Automatic Road Extraction from Remote Sensing Images (Q166572): Difference between revisions

From geokb
(‎Created a new Item: Added new OpenAlex topic claimed by USGS staff from API)
 
(‎Changed label, description and/or aliases in en, and other parts: removed aliases from OpenAlex keywords)
 
(6 intermediate revisions by the same user not shown)
aliases / en / 0aliases / en / 0
Road Extraction
aliases / en / 1aliases / en / 1
Remote Sensing
aliases / en / 2aliases / en / 2
Deep Learning
aliases / en / 3aliases / en / 3
High-Resolution Imagery
aliases / en / 4aliases / en / 4
GIS Update
aliases / en / 5aliases / en / 5
Aerial Images
aliases / en / 6aliases / en / 6
GPS Traces
aliases / en / 7aliases / en / 7
Urban Road Networks
aliases / en / 8aliases / en / 8
SAR Imagery
aliases / en / 9aliases / en / 9
Map Inference
description / endescription / en
This cluster of papers focuses on the automatic extraction of road networks from remote sensing images, utilizing techniques such as deep learning, high-resolution imagery, and GPS traces
Automatically extracting road networks from satellite images using AI and high-resolution photography.
Property / same as
 
Property / same as: https://openalex.org/T13282 / rank
Normal rank
 
Property / uses
 
Property / uses: remote sensing / rank
 
Normal rank
Property / uses
 
Property / uses: deep learning / rank
 
Normal rank
Property / OpenAlex ID
 
Property / OpenAlex ID: T13282 / rank
 
Normal rank
Property / addresses subject
 
Property / addresses subject: remote sensing / rank
 
Normal rank
Property / addresses subject: remote sensing / reference
 
Property / addresses subject
 
Property / addresses subject: deep learning / rank
 
Normal rank
Property / addresses subject: deep learning / reference
 

Latest revision as of 20:28, 12 September 2024

Automatically extracting road networks from satellite images using AI and high-resolution photography.
Language Label Description Also known as
English
Automatic Road Extraction from Remote Sensing Images
Automatically extracting road networks from satellite images using AI and high-resolution photography.

    Statements