Item talk:Q50767: Difference between revisions
From geokb
(Updated person data cache with ORCID information) |
(caching schema from staff profile page) |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{ | |||
"USGS Staff Profile": { | |||
"@context": "https://schema.org", | |||
"@type": "Person", | |||
"dateModified": "2024-09-21T07:58:45.878300", | |||
"name": "Jennifer Harden, PhD", | |||
"identifier": [], | |||
"jobTitle": "Scientist Emeritus", | |||
"hasOccupation": [ | |||
{ | |||
"@type": "OrganizationalRole", | |||
"startDate": "2024-09-21T07:58:45.884288", | |||
"affiliatedOrganization": { | |||
"@type": "Organization", | |||
"name": "Geology, Minerals, Energy, and Geophysics Science Center", | |||
"url": "https://www.usgs.gov/centers/gmeg" | |||
}, | |||
"roleName": "Scientist Emeritus" | |||
} | |||
], | |||
"description": [ | |||
{ | |||
"@type": "TextObject", | |||
"additionalType": "short description", | |||
"abstract": "Scientist Emeritus with the Geology, Minerals, Energy, and Geophysics Science Center" | |||
} | |||
], | |||
"email": null, | |||
"url": "https://www.usgs.gov/staff-profiles/jennifer-harden", | |||
"affiliation": [], | |||
"hasCredential": [], | |||
"knowsAbout": [], | |||
"memberOf": { | |||
"@type": "OrganizationalRole", | |||
"name": "staff member", | |||
"member": { | |||
"@type": "Organization", | |||
"name": "U.S. Geological Survey" | |||
}, | |||
"startDate": "2024-09-21T07:58:45.878310", | |||
"description": "Former Employee" | |||
} | |||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@id": "https://orcid.org/0000-0002-6570-8259", | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@id": "https://doi.org/10.1016/j.geoderma.2017.09.043", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85031115798" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.geoderma.2017.09.043" | |||
} | |||
], | |||
"name": "A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1111/gcb.13896", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85030627756" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.13896" | |||
} | |||
], | |||
"name": "Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1111/gcb.13612", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85011275746" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.13612" | |||
} | |||
], | |||
"name": "A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1111/gcb.13403", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84991619844" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/gcb.13403" | |||
} | |||
], | |||
"name": "Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.5194/bg-13-4315-2016", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84980411223" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-13-4315-2016" | |||
} | |||
], | |||
"name": "Decadal and long-term boreal soil carbon and nitrogen sequestration rates across a variety of ecosystems" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1002/2015jg003061", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84958109062" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2015jg003061" | |||
} | |||
], | |||
"name": "Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1002/ecs2.1380", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84977667467" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/ecs2.1380" | |||
} | |||
], | |||
"name": "Estimating heterotrophic respiration at large scales: Challenges, approaches, and next steps" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1126/science.aad4273", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84989874091" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1126/science.aad4273" | |||
} | |||
], | |||
"name": "Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1002/2015gb005239", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2015gb005239" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84956641600" | |||
} | |||
], | |||
"name": "Toward more realistic projections of soil carbon dynamics by Earth system models" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1098/rsta.2014.0423", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84943787681" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1098/rsta.2014.0423" | |||
} | |||
], | |||
"name": "A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1038/nature14338", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/nature14338" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84927514015" | |||
} | |||
], | |||
"name": "Climate change and the permafrost carbon feedback" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1002/2015jg003130", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2015jg003130" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84954375610" | |||
} | |||
], | |||
"name": "Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1016/j.geoderma.2015.02.005", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.geoderma.2015.02.005" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84923870070" | |||
} | |||
], | |||
"name": "Long-term controls on soil organic carbon with depth and time: A case study from the Cowlitz River Chronosequence, WA USA" | |||
}, | |||
{ | |||
"@id": "https://doi.org/10.1038/nature14238", | |||
"@type": "CreativeWork", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84929340364" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/nature14238" | |||
} | |||
], | |||
Latest revision as of 15:09, 21 September 2024
{
