "mainEntityOfPage": "https://orcid.org/0000-0002-3265-6691", "name": "Benjamin N. Sulman", "givenName": "Benjamin", "familyName": "Sulman", "address": { "addressCountry": "US", "@type": "PostalAddress" }, "alumniOf": { "@type": "Organization", "name": "University of Wisconsin Madison", "alternateName": "Atmospheric and Oceanic Sciences", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "5228" } }, "affiliation": { "@type": "Organization", "name": "Oak Ridge National Laboratory", "alternateName": "Environmental Sciences Division", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "6146" } }, "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2023ms003762", "name": "Subsurface Redox Interactions Regulate Ebullitive Methane Flux in Heterogeneous Mississippi River Deltaic Wetland", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85181667808" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2023ms003762" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.soilbio.2022.108893", "name": "Carbon acquisition ecological strategies to connect soil microbial biodiversity and carbon cycling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.soilbio.2022.108893" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85143377884" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.soilbio.2023.109073", "name": "Ectomycorrhizal effects on decomposition are highly dependent on fungal traits, climate, and litter properties: A model-based assessment", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.soilbio.2023.109073" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85163171624" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2139/ssrn.4485247", "name": "Impact of Coastal Hydrologic Changes on Nutrient Cycling of Wetland Plants", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85162843412" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2139/ssrn.4485247" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.18760", "name": "Modeling strategies and data needs for representing coastal wetland vegetation in land surface models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.18760" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85148017589" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022gb007473", "name": "Soil Respiration Responses to Throughfall Exclusion Are Decoupled From Changes in Soil Moisture for Four Tropical Forests, Suggesting Processes for Ecosystem Models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022gb007473" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85153883598" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcbb.12914", "name": "A new bioenergy model that simulates the impacts of plant-microbial interactions, soil carbon protection, and mechanistic tillage on soil carbon cycling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcbb.12914" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85122699016" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41561-022-00909-2", "name": "Confronting the water potential information gap", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41561-022-00909-2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85126194190" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021jg006662", "name": "Simulated Hydrological Dynamics and Coupled Iron Redox Cycling Impact Methane Production in an Arctic Soil", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021jg006662" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85141062751" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2020ms002396", "name": "Integrating Arctic Plant Functional Types in a Land Surface Model Using Above\u2010 and Belowground Field Observations", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2020ms002396" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "1780297" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85105018596" } ], "sameAs": "https://www.osti.gov/biblio/1780297" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5440/1696794", "name": "Integrating New Arctic Plant Functional Types in a Land Surface Model Using Above- and Belowground Field Observations: Modeling Archive", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5440/1696794" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "1696794" } ], "sameAs": "https://www.osti.gov/biblio/1696794" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/eap.2290", "name": "Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85101618700" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "1771905" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/eap.2290" } ], "sameAs": "https://www.osti.gov/biblio/1771905" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41586-021-03306-8", "name": "A trade-off between plant and soil carbon storage under elevated CO<inf>2</inf>", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41586-021-03306-8" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85103354739" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15584", "name": "Biological mechanisms may contribute to soil carbon saturation patterns", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15584" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85102698360" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10533-021-00819-2", "name": "Divergent controls of soil organic carbon between observations and process-based models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10533-021-00819-2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85110448832" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/ffgc.2021.676191", "name": "Editorial: Forest Rhizosphere Interactions: Cascading Consequences for Ecosystem-Level Carbon and Nutrient Cycling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/ffgc.2021.676191" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85106431442" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/nph.16866", "name": "Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO<inf>2</inf>", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/nph.16866" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85092938048" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15795", "name": "Leveraging observed soil heterotrophic respiration fluxes as a novel constraint on global-scale models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15795" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85111829759" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021gl094514", "name": "Mycorrhizal Distributions Impact Global Patterns of Carbon and Nutrient Cycling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021gl094514" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85116829059" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15580", "name": "Response to \u2018Stochastic and deterministic interpretation of pool models\u2019", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85103238883" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15580" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15850", "name": "Response to \u201cConnectivity and pore accessibility in models of soil carbon cycling\u201d", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15850" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85113477624" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/essd-13-1843-2021", "name": "SoDaH: The SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85105592791" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/essd-13-1843-2021" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.15365", "name": "From pools to flow: The PROMISE framework for new insights on soil carbon cycling in a changing world", "identifier": [ { "@type": "PropertyValue", "propertyID": "other-id", "value": "1731052" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85092556206" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.15365" } ], "sameAs": "https://www.osti.gov/biblio/1731052" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/fenvs.2020.00146", "name": "Land Use and Land Cover Affect the Depth Distribution of Soil Carbon: Insights From a Large Database of Soil Profiles", "identifier": [ { "@type": "PropertyValue", "propertyID": "other-id", "value": "1650678" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/fenvs.2020.00146" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85090496846" } ], "sameAs": "https://www.osti.gov/biblio/1650678" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2020.107930", "name": "Redefining droughts for the U.S. Corn Belt: The dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of Maize and Soybean", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85079836133" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "1776482" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2020.107930" } ], "sameAs": "https://www.osti.gov/biblio/1776482" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2019gl085543", "name": "Arctic Soil Governs Whether Climate Change Drives Global Losses or Gains in Soil Carbon", "identifier": [ { "@type": "PropertyValue", "propertyID": "other-id", "value": "1580127" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85077041801" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019gl085543" } ], "sameAs": "https://www.osti.gov/biblio/1580127" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1365-2435.13510", "name": "Plant roots stimulate the decomposition of complex, but not simple, soil carbon", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85077905965" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "1609047" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2435.13510" } ], "sameAs": "https://www.osti.gov/biblio/1609047" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2018gb005973", "name": "Diverse Mycorrhizal Associations Enhance Terrestrial C Storage in a Global Model", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018gb005973" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85064556014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-16-1187-2019", "name": "On the role of soil water retention characteristic on aerobic microbial respiration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-16-1187-2019" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85063280013" }, { "@type": "PropertyValue", "propertyID": "other-id", "value": "1505309" } ], "sameAs": "https://www.osti.gov/biblio/1505309" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/b978-0-12-813493-1.00010-7", "name": "The role of the physical properties of soil in determining biogeochemical responses to soil warming", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85081581891" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/b978-0-12-813493-1.00010-7" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10533-018-0509-z", "name": "Multiple models and experiments underscore large uncertainty in soil carbon dynamics", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85055256509" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10533-018-0509-z" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41586-018-0539-7", "name": "Hydraulic diversity of forests regulates ecosystem resilience during drought", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85054068713" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41586-018-0539-7" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13979", "name": "Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85035085025" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13979" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/hess-22-3311-2018", "name": "Harnessing big data to rethink land heterogeneity in Earth system models", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/hess-22-3311-2018" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85048634159" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1365-2745.12921", "name": "Interactions among decaying leaf litter, root litter and soil organic matter vary with mycorrhizal type", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85041961459" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2745.12921" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.soilbio.2017.10.017", "name": "Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.soilbio.2017.10.017" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85032368094" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.soilbio.2018.07.002", "name": "Root litter decomposition slows with soil depth", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85049729129" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.soilbio.2018.07.002" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/gcb.13926", "name": "Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85042143469" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13926" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10533-017-0414-x", "name": "Wetland flux controls: how does interacting water table levels and temperature influence carbon dioxide and methane fluxes in northern Wisconsin?", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85039751074" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10533-017-0414-x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/ele.12802", "name": "Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85021753003" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/ele.12802" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2016.06.002", "name": "Comparing methods for partitioning a decade of carbon dioxide and water vapor fluxes in a temperate forest", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84976260187" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2016.06.002" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2016gl069416", "name": "High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84990187877" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2016gl069416" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/nclimate3114", "name": "The increasing importance of atmospheric demand for ecosystem water and carbon fluxes", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nclimate3114" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84992623476" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2015gb005188", "name": "Explicitly representing soil microbial processes in Earth system models", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84946543320" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2015gb005188" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/nclimate2436", "name": "Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO 2", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84926019270" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nclimate2436" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10021-012-9624-1", "name": "Modeling Soil and Biomass Carbon Responses to Declining Water Table in a Wetland-Rich Landscape", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-012-9624-1" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84876324061" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2011jg001862", "name": "Impact of hydrological variations on modeling of peatland CO<inf>2</inf> fluxes: Results from the North American Carbon Program site synthesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84863350754" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011jg001862" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-9-4215-2012", "name": "Modelling contrasting responses of wetland productivity to changes in water table depth", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-9-4215-2012" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84868667119" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2010gl044018", "name": "CO<inf>2</inf> fluxes at northern fens and bogs have opposite responses to inter-annual fluctuations in water table", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010gl044018" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77957696041" } ] }, { "@type": "CreativeWork", "name": "Contrasting carbon dioxide fluxes between a drying shrub wetland in Northern Wisconsin, USA, and nearby forests", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77957720758" } } ] }, "url": "https://benjaminsulmanresearch.wordpress.com", "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "36544482000" } }
}