Item talk:Q142209: Difference between revisions

From geokb
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5084145417", "orcid": "https://orcid.org/0000-0002-3517-337X", "display_name": "John Jakeman", "display_name_alternatives": [ "John Davis Jakeman", "J. Jakeman", "John Jakeman", "John D. Jakeman", "J. D. Jakeman" ], "works_count": 218, "cited_by_count": 2469, "summary_stats": { "2yr_mean_citedness": 2.8125, "h_index": 24, "i10_index": 40 },...")
 
No edit summary
 
Line 1,217: Line 1,217:
     "created_date": "2023-07-21",
     "created_date": "2023-07-21",
     "_id": "https://openalex.org/A5084145417"
     "_id": "https://openalex.org/A5084145417"
  },
  "ORCID": {
    "@context": "http://schema.org",
    "@type": "Person",
    "@id": "https://orcid.org/0000-0002-3517-337X",
    "mainEntityOfPage": "https://orcid.org/0000-0002-3517-337X",
    "givenName": "John",
    "familyName": "Jakeman",
    "address": {
      "addressCountry": "US",
      "@type": "PostalAddress"
    },
    "alumniOf": [
      {
        "@type": "Organization",
        "name": "Australian National University",
        "alternateName": "Mathematics",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "RINGGOLD",
          "value": "2219"
        }
      },
      {
        "@type": "Organization",
        "name": "Australian National University",
        "alternateName": "Mathematics",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "ROR",
          "value": "https://ror.org/019wvm592"
        }
      }
    ],
    "affiliation": [
      {
        "@type": "Organization",
        "name": "Sandia National Laboratories",
        "alternateName": "Optimization and Uncertainty Quantification",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "RINGGOLD",
          "value": "1105"
        }
      },
      {
        "@type": "Organization",
        "name": "Sandia National Laboratories",
        "alternateName": "Optimization and Uncertainty Quantification",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "ROR",
          "value": "https://ror.org/01apwpt12"
        }
      },
      {
        "@type": "Organization",
        "name": "Sandia National Laboratories",
        "alternateName": "Optimization and Uncertainty Quantificaiton",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "ROR",
          "value": "https://ror.org/01apwpt12"
        }
      },
      {
        "@type": "Organization",
        "name": "Statistical and Applied Mathematical Sciences Institute",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "ROR",
          "value": "https://ror.org/01shctp43"
        }
      },
      {
        "@type": "Organization",
        "name": "Purdue University System",
        "alternateName": "Mathematics",
        "identifier": {
          "@type": "PropertyValue",
          "propertyID": "ROR",
          "value": "https://ror.org/05p8z3f47"
        }
      }
    ],
    "@reverse": {
      "creator": [
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.5194/egusphere-2024-2209",
          "name": "An evaluation of multi-fidelity methods for quantifying uncertainty in projections of ice-sheet mass-change",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.5194/egusphere-2024-2209"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.18174/sesmo.18678",
          "name": "Assessing convergence in global sensitivity analysis: a review of methods for assessing and monitoring convergence",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.18174/sesmo.18678"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.5194/egusphere-2024-1677",
          "name": "Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under high ice-shelf basal melt conditions",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.5194/egusphere-2024-1677"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2023047605",
          "name": "HYPERDIFFERENTIAL SENSITIVITY ANALYSIS IN THE CONTEXT OF BAYESIAN INFERENCE APPLIED TO ICE-SHEET PROBLEMS",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1615/int.j.uncertaintyquantification.2023047605"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.envsoft.2023.105825",
          "name": "PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design, and multi-fidelity uncertainty quantification and surrogate modeling",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1016/j.envsoft.2023.105825"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.cma.2023.116205",
          "name": "Multifidelity uncertainty quantification with models based on dissimilar parameters",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1016/j.cma.2023.116205"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1029/2022wr032194",
          "name": "A Decision\u2010Relevant Factor\u2010Fixing Framework: Application to Uncertainty Analysis of a High\u2010Dimensional Water Quality Model",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1029/2022wr032194"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.2514/6.2023-0917",
          "name": "Improving Bayesian networks multifidelity surrogate construction with basis adaptation",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.2514/6.2023-0917"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.2514/6.2023-1481",
          "name": "Strategies for Automation of Model Tuning in Multi-fidelity Trajectory Uncertainty Propagation",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.2514/6.2023-1481"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1109/access.2023.3284837",
          "name": "Epistemic Uncertainty-Aware Barlow Twins Reduced Order Modeling for Nonlinear Contact Problems",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1109/access.2023.3284837"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1029/2021ms002831",
          "name": "Global Sensitivity Analysis Using the Ultra\u2010Low Resolution Energy Exascale Earth System Model",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1029/2021ms002831"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1002/nme.6958",
          "name": "Adaptive experimental design for multi\u2010fidelity surrogate modeling of multi\u2010disciplinary systems",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1002/nme.6958"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1137/20m1357615",
          "name": "Risk-Adapted Optimal Experimental Design",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1137/20m1357615"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.ress.2021.108280",
          "name": "Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1016/j.ress.2021.108280"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.envsoft.2021.105290",
          "name": "Assessing the predictive impact of factor fixing with an adaptive uncertainty-based approach",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1016/j.envsoft.2021.105290"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.2514/6.2022-1099",
          "name": "Improving Multi-Model Trajectory Simulation Estimators using Model Selection and Tuning",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.2514/6.2022-1099"
          }
        },
        {
          "@type": "CreativeWork",
          "name": "Reverse-mode differentiation in arbitrary tensor network format: with application to supervised learning",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "uri",
            "value": "http://jmlr.org/papers/v23/21-0225.html"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1007/s00466-021-02042-0",
          "name": "MFNets: data efficient all-at-once learning of multifidelity surrogates as directed networks of information sources",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1007/s00466-021-02042-0"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.4208/cicp.oa-2020-0060",