"USGS Staff Profile": { "@context": "https://schema.org", "@type": "Person", "dateModified": "2024-09-21T07:58:45.878300", "name": "Jennifer Harden, PhD", "identifier": [], "jobTitle": "Scientist Emeritus", "hasOccupation": [ { "@type": "OrganizationalRole", "startDate": "2024-09-21T07:58:45.884288", "affiliatedOrganization": { "@type": "Organization", "name": "Geology, Minerals, Energy, and Geophysics Science Center", "url": "https://www.usgs.gov/centers/gmeg" }, "roleName": "Scientist Emeritus" } ], "description": [ { "@type": "TextObject", "additionalType": "short description", "abstract": "Scientist Emeritus with the Geology, Minerals, Energy, and Geophysics Science Center" } ], "email": null, "url": "https://www.usgs.gov/staff-profiles/jennifer-harden", "affiliation": [], "hasCredential": [], "knowsAbout": [], "memberOf": { "@type": "OrganizationalRole", "name": "staff member", "member": { "@type": "Organization", "name": "U.S. Geological Survey" }, "startDate": "2024-09-21T07:58:45.878310", "description": "Former Employee" } }, "ORCID": { "@context": "http://schema.org", "@id": "https://orcid.org/0000-0002-6570-8259", "@reverse": { "creator": [ { "@id": "https://doi.org/10.1016/j.geoderma.2017.09.043", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85031115798" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.geoderma.2017.09.043" } ], "name": "A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases" }, { "@id": "https://doi.org/10.1111/gcb.13896", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85030627756" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13896" } ], "name": "Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter" }, { "@id": "https://doi.org/10.1111/gcb.13612", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85011275746" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13612" } ], "name": "A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability" }, { "@id": "https://doi.org/10.1111/gcb.13403", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84991619844" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.13403" } ], "name": "Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands" }, { "@id": "https://doi.org/10.5194/bg-13-4315-2016", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84980411223" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-13-4315-2016" } ], "name": "Decadal and long-term boreal soil carbon and nitrogen sequestration rates across a variety of ecosystems" }, { "@id": "https://doi.org/10.1002/2015jg003061", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84958109062" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2015jg003061" } ], "name": "Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils" }, { "@id": "https://doi.org/10.1002/ecs2.1380", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84977667467" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ecs2.1380" } ], "name": "Estimating heterotrophic respiration at large scales: Challenges, approaches, and next steps" }, { "@id": "https://doi.org/10.1126/science.aad4273", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84989874091" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.aad4273" } ], "name": "Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century" }, { "@id": "https://doi.org/10.1002/2015gb005239", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2015gb005239" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84956641600" } ], "name": "Toward more realistic projections of soil carbon dynamics by Earth system models" }, { "@id": "https://doi.org/10.1098/rsta.2014.0423", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84943787681" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1098/rsta.2014.0423" } ], "name": "A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback" }, { "@id": "https://doi.org/10.1038/nature14338", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nature14338" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84927514015" } ], "name": "Climate change and the permafrost carbon feedback" }, { "@id": "https://doi.org/10.1002/2015jg003130", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2015jg003130" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84954375610" } ], "name": "Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests" }, { "@id": "https://doi.org/10.1016/j.geoderma.2015.02.005", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.geoderma.2015.02.005" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923870070" } ], "name": "Long-term controls on soil organic carbon with depth and time: A case study from the Cowlitz River Chronosequence, WA USA" }, { "@id": "https://doi.org/10.1038/nature14238", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84929340364" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/nature14238" } ], "name": "Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes" }, { "@id": "https://doi.org/10.1016/j.gca.2014.11.008", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2014.11.008" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84922603805" } ], "name": "Uranium isotopes and dissolved organic carbon in loess permafrost: Modeling the age of ancient ice" }, { "@id": "https://doi.org/10.1002/2013jg002441", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2013jg002441" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84898858717" } ], "name": "Controls on methane released through ebullition in peatlands affected by permafrost degradation" }, { "@id": "https://doi.org/10.1002/ppp.1800", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84896719970" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ppp.1800" } ], "name": "Cryostratigraphy and Permafrost Evolution in the Lacustrine Lowlands of West-Central Alaska" }, { "@id": "https://doi.org/10.1002/2014jg002683", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84924238667" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2014jg002683" } ], "name": "Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost" }, { "@id": "https://doi.org/10.1088/1748-9326/9/8/085004", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/9/8/085004" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84927655005" } ], "name": "Effect of permafrost thaw on CO<inf>2</inf> and CH<inf>4</inf> exchange in a western Alaska peatland chronosequence" }, { "@id": "https://doi.org/10.1088/1748-9326/9/10/109601", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/9/10/109601" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907891155" } ], "name": "Erratum: Effect of permafrost thaw on CO<inf>2</inf>and CH<inf>4</inf>exchange in a western Alaska peatland chronosequence (2013 Environ. Res. Lett. 9 085004)" }, { "@id": "https://doi.org/10.5194/bg-11-6573-2014", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84914133323" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-11-6573-2014" } ], "name": "Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps" }, { "@id": "https://doi.org/10.1016/j.gca.2014.05.003", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2014.05.