Learning with Noisy Labels in Machine Learning (Q169072): Difference between revisions

From geokb
(‎Created a new Item: Added new OpenAlex topic claimed by USGS staff from API)
 
(‎Changed label, description and/or aliases in en, and other parts: removed quotes from description)
 
(3 intermediate revisions by the same user not shown)
aliases / en / 0aliases / en / 0
Noisy Labels
aliases / en / 1aliases / en / 1
Hyperparameter Optimization
aliases / en / 2aliases / en / 2
Instance Selection
aliases / en / 3aliases / en / 3
Robust Learning
aliases / en / 4aliases / en / 4
Automated Machine Learning
aliases / en / 5aliases / en / 5
Meta-Learning
aliases / en / 6aliases / en / 6
Deep Neural Networks
aliases / en / 7aliases / en / 7
Classification
aliases / en / 8aliases / en / 8
Positive and Unlabeled Data
aliases / en / 9aliases / en / 9
Loss Correction
description / endescription / en
This cluster of papers focuses on the challenges and techniques for learning with noisy labels in machine learning, including methods for hyperparameter optimization, instance selection, robust learning, and automated machine learning
Analyzing machine learning models that learn with incorrect or missing data labels.
Property / same as
 
Property / same as: https://openalex.org/T12535 / rank
Normal rank
 
Property / OpenAlex ID
 
Property / OpenAlex ID: T12535 / rank
 
Normal rank

Latest revision as of 21:22, 21 September 2024

Analyzing machine learning models that learn with incorrect or missing data labels.
Language Label Description Also known as
English
Learning with Noisy Labels in Machine Learning
Analyzing machine learning models that learn with incorrect or missing data labels.

    Statements