          "name": "Cholesky-Based Experimental Design for Gaussian Process and Kernel-Based Emulation and Calibration",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.4208/cicp.oa-2020-0060"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.envsoft.2020.104954",
          "name": "The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1016/j.envsoft.2020.104954"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1137/20m1342859",
          "name": "Data-Driven Learning of Nonautonomous Systems",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1137/20m1342859"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2020034123",
          "name": "DEEP LEARNING OF PARAMETERIZED EQUATIONS WITH APPLICATIONS TO UNCERTAINTY QUANTIFICATION",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1615/int.j.uncertaintyquantification.2020034123"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.addma.2020.101593",
          "name": "Non-destructive simulation of node defects in additively manufactured lattice structures",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1016/j.addma.2020.101593"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1029/2020wr027721",
          "name": "Modeling Water Quality in Watersheds: From Here to the Next Generation",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1029/2020wr027721"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.jcp.2020.109518",
          "name": "Optimal experimental design for prediction based on push-forward probability measures",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1016/j.jcp.2020.109518"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.jcp.2020.109257",
          "name": "A generalized approximate control variate framework for multifidelity uncertainty quantification",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1016/j.jcp.2020.109257"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1002/nme.6268",
          "name": "Adaptive multi\u2010index collocation for uncertainty quantification and sensitivity analysis",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1002/nme.6268"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1615/jmachlearnmodelcomput.2020035155",
          "name": "A SURVEY OF CONSTRAINED GAUSSIAN PROCESS REGRESSION: APPROACHES AND IMPLEMENTATION CHALLENGES",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1615/jmachlearnmodelcomput.2020035155"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2020032978",
          "name": "MFNets: MULTI-FIDELITY DATA-DRIVEN NETWORKS FOR BAYESIAN LEARNING AND PREDICTION",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1615/int.j.uncertaintyquantification.2020032978"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.envsoft.2019.07.007",
          "name": "Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1016/j.envsoft.2019.07.007"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.cma.2019.03.049",
          "name": "Polynomial chaos expansions for dependent random variables",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1016/j.cma.2019.03.049"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-85064648323"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.2514/6.2019-0722",
          "name": "Recent advancements in multilevel-multifidelity techniques for forward UQ in the DARPA sequoia project",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.2514/6.2019-0722"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-85068997543"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.jcp.2018.08.010",
          "name": "Gradient-based optimization for regression in the functional tensor-train format",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1016/j.jcp.2018.08.010"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-85052290013"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.cma.2018.04.009",
          "name": "Generation and application of multivariate polynomial quadrature rules",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-85046963014"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1016/j.cma.2018.04.009"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1007/978-981-10-7811-8_15",
          "name": "An Overview of Methods to Identify and Manage Uncertainty for Modelling Problems in the Water\u2013Environment\u2013Agriculture Cross-Sector",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1007/978-981-10-7811-8_15"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1137/16m1087229",
          "name": "Combining push-forward measures and bayes' rule to construct consistent solutions to stochastic inverse problems",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1137/16m1087229"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-85046818004"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1137/17m112590x",
          "name": "Compressed sensing with sparse corruptions: Fault-tolerant sparse collocation approximations",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1137/17m112590x"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-85058213189"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1137/18m1181675",
          "name": "Convergence of probability densities using approximate models for forward and inverse problems in uncertainty quantification",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1137/18m1181675"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-85056128186"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "name": "Multilevel-multifidelity approaches for forward uq in the DARPA SEQUOIA project",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "eid",
            "value": "2-s2.0-85044335981"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1115/1.4037457",
          "name": "Optimal experimental design using a consistent Bayesian approach",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-85047052602"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1115/1.4037457"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2018026902",
          "name": "TIME AND FREQUENCY DOMAIN METHODS FOR BASIS SELECTION IN RANDOM LINEAR DYNAMICAL SYSTEMS",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1615/int.j.uncertaintyquantification.2018026902"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.2514/6.2017-1327",
          "name": "Scalable Environment for Quantification of Uncertainty and Optimization in Industrial Applications (SEQUOIA)",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.2514/6.2017-1327"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1090/mcom/3192",
          "name": "A christoffel function weighted least squares algorithm for collocation approximations",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-85014451167"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1090/mcom/3192"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1137/16m1063885",
          "name": "A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-85021842585"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1137/16m1063885"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.jcp.2015.02.025",
          "name": "Enhancing \u21131-minimization estimates of polynomial chaos expansions using basis selection",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-84924093639"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1016/j.jcp.2015.02.025"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.jcp.2014.09.014",
          "name": "Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-84907736357"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1016/j.jcp.2014.09.014"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1137/140970100",