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84902248212" } ], "name": "Modeling the influence of organic acids on soil weathering" }, { "@id": "https://doi.org/10.5194/bg-11-4477-2014", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84906672751" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-11-4477-2014" } ], "name": "The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types of boreal forest ecosystems: A mechanistically based model analysis" }, { "@id": "https://doi.org/10.2475/04.2014.01", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2475/04.2014.01" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84902979084" } ], "name": "Uranium isotopes in soils as a proxy for past infiltration and precipitation across the western United States" }, { "@id": "https://doi.org/10.5194/essd-5-393-2013", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84893023778" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/essd-5-393-2013" } ], "name": "A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region" }, { "@id": "https://doi.org/10.1002/ppp.1782", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ppp.1782" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879231044" } ], "name": "Characterisation of the permafrost carbon pool" }, { "@id": "https://doi.org/10.1088/1748-9326/8/4/045029", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84891927860" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/8/4/045029" } ], "name": "Controls on ecosystem and root respiration across a permafrost and wetland gradient in interior Alaska" }, { "@id": "https://doi.org/10.1088/1748-9326/8/3/035020", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/8/3/035020" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84885447767" } ], "name": "Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: A review of recent progress and remaining challenges" }, { "@id": "https://doi.org/10.1007/s10584-013-0730-7", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879142167" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10584-013-0730-7" } ], "name": "Expert assessment of vulnerability of permafrost carbon to climate change" }, { "@id": "https://doi.org/10.1088/1748-9326/8/3/035028", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84885459061" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/8/3/035028" } ], "name": "Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone" }, { "@id": "https://doi.org/10.1088/1748-9326/8/3/035017", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/8/3/035017" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84885465919" } ], "name": "Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes" }, { "@id": "https://doi.org/10.1016/j.soilbio.2012.10.032", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.soilbio.2012.10.032" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84871025595" } ], "name": "Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen" }, { "@id": "https://doi.org/10.5194/bg-10-8233-2013", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84890523713" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-10-8233-2013" } ], "name": "Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: Insights from a global process-based vegetation model" }, { "@id": "https://doi.org/10.1111/gcb.12041", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/gcb.12041" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84871929736" } ], "name": "The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change" }, { "@id": "https://doi.org/10.1890/11-1957.1", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84871236594" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/11-1957.1" } ], "name": "Assessment of boreal forest historical C dynamics in the Yukon River Basin: Relative roles of warming and fire regime change" }, { "@id": "https://doi.org/10.1016/j.soilbio.2012.02.032", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.soilbio.2012.02.032" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84860214429" } ], "name": "Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior Alaska" }, { "@id": "https://doi.org/10.1029/2012gl051958", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2012gl051958" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84864704679" } ], "name": "Field information links permafrost carbon to physical vulnerabilities of thawing" }, { "@id": "https://doi.org/10.1016/j.chemgeo.2012.02.002", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84866502504" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.chemgeo.2012.02.002" } ], "name": "Micro- and nano-environments of carbon sequestration: Multi-element STXM-NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations" }, { "@id": "https://doi.org/10.1029/2011jg001790", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011jg001790" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84861861493" } ], "name": "Persistence of soil organic matter in eroding versus depositional landform positions" }, { "@id": "https://doi.org/10.1016/j.geoderma.2011.11.030", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84255194368" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.geoderma.2011.11.030" } ], "name": "Photodissolution of soil organic matter" }, { "@id": "https://doi.org/10.1029/2011jg001826", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011jg001826" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84857097655" } ], "name": "Spatiotemporal analysis of black spruce forest soils and implications for the fate of C" }, { "@id": "https://doi.org/10.1007/s10021-011-9504-0", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-011-9504-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84857781522" } ], "name": "The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland" }, { "@id": "https://doi.org/10.5194/bg-8-1367-2011", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79957798803" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-8-1367-2011" } ], "name": "Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem" }, { "@id": "https://doi.org/10.1111/j.1365-2486.2010.02274.x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2010.02274.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78650782887" } ], "name": "Patterns of NPP, GPP, respiration, and NEP during boreal forest succession" }, { "@id": "https://doi.org/10.1038/ngeo1027", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/ngeo1027" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78650571064" } ], "name": "Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands" }, { "@id": "https://doi.org/10.1016/j.geoderma.2011.10.006", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.geoderma.2011.10.006" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80055044410" } ], "name": "Soil carbon distribution in Alaska in relation to soil-forming factors" }, { "@id": "https://doi.org/10.1111/j.1365-2486.2010.02358.x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79251618260" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2010.02358.x" } ], "name": "The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss" }, { "@id": "https://doi.org/10.1029/2010jg001507", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010jg001507" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79961213633" } ], "name": "Vulnerability of high-latitude soil organic carbon in North America to disturbance" }, { "@id": "https://doi.org/10.1016/j.scitotenv.2011.02.009", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2011.02.009" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79952624723" } ], "name": "Water and heat transport in boreal soils: Implications for soil response to climate change" }, { "@id": "https://doi.org/10.1029/2010jg001302", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78349283118" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010jg001302" } ], "name": "A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental conditions and carbon dynamics of black spruce forests" }, { "@id": "https://doi.org/10.1111/j.1365-2486.2009.02141.x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77955253753" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2009.02141.x" } ], "name": "Molecular investigations into a globally important carbon pool: Permafrost-protected carbon in Alaskan soils" }, { "@id": "https://doi.org/10.1139/x10-060", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1139/x10-060" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77955136044" } ], "name": "Resilience and vulnerability of permafrost to climate change" }, { "@id": "https://doi.org/10.1029/2010jg001366", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77958541870" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010jg001366" } ], "name": "Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich fen" }, { "@id": "https://doi.org/10.1016/j.cosust.2010.05.003", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.cosust.2010.05.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77957654641" } ], "name": "The carbon budget of the northern cryosphere region" }, { "@id": "https://doi.org/10.1139/x10-072", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77955140724" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1139/x10-072" } ], "name": "The role of mosses in ecosystem succession and function in Alaska's boreal forest" }, { "@id": "https://doi.org/10.1139/x10-163", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78449244880" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1139/x10-163" } ], "name": "The role of soil drainage class in carbon dioxide exchange and decomposition in boreal black spruce (Picea mariana) forest stands" }, { "@id": "https://doi.org/10.1029/2008gl037014", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-65649123039" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2008gl037014" } ], "name": "Characteristics of organic soil in black spruce forests: Implications for the application of land surface and ecosystem models in cold regions" }, { "@id": "https://doi.org/10.1007/s10021-009-9292-y", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77949774730" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-009-9292-y" } ], "name": "Effects of experimental water table and temperature manipulations on ecosystem CO<inf>2</inf> fluxes in an Alaskan rich fen" }, { "@id": "https://doi.org/10.1029/2005gm000326", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84899793771" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2005gm000326" } ], "name": "Erosion of soil organic carbon: Implications for carbon sequestration" }, { "@id": "https://doi.org/10.1029/2008jg000841", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-70349240581" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2008jg000841" } ], "name": "Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance" }, { "@id": "https://doi.org/10.1007/s10021-008-9206-4", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-008-9206-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-58849096212" } ], "name": "Interactive effects of fire, soil climate, and moss on CO<inf>2</inf> fluxes in black spruce ecosystems of interior Alaska" }, { "@id": "https://doi.org/10.1029/2008jg000803", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2008jg000803" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-70349255867" } ], "name": "Measurement of soil carbon oxidation state and oxidative ratio by13C nuclear magnetic resonance" }, { "@id": "https://doi.org/10.1097/ss.0b013e3181c4a7f8", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1097/ss.0b013e3181c4a7f8" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-74349095746" } ], "name": "The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior alaska" }, { "@id": "https://doi.org/10.1029/2008jg000723", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2008jg000723" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-61749094800" } ], "name": "Boreal soil carbon dynamics under a changing climate: A model inversion approach" }, { "@id": "https://doi.org/10.1111/j.1365-2486.2008.01661.x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2008.01661.