          "name": "Local polynomial chaos expansion for linear differential equations with high dimensional random inputs",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1137/140970100"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-84923871286"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.2514/6.2015-0500",
          "name": "Overview of selected DOE/NNSA predictive science initiatives: The predictive science academic alliance program and the DAKOTA project",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-84980385771"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.2514/6.2015-0500"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1137/140966368",
          "name": "Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1137/140966368"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-84919625344"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "name": "Practical identifiability analysis of environmental models",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "eid",
            "value": "2-s2.0-84911927464"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1007/978-3-642-31703-3-9",
          "name": "Local and dimension adaptive stochastic collocation for uncertainty quantification",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1007/978-3-642-31703-3-9"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-84874430506"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.jcp.2013.02.035",
          "name": "Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-84875802025"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1016/j.jcp.2013.02.035"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1007/978-3-642-31703-3_9",
          "name": "Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "doi",
            "value": "10.1007/978-3-642-31703-3_9"
          }
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.jcp.2011.02.022",
          "name": "Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1016/j.jcp.2011.02.022"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-79952898773"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1007/s10236-010-0312-4",
          "name": "Towards spatially distributed quantitative assessment of tsunami inundation models",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1007/s10236-010-0312-4"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-77958103880"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "@id": "https://doi.org/10.1016/j.jcp.2010.03.003",
          "name": "Numerical approach for quantification of epistemic uncertainty",
          "identifier": [
            {
              "@type": "PropertyValue",
              "propertyID": "eid",
              "value": "2-s2.0-77951620321"
            },
            {
              "@type": "PropertyValue",
              "propertyID": "doi",
              "value": "10.1016/j.jcp.2010.03.003"
            }
          ]
        },
        {
          "@type": "CreativeWork",
          "name": "Stochastic galerkin and collocation methods for quantifying uncertainty in differential equations: A review",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "eid",
            "value": "2-s2.0-84896692798"
          }
        },
        {
          "@type": "CreativeWork",
          "name": "Inundation modelling of the December 2004 Indian ocean tsunami",
          "identifier": {
            "@type": "PropertyValue",
            "propertyID": "eid",
            "value": "2-s2.0-80052922543"
          }
        }
      ]
    },
    "url": "https://quantifying-uncertainty.com/",
    "identifier": {
      "@type": "PropertyValue",
      "propertyID": "Scopus Author ID",
      "value": "35758908600"
    }
   }
   }
}
}

Latest revision as of 21:30, 30 August 2024

{

 "OpenAlex": {
   "id": "https://openalex.org/A5084145417",
   "orcid": "https://orcid.org/0000-0002-3517-337X",
   "display_name": "John Jakeman",
   "display_name_alternatives": [
     "John Davis Jakeman",
     "J. Jakeman",
     "John Jakeman",
     "John D. Jakeman",
     "J. D. Jakeman"
   ],
   "works_count": 218,
   "cited_by_count": 2469,
   "summary_stats": {
     "2yr_mean_citedness": 2.8125,
     "h_index": 24,
     "i10_index": 40
   },
   "ids": {
     "openalex": "https://openalex.org/A5084145417",
     "orcid": "https://orcid.org/0000-0002-3517-337X",
     "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=35758908600&partnerID=MN8TOARS"
   },
   "affiliations": [
     {
       "institution": {
         "id": "https://openalex.org/I4210104735",
         "ror": "https://ror.org/01apwpt12",
         "display_name": "Sandia National Laboratories",
         "country_code": "US",
         "type": "facility",
         "lineage": [
           "https://openalex.org/I1330989302",
           "https://openalex.org/I198811213",
           "https://openalex.org/I4210104735"
         ]
       },
       "years": [
         2024,
         2023,
         2022,
         2021,
         2020,
         2019,
         2018,
         2017,
         2016,
         2015
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I192454743",
         "ror": "https://ror.org/058m7ey48",
         "display_name": "Sandia National Laboratories California",
         "country_code": "US",
         "type": "facility",
         "lineage": [
           "https://openalex.org/I1330989302",
           "https://openalex.org/I192454743",
           "https://openalex.org/I198811213",
           "https://openalex.org/I4210104735"
         ]
       },
       "years": [
         2024,
         2023,
         2022,
         2021,
         2020,
         2019,
         2018,
         2017,
         2015,
         2014
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I52357470",
         "ror": "https://ror.org/00rs6vg23",
         "display_name": "The Ohio State University",
         "country_code": "US",
         "type": "education",
         "lineage": [
           "https://openalex.org/I52357470"
         ]
       },
       "years": [
         2020
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I219193219",
         "ror": "https://ror.org/02dqehb95",
         "display_name": "Purdue University West Lafayette",
         "country_code": "US",
         "type": "education",
         "lineage": [
           "https://openalex.org/I219193219"
         ]
       },
       "years": [
         2012
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I2801333002",
         "ror": "https://ror.org/05p8z3f47",
         "display_name": "Purdue University System",
         "country_code": "US",
         "type": "education",
         "lineage": [
           "https://openalex.org/I2801333002"
         ]
       },
       "years": [
         2011
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I118347636",
         "ror": "https://ror.org/019wvm592",
         "display_name": "Australian National University",
         "country_code": "AU",
         "type": "education",
         "lineage": [
           "https://openalex.org/I118347636"
         ]
       },
       "years": [
         2011,
         2010,
         2008,
         2006
       ]
     },
     {
       "institution": {
         "id": "https://openalex.org/I2802631561",
         "ror": "https://ror.org/00yn60108",
         "display_name": "Australian Mathematical Sciences Institute",
         "country_code": "AU",
         "type": "other",
         "lineage": [
           "https://openalex.org/I2802631561"
         ]
       },
       "years": [
         2008
       ]
     }
   ],
   "last_known_institutions": [
     {
       "id": "https://openalex.org/I192454743",
       "ror": "https://ror.org/058m7ey48",
       "display_name": "Sandia National Laboratories California",
       "country_code": "US",
       "type": "facility",