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-54449098253" } ], "name": "Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest" }, { "@id": "https://doi.org/10.1029/2008jg000751", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-61749094686" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2008jg000751" } ], "name": "Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions" }, { "@id": "https://doi.org/10.1007/s10021-007-9117-9", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-41149155356" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-007-9117-9" } ], "name": "Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska" }, { "@id": "https://doi.org/10.1029/2007jg000496", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-67651110608" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2007jg000496" } ], "name": "Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland" }, { "@id": "https://doi.org/10.1126/science.320.5873.178", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-42049095312" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.320.5873.178" } ], "name": "Soil erosion: Data say C sink" }, { "@id": "https://doi.org/10.5194/bg-5-1273-2008", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-5-1273-2008" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-52249092885" } ], "name": "Wetland succession in a permafrost collapse: Interactions between fire and thermokarst" }, { "@id": "https://doi.org/10.1029/200710000423", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/200710000423" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-39849096447" } ], "name": "Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest" }, { "@id": "https://doi.org/10.1126/science.1145724", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-35549001050" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.1145724" } ], "name": "The impact of agricultural soil erosion on the global carbon cycle" }, { "@id": "https://doi.org/10.1029/2006jg000380", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34548306570" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2006jg000380" } ], "name": "The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis" }, { "@id": "https://doi.org/10.1641/b570408", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34247232672" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1641/b570408" } ], "name": "The significance of the erosion-induced terrestrial carbon sink" }, { "@id": "https://doi.org/10.1029/2005jg000074", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34848920645" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2005jg000074" } ], "name": "Effect of tree line advance on carbon storage in NW Alaska" }, { "@id": "https://doi.org/10.1111/j.1365-2486.2006.01255.x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33845241930" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1365-2486.2006.01255.x" } ], "name": "Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska" }, { "@id": "https://doi.org/10.1029/2005jg000077", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34848878427" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2005jg000077" } ], "name": "Geomorphic control of landscape carbon accumulation" }, { "@id": "https://doi.org/10.1029/2005jg000087", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33747648439" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2005jg000087" } ], "name": "Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil" }, { "@id": "https://doi.org/10.1007/s10021-005-0105-7", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33646480966" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-005-0105-7" } ], "name": "Reconciling carbon-cycle concepts, terminology, and methods" }, { "@id": "https://doi.org/10.1016/j.geoderma.2005.03.005", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.geoderma.2005.03.005" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-31844435164" } ], "name": "Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin" }, { "@id": "https://doi.org/10.1126/science.1132075", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.1132075" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33751226912" } ], "name": "The impact of boreal forest fire on climate warming" }, { "@id": "https://doi.org/10.1029/2005gl025595", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33845651264" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2005gl025595" } ], "name": "Wildfires threaten mercury stocks in northern soils" }, { "@id": "https://doi.org/10.1016/j.gca.2004.10.003", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gca.2004.10.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-17444391656" } ], "name": "Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical evolution and contemporary solute fluxes and rates" }, { "@id": "https://doi.org/10.1108/02602280510606507", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-21844442602" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1108/02602280510606507" } ], "name": "Comparing electronic probes for volumetric water content of low-density feathermoss" }, { "@id": "https://doi.org/10.1139/x05-154", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1139/x05-154" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-29844448311" } ], "name": "Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska" }, { "@id": "https://doi.org/10.1139/x04-179", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-20044395633" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1139/x04-179" } ], "name": "Woody debris along an upland chronosequence in boreal Manitoba and its impact on long-term carbon storage" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-17744415045" }, "name": "Acidification of forest soil in Russia: From 1893 to present" }, { "@id": "https://doi.org/10.1029/2003gb002194", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-10244251634" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2003gb002194" } ], "name": "Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999" }, { "@id": "https://doi.org/10.1002/ppp.505", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ppp.505" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-11144263121" } ], "name": "Moisture content measurements of moss (Sphagnum spp.) using commercial sensors" }, { "@id": "https://doi.org/10.1029/2004gb002219", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-15944404220" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2004gb002219" } ], "name": "Weathering controls on mechanisms of carbon storage in grassland soils" }, { "@id": "https://doi.org/10.1034/j.1600-0889.2003.00060.x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1034/j.1600-0889.2003.00060.