       "lineage": [
         "https://openalex.org/I1330989302",
         "https://openalex.org/I192454743",
         "https://openalex.org/I198811213",
         "https://openalex.org/I4210104735"
       ]
     }
   ],
   "topics": [
     {
       "id": "https://openalex.org/T10928",
       "display_name": "Uncertainty Quantification and Sensitivity Analysis",
       "count": 78,
       "subfield": {
         "id": "https://openalex.org/subfields/1804",
         "display_name": "Statistics, Probability and Uncertainty"
       },
       "field": {
         "id": "https://openalex.org/fields/18",
         "display_name": "Decision Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10848",
       "display_name": "Multiobjective Optimization in Evolutionary Algorithms",
       "count": 35,
       "subfield": {
         "id": "https://openalex.org/subfields/1703",
         "display_name": "Computational Theory and Mathematics"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11206",
       "display_name": "Physics-Informed Neural Networks for Scientific Computing",
       "count": 23,
       "subfield": {
         "id": "https://openalex.org/subfields/3109",
         "display_name": "Statistical and Nonlinear Physics"
       },
       "field": {
         "id": "https://openalex.org/fields/31",
         "display_name": "Physics and Astronomy"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11195",
       "display_name": "Optimization Techniques in Simulation Modeling",
       "count": 16,
       "subfield": {
         "id": "https://openalex.org/subfields/1803",
         "display_name": "Management Science and Operations Research"
       },
       "field": {
         "id": "https://openalex.org/fields/18",
         "display_name": "Decision Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12814",
       "display_name": "Gaussian Processes in Machine Learning",
       "count": 15,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10876",
       "display_name": "Process Fault Detection and Diagnosis in Industries",
       "count": 15,
       "subfield": {
         "id": "https://openalex.org/subfields/2207",
         "display_name": "Control and Systems Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10534",
       "display_name": "Structural Health Monitoring Techniques",
       "count": 14,
       "subfield": {
         "id": "https://openalex.org/subfields/2205",
         "display_name": "Civil and Structural Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11798",
       "display_name": "Experimental Design and Optimization Methods",
       "count": 11,
       "subfield": {
         "id": "https://openalex.org/subfields/1803",
         "display_name": "Management Science and Operations Research"
       },
       "field": {
         "id": "https://openalex.org/fields/18",
         "display_name": "Decision Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10320",
       "display_name": "Neural Network Fundamentals and Applications",
       "count": 10,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10644",
       "display_name": "Impacts of Climate Change on Glaciers and Water Availability",
       "count": 9,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13650",
       "display_name": "Scientific Computing and Data Analysis with Python",
       "count": 8,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13126",
       "display_name": "Theoretical and Computational Physics",
       "count": 8,
       "subfield": {
         "id": "https://openalex.org/subfields/3109",
         "display_name": "Statistical and Nonlinear Physics"
       },
       "field": {
         "id": "https://openalex.org/fields/31",
         "display_name": "Physics and Astronomy"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10894",
       "display_name": "Groundwater Flow and Transport Modeling",
       "count": 7,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11801",
       "display_name": "Advanced Techniques in Reservoir Management",
       "count": 7,
       "subfield": {
         "id": "https://openalex.org/subfields/2212",
         "display_name": "Ocean Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11405",
       "display_name": "Global Sea Level Variability and Change",
       "count": 7,
       "subfield": {
         "id": "https://openalex.org/subfields/1910",
         "display_name": "Oceanography"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11159",
       "display_name": "Design for Manufacture and Assembly in Manufacturing",
       "count": 7,
       "subfield": {
         "id": "https://openalex.org/subfields/2209",
         "display_name": "Industrial and Manufacturing Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12535",
       "display_name": "Learning with Noisy Labels in Machine Learning",
       "count": 6,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11236",
       "display_name": "System Identification Techniques",
       "count": 6,
       "subfield": {
         "id": "https://openalex.org/subfields/2207",
         "display_name": "Control and Systems Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12404",
       "display_name": "High-dimensional Integration and Quasi-Monte Carlo Methods",
       "count": 5,
       "subfield": {
         "id": "https://openalex.org/subfields/2612",
         "display_name": "Numerical Analysis"
       },
       "field": {
         "id": "https://openalex.org/fields/26",
         "display_name": "Mathematics"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10500",
       "display_name": "Theory and Applications of Compressed Sensing",
       "count": 5,
       "subfield": {
         "id": "https://openalex.org/subfields/2206",
         "display_name": "Computational Mechanics"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10339",
       "display_name": "Finite Element Methods for Fluid-Structure Interaction",
       "count": 5,
       "subfield": {
         "id": "https://openalex.org/subfields/2206",
         "display_name": "Computational Mechanics"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10688",
       "display_name": "Image Denoising Techniques and Algorithms",
       "count": 5,
       "subfield": {
         "id": "https://openalex.org/subfields/1707",
         "display_name": "Computer Vision and Pattern Recognition"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10715",
       "display_name": "Distributed Grid Computing Systems",
       "count": 5,
       "subfield": {
         "id": "https://openalex.org/subfields/1705",
         "display_name": "Computer Networks and Communications"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10763",
       "display_name": "Industry 4.0 and Digital Transformation in Manufacturing",
       "count": 4,
       "subfield": {
         "id": "https://openalex.org/subfields/2209",
         "display_name": "Industrial and Manufacturing Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11459",
       "display_name": "Arctic Sea Ice Variability and Decline",
       "count": 4,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "topic_share": [
     {
       "id": "https://openalex.org/T10928",
       "display_name": "Uncertainty Quantification and Sensitivity Analysis",
       "value": 0.0004429,
       "subfield": {
         "id": "https://openalex.org/subfields/1804",
         "display_name": "Statistics, Probability and Uncertainty"
       },
       "field": {
         "id": "https://openalex.org/fields/18",
         "display_name": "Decision Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12814",
       "display_name": "Gaussian Processes in Machine Learning",
       "value": 0.0003719,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10848",