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0042346378" } ], "name": "Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: A modeling analysis of the influences of soil thermal dynamics" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-1642578923" }, "name": "Fire dynamics and implications for nitrogen cycling in boreal forests" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0038336507" }, "name": "Isotopic composition of carbon dioxide from a boreal forest fire: Inferring carbon loss from measurements and modeling" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0347269064" }, "name": "Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-8444232002" }, "name": "Soil drainage and its potential for influencing wildfires in Alaska" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-8344262373" }, "name": "The effect of soil drainage on fire and carbon cycling in central Alaska" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0038372601" }, "name": "A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence" }, { "@id": "https://doi.org/10.1023/a:1020308729553", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036758426" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1023/a:1020308729553" } ], "name": "Cycling of beryllium and carbon through hillslope soils in Iowa" }, { "@id": "https://doi.org/10.1890/1051-0761(2002)012[0937:nepacm]2.0.co;2", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036707072" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/1051-0761(2002)012[0937:nepacm]2.0.co;2" } ], "name": "Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems" }, { "@id": "https://doi.org/10.1046/j.1365-2486.2002.00477.x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1365-2486.2002.00477.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036784827" } ], "name": "Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe" }, { "@id": "https://doi.org/10.1046/j.1354-1013.2001.00427.x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1354-1013.2001.00427.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034889931" } ], "name": "Carbon dynamics within agricultural and native sites in the loess region of Western lowa" }, { "@id": "https://doi.org/10.1016/s0016-7037(01)00699-8", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0016-7037(01)00699-8" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035209945" } ], "name": "Soil N and15N variation with time in a California annual grassland ecosystem" }, { "@id": "https://doi.org/10.1080/11956860.2000.11682620", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034485519" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/11956860.2000.11682620" } ], "name": "Nutrient dynamics of the southern and northern BOREAS boreal forests" }, { "@id": "https://doi.org/10.1029/00eo00031", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0010438608" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/00eo00031" } ], "name": "Scientists unearth clues to soil contamination by comparing old and new soil samples" }, { "@id": "https://doi.org/10.1046/j.1365-2486.2000.06019.x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1365-2486.2000.06019.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034425728" } ], "name": "The role of fire in the boreal carbon budget" }, { "@id": "https://doi.org/10.1029/1999jd900433", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033610980" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/1999jd900433" } ], "name": "Carbon cycling in boreal wetlands: A comparison of three approaches" }, { "@id": "https://doi.org/10.1029/1999gb900061", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033302278" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/1999gb900061" } ], "name": "Dynamic replacement and loss of soil carbon on eroding cropland" }, { "@id": "https://doi.org/10.1126/science.279.5348.214", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.279.5348.214" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-6844251585" } ], "name": "Sensitivity of boreal forest carbon balance to soil thaw" }, { "@id": "https://doi.org/10.1029/98gb02336", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/98gb02336" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0032465484" } ], "name": "Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031448531" }, "name": "Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area" }, { "@id": "https://doi.org/10.1016/s0016-7037(96)00344-4", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0016-7037(96)00344-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030745095" } ], "name": "Chemical weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic and isotopic constraints on the behavior of strontium" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031463199" }, "name": "Moss and soil contributions to the annual net carbon flux of a maturing boreal forest" }, { "@id": "https://doi.org/10.1016/0016-7037(96)00106-8", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030470798" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/0016-7037(96)00106-8" } ], "name": "Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates" }, { "@id": "https://doi.org/10.1139/x95-151", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1139/x95-151" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028980347" } ], "name": "Effect of timber harvest on soil carbon storage at Blodgett experimental forest, California" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85041146077" }, "name": "Factors of soil formation: a fiftieth anniversary retrospective. Proceedings of a symposium, Denver, October 1991" }, { "@id": "https://doi.org/10.1006/qres.1994.1054", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1006/qres.1994.1054" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028597789" } ], "name": "Isotopic approach to soil carbonate dynamics and implications for paleoclimatic interpretations" }, { "@id": "https://doi.org/10.1126/science.258.5090.1921", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027046574" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.258.5090.1921" } ], "name": "Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet" }, { "@id": "https://doi.org/10.1016/0016-7061(92)90044-8", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0026465328" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/0016-7061(92)90044-8" } ], "name": "Morphology and genesis of carbonate soils on the Kyle Canyon fan, Nevada, U.S.A." }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0026364603" }, "name": "Calcic, gypsic, and siliceous soil chronosequences in arid and semiarid environments" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0025824760" }, "name": "Calcic, gypsic, and siliceous soil chronosequences in arid and semiarid environments" }, { "@id": "https://doi.org/10.1016/0033-5894(91)90052-7", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0026010685" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/0033-5894(91)90052-7" } ], "name": "Rates of soil development from four soil chronosequences in the southern Great Basin" }, { "@id": "https://doi.org/10.1097/00010694-199106000-00003", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0026270697" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1097/00010694-199106000-00003" } ], "name": "Seasonal variations of carbon dioxide concentrations in stony, coarse-textured desert soils of southern Nevada, USA" }, { "@id": "https://doi.org/10.1016/0169-555x(90)90013-g", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/0169-555x(90)90013-g" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0025676712" } ], "name": "Soil development on stable landforms and implications for landscape studies" }, { "@id": "https://doi.org/10.1130/0091-7613(1989)017<0190:carodo>2.3.co;2", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84872652745" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/0091-7613(1989)017<0190:carodo>2.3.co;2" } ], "name": "Comment on \"Distribution of calcium carbonate in desert soils: A model\"" }, { "@id": "https://doi.org/10.2136/sssaj1989.03615995005300040024x", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024838747" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2136/sssaj1989.03615995005300040024x" } ], "name": "Development rates of Late Quaternary soils, Silver Lake Playa, California" }, { "@id": "https://doi.org/10.1130/0016-7606(1989)101<1107:halpsr>2.3.co;2", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879881118" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/0016-7606(1989)101<1107:halpsr>2.3.co;2" } ], "name": "Holocene and late Pleistocene slip rates on the San Andreas fault in Yucaipa, California, using displaced alluvial-fan deposits and soil chronology" }, { "@id": "https://doi.org/10.1007/bf00903188", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/bf00903188" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0042780753" } ], "name": "A statistical method for estimating rates of soil development and ages of geologic deposits: A design for soil-chronosequence studies" }, { "@id": "https://doi.org/10.1130/0091-7613(1988)016<0303:doccid>2.3.co;2", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/0091-7613(1988)016<0303:doccid>2.3.co;2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0001547730" } ], "name": "Distribution of calcium carbonate in desert soils: A model" }, { "@id": "https://doi.org/10.1016/0016-7061(88)90042-0", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024195208" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/0016-7061(88)90042-0" } ], "name": "Genetic interpretations of elemental and chemical differences in a soil chronosequence, California" }, { "@id": "https://doi.org/10.1097/00010694-198811000-00010", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1097/00010694-198811000-00010" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024189120" } ], "name": "Measurements of water penetration and volume percentage water-holding capacity for undisturbed, coarse-textured soils in southwestern california" }, { "@id": "https://doi.org/10.1130/0091-7613(1988)016<1051:carose>2.3.co;2", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1130/0091-7613(1988)016<1051:carose>2.3.co;2" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84872505216" } ], "name": "Reply on Scanning electron microscope method for rock-varnish dating" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0023467156" }, "name": "Soils developed in granitic alluvium near Merced, California." }, { "@id": "https://doi.org/10.1016/0016-7037(86)90134-1", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0022926877" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/0016-7037(86)90134-1" } ], "name": "10Be distribution in soils from Merced River terraces, California" }, { "@type": "CreativeWork", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0022845968" }, "name": "Soils developed on coastal and fluvial terraces near Ventura, California." }, { "@id": "https://doi.org/10.1016/0033-5894(83)90017-0", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/0033-5894(83)90017-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0021028183" } ], "name": "A quantitative comparison of Soil Development in four climatic regimes" }, { "@id": "https://doi.org/10.1016/0016-7061(82)90037-4", "@type": "CreativeWork", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/0016-7061(82)90037-4" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0020459302" } ], "name": "A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California" } ] }, "@type": "Person", "affiliation": [ { "@type": "Organization", "alternateName": "Earth System Science", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "6429" }, "name": "Stanford University" }, { "@type": "Organization", "alternateName": "Institute of Arctic Biology", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "11414" }, "name": "University of Alaska Fairbanks" }, { "@id": "https://doi.org/10.13039/100005369", "@type": "Organization", "name": "American Geophysical Union" }, { "@id": "https://doi.org/10.13039/100000958", "@type": "Organization", "name": "American Association for the Advancement of Science" }, { "@id": "https://doi.org/10.13039/100005369", "@type": "Organization", "alternateName": "Biogeosciences", "name": "American Geophysical Union" } ], "alumniOf": { "@type": "Organization", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "1438" }, "name": "University of California Berkeley" }, "familyName": "Harden", "givenName": "Jennifer W", "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "7006332531" }, "mainEntityOfPage": "https://orcid.org/0000-0002-6570-8259" }, "OpenAlex": { "created_date": "2023-07-21", "display_name": "Jennifer W. Harden", "display_name_alternatives": [ "J.W Harden", "J. L. Harden", "Jennifer W. Harden", "Jennifer Harden", "J. Harden", "J. W. Harden", "Harden Jennifer" ], "ids": { "openalex": "https://openalex.org/A5045407000", "orcid": "https://orcid.org/0000-0002-6570-8259", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=7006332531&partnerID=MN8TOARS" }, "last_known_institutions": [ { "country_code": "US", "display_name": "Stanford University", "id": "https://openalex.org/I97018004", "lineage": [ "https://openalex.org/I97018004" ], "ror": "https://ror.org/00f54p054", "type": "education" } ], "orcid": "https://orcid.org/0000-0002-6570-8259", "topics": [ { "count": 78, "display_name": "Arctic