       "display_name": "Multiobjective Optimization in Evolutionary Algorithms",
       "value": 0.0003351,
       "subfield": {
         "id": "https://openalex.org/subfields/1703",
         "display_name": "Computational Theory and Mathematics"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11206",
       "display_name": "Physics-Informed Neural Networks for Scientific Computing",
       "value": 0.0002743,
       "subfield": {
         "id": "https://openalex.org/subfields/3109",
         "display_name": "Statistical and Nonlinear Physics"
       },
       "field": {
         "id": "https://openalex.org/fields/31",
         "display_name": "Physics and Astronomy"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11798",
       "display_name": "Experimental Design and Optimization Methods",
       "value": 0.0001653,
       "subfield": {
         "id": "https://openalex.org/subfields/1803",
         "display_name": "Management Science and Operations Research"
       },
       "field": {
         "id": "https://openalex.org/fields/18",
         "display_name": "Decision Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11195",
       "display_name": "Optimization Techniques in Simulation Modeling",
       "value": 0.0001112,
       "subfield": {
         "id": "https://openalex.org/subfields/1803",
         "display_name": "Management Science and Operations Research"
       },
       "field": {
         "id": "https://openalex.org/fields/18",
         "display_name": "Decision Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12303",
       "display_name": "Tensor Decompositions and Applications in Multilinear Algebra",
       "value": 0.0001112,
       "subfield": {
         "id": "https://openalex.org/subfields/2605",
         "display_name": "Computational Mathematics"
       },
       "field": {
         "id": "https://openalex.org/fields/26",
         "display_name": "Mathematics"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12404",
       "display_name": "High-dimensional Integration and Quasi-Monte Carlo Methods",
       "value": 9.97e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2612",
         "display_name": "Numerical Analysis"
       },
       "field": {
         "id": "https://openalex.org/fields/26",
         "display_name": "Mathematics"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11612",
       "display_name": "Optimization Methods in Machine Learning",
       "value": 8.63e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12535",
       "display_name": "Learning with Noisy Labels in Machine Learning",
       "value": 7.71e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T14146",
       "display_name": "Impact of Tsunami on Structures and Infrastructure",
       "value": 6.96e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2205",
         "display_name": "Civil and Structural Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13141",
       "display_name": "Multivariate Analysis in Statistical Research",
       "value": 6.52e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2613",
         "display_name": "Statistics and Probability"
       },
       "field": {
         "id": "https://openalex.org/fields/26",
         "display_name": "Mathematics"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13650",
       "display_name": "Scientific Computing and Data Analysis with Python",
       "value": 5.5e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1702",
         "display_name": "Artificial Intelligence"
       },
       "field": {
         "id": "https://openalex.org/fields/17",
         "display_name": "Computer Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T13126",
       "display_name": "Theoretical and Computational Physics",
       "value": 4.97e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/3109",
         "display_name": "Statistical and Nonlinear Physics"
       },
       "field": {
         "id": "https://openalex.org/fields/31",
         "display_name": "Physics and Astronomy"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10534",
       "display_name": "Structural Health Monitoring Techniques",
       "value": 4.81e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2205",
         "display_name": "Civil and Structural Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10763",
       "display_name": "Industry 4.0 and Digital Transformation in Manufacturing",
       "value": 4.74e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2209",
         "display_name": "Industrial and Manufacturing Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10876",
       "display_name": "Process Fault Detection and Diagnosis in Industries",
       "value": 4.59e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2207",
         "display_name": "Control and Systems Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10500",
       "display_name": "Theory and Applications of Compressed Sensing",
       "value": 4.47e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2206",
         "display_name": "Computational Mechanics"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11413",
       "display_name": "Robust Optimization for Risk Management and Finance",
       "value": 4.29e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1803",
         "display_name": "Management Science and Operations Research"
       },
       "field": {
         "id": "https://openalex.org/fields/18",
         "display_name": "Decision Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/2",
         "display_name": "Social Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12696",
       "display_name": "Icing Mitigation Techniques for Wind Turbines and Aircraft",
       "value": 4.02e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2202",
         "display_name": "Aerospace Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10894",
       "display_name": "Groundwater Flow and Transport Modeling",
       "value": 3.77e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2305",
         "display_name": "Environmental Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/23",
         "display_name": "Environmental Science"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T11236",
       "display_name": "System Identification Techniques",
       "value": 3.59e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2207",
         "display_name": "Control and Systems Engineering"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10644",
       "display_name": "Impacts of Climate Change on Glaciers and Water Availability",
       "value": 3.53e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/1902",
         "display_name": "Atmospheric Science"
       },
       "field": {
         "id": "https://openalex.org/fields/19",
         "display_name": "Earth and Planetary Sciences"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T12056",
       "display_name": "Bayesian Monte Carlo Methods in Scientific Inference",
       "value": 3.41e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2613",
         "display_name": "Statistics and Probability"
       },
       "field": {
         "id": "https://openalex.org/fields/26",
         "display_name": "Mathematics"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     },
     {
       "id": "https://openalex.org/T10339",
       "display_name": "Finite Element Methods for Fluid-Structure Interaction",
       "value": 3.15e-05,
       "subfield": {
         "id": "https://openalex.org/subfields/2206",
         "display_name": "Computational Mechanics"
       },
       "field": {
         "id": "https://openalex.org/fields/22",
         "display_name": "Engineering"
       },
       "domain": {
         "id": "https://openalex.org/domains/3",
         "display_name": "Physical Sciences"
       }
     }
   ],
   "x_concepts": [
     {
       "id": "https://openalex.org/C41008148",
       "wikidata": "https://www.wikidata.org/wiki/Q21198",
       "display_name": "Computer science",
       "level": 0,
       "score": 95.0
     },
     {
       "id": "https://openalex.org/C33923547",
       "wikidata": "https://www.wikidata.org/wiki/Q395",
       "display_name": "Mathematics",
       "level": 0,
       "score": 73.9
     },
     {
       "id": "https://openalex.org/C105795698",
       "wikidata": "https://www.wikidata.org/wiki/Q12483",
       "display_name": "Statistics",
       "level": 1,
       "score": 53.2
     },
     {
       "id": "https://openalex.org/C121332964",
       "wikidata": "https://www.wikidata.org/wiki/Q413",
       "display_name": "Physics",
       "level": 0,
       "score": 47.2
     },
     {
       "id": "https://openalex.org/C127413603",
       "wikidata": "https://www.wikidata.org/wiki/Q11023",
       "display_name": "Engineering",
       "level": 0,
       "score": 45.9
     },
     {
       "id": "https://openalex.org/C119857082",
       "wikidata": "https://www.wikidata.org/wiki/Q2539",
       "display_name": "Machine learning",
       "level": 1,
       "score": 45.0
     },
     {
       "id": "https://openalex.org/C126255220",
       "wikidata": "https://www.wikidata.org/wiki/Q141495",
       "display_name": "Mathematical optimization",
       "level": 1,
       "score": 37.2
     },
     {
       "id": "https://openalex.org/C11413529",
       "wikidata": "https://www.wikidata.org/wiki/Q8366",
       "display_name": "Algorithm",
       "level": 1,
       "score": 36.7
     },
     {
       "id": "https://openalex.org/C154945302",
       "wikidata": "https://www.wikidata.org/wiki/Q11660",
       "display_name": "Artificial intelligence",
       "level": 1,
       "score": 36.2
     },
     {
       "id": "https://openalex.org/C62520636",
       "wikidata": "https://www.wikidata.org/wiki/Q944",
       "display_name": "Quantum mechanics",
       "level": 1,
       "score": 32.6
     },
     {
       "id": "https://openalex.org/C28826006",
       "wikidata": "https://www.wikidata.org/wiki/Q33521",
       "display_name": "Applied mathematics",
       "level": 1,
       "score": 26.6
     },
     {
       "id": "https://openalex.org/C127313418",
       "wikidata": "https://www.wikidata.org/wiki/Q1069",
       "display_name": "Geology",
       "level": 0,
       "score": 26.1
     },
     {
       "id": "https://openalex.org/C205649164",
       "wikidata": "https://www.wikidata.org/wiki/Q1071",
       "display_name": "Geography",
       "level": 0,
       "score": 25.2
     },
     {
       "id": "https://openalex.org/C134306372",
       "wikidata": "https://www.wikidata.org/wiki/Q7754",
       "display_name": "Mathematical analysis",
       "level": 1,
       "score": 24.3
     },
     {
       "id": "https://openalex.org/C162324750",
       "wikidata": "https://www.wikidata.org/wiki/Q8134",
       "display_name": "Economics",
       "level": 0,
       "score": 24.3
     },
     {
       "id": "https://openalex.org/C86803240",
       "wikidata": "https://www.wikidata.org/wiki/Q420",
       "display_name": "Biology",
       "level": 0,
       "score": 21.1
     },
     {
       "id": "https://openalex.org/C2524010",
       "wikidata": "https://www.wikidata.org/wiki/Q8087",
       "display_name": "Geometry",
       "level": 1,
       "score": 20.2
     }
   ],
   "counts_by_year": [
     {
       "year": 2024,
       "works_count": 8,
       "cited_by_count": 335
     },
     {
       "year": 2023,
       "works_count": 7,
       "cited_by_count": 456
     },
     {
       "year": 2022,
       "works_count": 28,
       "cited_by_count": 393
     },
     {
       "year": 2021,
       "works_count": 36,
       "cited_by_count": 308
     },
     {
       "year": 2020,
       "works_count": 25,
       "cited_by_count": 221
     },
     {
       "year": 2019,
       "works_count": 21,
       "cited_by_count": 169
     },
     {
       "year": 2018,
       "works_count": 19,
       "cited_by_count": 196
     },
     {
       "year": 2017,
       "works_count": 6,
       "cited_by_count": 125
     },
     {
       "year": 2016,
       "works_count": 4,
       "cited_by_count": 66
     },
     {
       "year": 2015,
       "works_count": 22,
       "cited_by_count": 71
     },
     {
       "year": 2014,
       "works_count": 10,
       "cited_by_count": 46
     },
     {
       "year": 2013,
       "works_count": 12,
       "cited_by_count": 24
     },
     {
       "year": 2012,
       "works_count": 8,
       "cited_by_count": 18
     }
   ],
   "works_api_url": "https://api.openalex.org/works?filter=author.id:A5084145417",
   "updated_date": "2024-08-20T07:34:43.821992",
   "created_date": "2023-07-21",
   "_id": "https://openalex.org/A5084145417"
 },
 "ORCID": {
   "@context": "http://schema.org",
   "@type": "Person",
   "@id": "https://orcid.org/0000-0002-3517-337X",
   "mainEntityOfPage": "https://orcid.org/0000-0002-3517-337X",
   "givenName": "John",
   "familyName": "Jakeman",
   "address": {
     "addressCountry": "US",
     "@type": "PostalAddress"
   },
   "alumniOf": [
     {
       "@type": "Organization",
       "name": "Australian National University",
       "alternateName": "Mathematics",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "2219"
       }
     },
     {
       "@type": "Organization",
       "name": "Australian National University",
       "alternateName": "Mathematics",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ROR",
         "value": "https://ror.org/019wvm592"
       }
     }
   ],
   "affiliation": [
     {
       "@type": "Organization",
       "name": "Sandia National Laboratories",
       "alternateName": "Optimization and Uncertainty Quantification",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "RINGGOLD",
         "value": "1105"
       }
     },
     {
       "@type": "Organization",
       "name": "Sandia National Laboratories",
       "alternateName": "Optimization and Uncertainty Quantification",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ROR",
         "value": "https://ror.org/01apwpt12"
       }
     },
     {
       "@type": "Organization",
       "name": "Sandia National Laboratories",
       "alternateName": "Optimization and Uncertainty Quantificaiton",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ROR",
         "value": "https://ror.org/01apwpt12"
       }
     },
     {
       "@type": "Organization",
       "name": "Statistical and Applied Mathematical Sciences Institute",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ROR",
         "value": "https://ror.org/01shctp43"
       }
     },
     {
       "@type": "Organization",
       "name": "Purdue University System",
       "alternateName": "Mathematics",
       "identifier": {
         "@type": "PropertyValue",
         "propertyID": "ROR",
         "value": "https://ror.org/05p8z3f47"
       }
     }
   ],
   "@reverse": {
     "creator": [
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.5194/egusphere-2024-2209",
         "name": "An evaluation of multi-fidelity methods for quantifying uncertainty in projections of ice-sheet mass-change",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.5194/egusphere-2024-2209"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.18174/sesmo.18678",
         "name": "Assessing convergence in global sensitivity analysis: a review of methods for assessing and monitoring convergence",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.18174/sesmo.18678"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.5194/egusphere-2024-1677",