Permafrost Dynamics and Climate Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T11333", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 52, "display_name": "Carbon Dynamics in Peatland Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12091", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 52, "display_name": "Climate Change and Paleoclimatology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10017", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 29, "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10644", "subfield": { "display_name": "Atmospheric Science", "id": "https://openalex.org/subfields/1902" } }, { "count": 27, "display_name": "Soil Carbon Dynamics and Nutrient Cycling in Ecosystems", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Agricultural and Biological Sciences", "id": "https://openalex.org/fields/11" }, "id": "https://openalex.org/T10004", "subfield": { "display_name": "Soil Science", "id": "https://openalex.org/subfields/1111" } }, { "count": 21, "display_name": "Impact of Climate Change on Forest Wildfires", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10555", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 16, "display_name": "Global Methane Emissions and Impacts", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11588", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 14, "display_name": "Soil Erosion and Agricultural Sustainability", "domain": { "display_name": "Life Sciences", "id": "https://openalex.org/domains/1" }, "field": { "display_name": "Agricultural and Biological Sciences", "id": "https://openalex.org/fields/11" }, "id": "https://openalex.org/T10889", "subfield": { "display_name": "Soil Science", "id": "https://openalex.org/subfields/1111" } }, { "count": 8, "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10779", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 8, "display_name": "Applications of Clay Nanotubes in Various Fields", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Materials Science", "id": "https://openalex.org/fields/25" }, "id": "https://openalex.org/T11852", "subfield": { "display_name": "Biomaterials", "id": "https://openalex.org/subfields/2502" } }, { "count": 7, "display_name": "Global Forest Drought Response and Climate Change", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10266", "subfield": { "display_name": "Global and Planetary Change", "id": "https://openalex.org/subfields/2306" } }, { "count": 7, "display_name": "Anaerobic Methane Oxidation and Gas Hydrates", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10995", "subfield": { "display_name": "Environmental Chemistry", "id": "https://openalex.org/subfields/2304" } }, { "count": 6, "display_name": "Mechanics and Transport in Unsaturated Soils", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T10716", "subfield": { "display_name": "Civil and Structural Engineering", "id": "https://openalex.org/subfields/2205" } }, { "count": 6, "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T11311", "subfield": { "display_name": "Environmental Chemistry", "id": "https://openalex.org/subfields/2304" } }, { "count": 6, "display_name": "Machine Learning for Mineral Prospectivity Mapping", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Computer Science", "id": "https://openalex.org/fields/17" }, "id": "https://openalex.org/T12157", "subfield": { "display_name": "Artificial Intelligence", "id": "https://openalex.org/subfields/1702" } }, { "count": 6, "display_name": "Digital Soil Mapping Techniques", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10770", "subfield": { "display_name": "Environmental Engineering", "id": "https://openalex.org/subfields/2305" } }, { "count": 5, "display_name": "Stable Isotope Analysis of Groundwater and Precipitation", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10398", "subfield": { "display_name": "Geochemistry and Petrology", "id": "https://openalex.org/subfields/1906" } }, { "count": 5, "display_name": "Geological Evolution of the Arctic Region", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T13193", "subfield": { "display_name": "Geology", "id": "https://openalex.org/subfields/1907" } }, { "count": 4, "display_name": "Sedimentary Processes in Earth's Geology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10965", "subfield": { "display_name": "Earth-Surface Processes", "id": "https://openalex.org/subfields/1904" } }, { "count": 4, "display_name": "Health and Well-being of Arctic Indigenous Peoples", "domain": { "display_name": "Health Sciences", "id": "https://openalex.org/domains/4" }, "field": { "display_name": "Health Professions", "id": "https://openalex.org/fields/36" }, "id": "https://openalex.org/T12614", "subfield": { "display_name": "General Health Professions", "id": "https://openalex.org/subfields/3600" } }, { "count": 4, "display_name": "Application of Stable Isotopes in Trophic Ecology", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T12073", "subfield": { "display_name": "Ecology", "id": "https://openalex.org/subfields/2303" } }, { "count": 4, "display_name": "Aeolian Geomorphology and Wind Erosion Dynamics", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T12383", "subfield": { "display_name": "Earth-Surface Processes", "id": "https://openalex.org/subfields/1904" } }, { "count": 4, "display_name": "Landslide Hazards and Risk Assessment", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Environmental Science", "id": "https://openalex.org/fields/23" }, "id": "https://openalex.org/T10535", "subfield": { "display_name": "Management, Monitoring, Policy and Law", "id": "https://openalex.org/subfields/2308" } }, { "count": 3, "display_name": "Marine Biogeochemistry and Ecosystem Dynamics", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Earth and Planetary Sciences", "id": "https://openalex.org/fields/19" }, "id": "https://openalex.org/T10032", "subfield": { "display_name": "Oceanography", "id": "https://openalex.org/subfields/1910" } }, { "count": 3, "display_name": "Characterization of Shale Gas Pore Structure", "domain": { "display_name": "Physical Sciences", "id": "https://openalex.org/domains/3" }, "field": { "display_name": "Engineering", "id": "https://openalex.org/fields/22" }, "id": "https://openalex.org/T10399", "subfield": { "display_name": "Mechanics of Materials", "id": "https://openalex.org/subfields/2211" } } ], "updated_date": "2024-05-23T09:58:58.522155" }
}