         "name": "Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under high ice-shelf basal melt conditions",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.5194/egusphere-2024-1677"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2023047605",
         "name": "HYPERDIFFERENTIAL SENSITIVITY ANALYSIS IN THE CONTEXT OF BAYESIAN INFERENCE APPLIED TO ICE-SHEET PROBLEMS",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1615/int.j.uncertaintyquantification.2023047605"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.envsoft.2023.105825",
         "name": "PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design, and multi-fidelity uncertainty quantification and surrogate modeling",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.envsoft.2023.105825"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.cma.2023.116205",
         "name": "Multifidelity uncertainty quantification with models based on dissimilar parameters",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.cma.2023.116205"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1029/2022wr032194",
         "name": "A Decision\u2010Relevant Factor\u2010Fixing Framework: Application to Uncertainty Analysis of a High\u2010Dimensional Water Quality Model",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1029/2022wr032194"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.2514/6.2023-0917",
         "name": "Improving Bayesian networks multifidelity surrogate construction with basis adaptation",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.2514/6.2023-0917"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.2514/6.2023-1481",
         "name": "Strategies for Automation of Model Tuning in Multi-fidelity Trajectory Uncertainty Propagation",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.2514/6.2023-1481"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1109/access.2023.3284837",
         "name": "Epistemic Uncertainty-Aware Barlow Twins Reduced Order Modeling for Nonlinear Contact Problems",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1109/access.2023.3284837"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1029/2021ms002831",
         "name": "Global Sensitivity Analysis Using the Ultra\u2010Low Resolution Energy Exascale Earth System Model",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1029/2021ms002831"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1002/nme.6958",
         "name": "Adaptive experimental design for multi\u2010fidelity surrogate modeling of multi\u2010disciplinary systems",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/nme.6958"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1137/20m1357615",
         "name": "Risk-Adapted Optimal Experimental Design",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1137/20m1357615"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.ress.2021.108280",
         "name": "Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.ress.2021.108280"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.envsoft.2021.105290",
         "name": "Assessing the predictive impact of factor fixing with an adaptive uncertainty-based approach",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.envsoft.2021.105290"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.2514/6.2022-1099",
         "name": "Improving Multi-Model Trajectory Simulation Estimators using Model Selection and Tuning",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.2514/6.2022-1099"
         }
       },
       {
         "@type": "CreativeWork",
         "name": "Reverse-mode differentiation in arbitrary tensor network format: with application to supervised learning",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "uri",
           "value": "http://jmlr.org/papers/v23/21-0225.html"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s00466-021-02042-0",
         "name": "MFNets: data efficient all-at-once learning of multifidelity surrogates as directed networks of information sources",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/s00466-021-02042-0"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.4208/cicp.oa-2020-0060",
         "name": "Cholesky-Based Experimental Design for Gaussian Process and Kernel-Based Emulation and Calibration",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.4208/cicp.oa-2020-0060"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.envsoft.2020.104954",
         "name": "The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.envsoft.2020.104954"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1137/20m1342859",
         "name": "Data-Driven Learning of Nonautonomous Systems",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1137/20m1342859"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2020034123",
         "name": "DEEP LEARNING OF PARAMETERIZED EQUATIONS WITH APPLICATIONS TO UNCERTAINTY QUANTIFICATION",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1615/int.j.uncertaintyquantification.2020034123"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.addma.2020.101593",
         "name": "Non-destructive simulation of node defects in additively manufactured lattice structures",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.addma.2020.101593"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1029/2020wr027721",
         "name": "Modeling Water Quality in Watersheds: From Here to the Next Generation",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1029/2020wr027721"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jcp.2020.109518",
         "name": "Optimal experimental design for prediction based on push-forward probability measures",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.jcp.2020.109518"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jcp.2020.109257",
         "name": "A generalized approximate control variate framework for multifidelity uncertainty quantification",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.jcp.2020.109257"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1002/nme.6268",
         "name": "Adaptive multi\u2010index collocation for uncertainty quantification and sensitivity analysis",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1002/nme.6268"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1615/jmachlearnmodelcomput.2020035155",
         "name": "A SURVEY OF CONSTRAINED GAUSSIAN PROCESS REGRESSION: APPROACHES AND IMPLEMENTATION CHALLENGES",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1615/jmachlearnmodelcomput.2020035155"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2020032978",
         "name": "MFNets: MULTI-FIDELITY DATA-DRIVEN NETWORKS FOR BAYESIAN LEARNING AND PREDICTION",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1615/int.j.uncertaintyquantification.2020032978"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.envsoft.2019.07.007",
         "name": "Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1016/j.envsoft.2019.07.007"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.cma.2019.03.049",
         "name": "Polynomial chaos expansions for dependent random variables",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.cma.2019.03.049"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85064648323"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.2514/6.2019-0722",
         "name": "Recent advancements in multilevel-multifidelity techniques for forward UQ in the DARPA sequoia project",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.2514/6.2019-0722"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85068997543"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jcp.2018.08.010",
         "name": "Gradient-based optimization for regression in the functional tensor-train format",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.jcp.2018.08.010"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85052290013"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.cma.2018.04.009",
         "name": "Generation and application of multivariate polynomial quadrature rules",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85046963014"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.cma.2018.04.009"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/978-981-10-7811-8_15",
         "name": "An Overview of Methods to Identify and Manage Uncertainty for Modelling Problems in the Water\u2013Environment\u2013Agriculture Cross-Sector",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/978-981-10-7811-8_15"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1137/16m1087229",
         "name": "Combining push-forward measures and bayes' rule to construct consistent solutions to stochastic inverse problems",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1137/16m1087229"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85046818004"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1137/17m112590x",
         "name": "Compressed sensing with sparse corruptions: Fault-tolerant sparse collocation approximations",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1137/17m112590x"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85058213189"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1137/18m1181675",
         "name": "Convergence of probability densities using approximate models for forward and inverse problems in uncertainty quantification",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1137/18m1181675"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85056128186"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Multilevel-multifidelity approaches for forward uq in the DARPA SEQUOIA project",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "eid",
           "value": "2-s2.0-85044335981"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1115/1.4037457",
         "name": "Optimal experimental design using a consistent Bayesian approach",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85047052602"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1115/1.4037457"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1615/int.j.uncertaintyquantification.2018026902",
         "name": "TIME AND FREQUENCY DOMAIN METHODS FOR BASIS SELECTION IN RANDOM LINEAR DYNAMICAL SYSTEMS",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1615/int.j.uncertaintyquantification.2018026902"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.2514/6.2017-1327",
         "name": "Scalable Environment for Quantification of Uncertainty and Optimization in Industrial Applications (SEQUOIA)",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.2514/6.2017-1327"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1090/mcom/3192",
         "name": "A christoffel function weighted least squares algorithm for collocation approximations",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85014451167"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1090/mcom/3192"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1137/16m1063885",
         "name": "A generalized sampling and preconditioning scheme for sparse approximation of polynomial chaos expansions",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-85021842585"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1137/16m1063885"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jcp.2015.02.025",
         "name": "Enhancing \u21131-minimization estimates of polynomial chaos expansions using basis selection",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84924093639"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.jcp.2015.02.025"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jcp.2014.09.014",
         "name": "Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84907736357"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.jcp.2014.09.014"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1137/140970100",
         "name": "Local polynomial chaos expansion for linear differential equations with high dimensional random inputs",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1137/140970100"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84923871286"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.2514/6.2015-0500",
         "name": "Overview of selected DOE/NNSA predictive science initiatives: The predictive science academic alliance program and the DAKOTA project",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84980385771"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.2514/6.2015-0500"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1137/140966368",
         "name": "Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1137/140966368"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84919625344"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Practical identifiability analysis of environmental models",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "eid",
           "value": "2-s2.0-84911927464"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/978-3-642-31703-3-9",
         "name": "Local and dimension adaptive stochastic collocation for uncertainty quantification",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1007/978-3-642-31703-3-9"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84874430506"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jcp.2013.02.035",
         "name": "Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-84875802025"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.jcp.2013.02.035"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/978-3-642-31703-3_9",
         "name": "Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "doi",
           "value": "10.1007/978-3-642-31703-3_9"
         }
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jcp.2011.02.022",
         "name": "Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.jcp.2011.02.022"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-79952898773"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1007/s10236-010-0312-4",
         "name": "Towards spatially distributed quantitative assessment of tsunami inundation models",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1007/s10236-010-0312-4"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-77958103880"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "@id": "https://doi.org/10.1016/j.jcp.2010.03.003",
         "name": "Numerical approach for quantification of epistemic uncertainty",
         "identifier": [
           {
             "@type": "PropertyValue",
             "propertyID": "eid",
             "value": "2-s2.0-77951620321"
           },
           {
             "@type": "PropertyValue",
             "propertyID": "doi",
             "value": "10.1016/j.jcp.2010.03.003"
           }
         ]
       },
       {
         "@type": "CreativeWork",
         "name": "Stochastic galerkin and collocation methods for quantifying uncertainty in differential equations: A review",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "eid",
           "value": "2-s2.0-84896692798"
         }
       },
       {
         "@type": "CreativeWork",
         "name": "Inundation modelling of the December 2004 Indian ocean tsunami",
         "identifier": {
           "@type": "PropertyValue",
           "propertyID": "eid",
           "value": "2-s2.0-80052922543"
         }
       }
     ]
   },
   "url": "https://quantifying-uncertainty.com/",
   "identifier": {
     "@type": "PropertyValue",
     "propertyID": "Scopus Author ID",
     "value": "35758908600"
   }
 }

}