Item talk:Q141908: Difference between revisions
From geokb
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5053923666", "orcid": "https://orcid.org/0000-0001-6464-3054", "display_name": "Giles M. Foody", "display_name_alternatives": [ "G. M. Foody", "G.A. Foody", "Giles M. Foody", "G.M Foody", "G. Foody", "Glles M. Foody", "Giles Foody" ], "works_count": 392, "cited_by_count": 32419, "summary_stats": { "2yr_mean_citedness": 5.862068965517241, "h...") |
No edit summary |
||
Line 1,314: | Line 1,314: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5053923666" | "_id": "https://openalex.org/A5053923666" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0001-6464-3054", | |||
"mainEntityOfPage": "https://orcid.org/0000-0001-6464-3054", | |||
"givenName": "Giles", | |||
"familyName": "Foody", | |||
"affiliation": { | |||
"@type": "Organization", | |||
"name": "University of Nottingham", | |||
"alternateName": "Geography", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "RINGGOLD", | |||
"value": "6123" | |||
} | |||
}, | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jhydrol.2024.131512", | |||
"name": "DeepWaterFraction: A globally applicable, self-training deep learning approach for percent surface water area estimation from Landsat mission imagery", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jhydrol.2024.131512" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/geomatics4010005", | |||
"name": "Ground Truth in Classification Accuracy Assessment: Myth and Reality", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/geomatics4010005" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/10095020.2022.2100285", | |||
"name": "Assuring the quality of VGI on land use and land cover: experiences and learnings from the LandSense project", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/10095020.2022.2100285" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/15481603.2023.2217573", | |||
"name": "Regression-based surface water fraction mapping using a synthetic spectral library for monitoring small water bodies", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/15481603.2023.2217573" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1371/journal.pone.0291908", | |||
"name": "Challenges in the real world use of classification accuracy metrics: From recall and precision to the Matthews correlation coefficient", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1371/journal.pone.0291908" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs15174336", | |||
"name": "Spectral Characteristics of Beached <i>Sargassum</i> in Response to Drying and Decay over Time", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs15174336" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/lgrs.2023.3234306", | |||
"name": "Deep Feature and Domain Knowledge Fusion Network for Mapping Surface Water Bodies by Fusing Google Earth RGB and Sentinel-2 Images", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/lgrs.2023.3234306" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2023.3308902", | |||
"name": "Unmixing-Based Spatiotemporal Image Fusion Based on the Self-Trained Random Forest Regression and Residual Compensation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2023.3308902" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs14215380", | |||
"name": "Global and Local Assessment of Image Classification Quality on an Overall and Per-Class Basis without Ground Reference Data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs14215380" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/s22197672", | |||
"name": "Towards an Automated Approach for Monitoring Tree Phenology Using Vehicle Dashcams in Urban Environments", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/s22197672" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2022jg007026", | |||
"name": "The Spectral Species Concept in Living Color", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2022jg007026" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/1365-2745.13844", | |||
"name": "Making (remote) sense of lianas", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/1365-2745.13844" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/lgrs.2020.3020395", | |||
"name": "Superresolution Land Cover Mapping Using a Generative Adversarial Network", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/lgrs.2020.3020395" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2020.3041724", | |||
"name": "Object-Based Area-to-Point Regression Kriging for Pansharpening", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2020.3041724" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/rse2.197", | |||
"name": "Remote sensing liana infestation in an aseasonal tropical forest: addressing mismatch in spatial units of analyses", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/rse2.197" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs13142774", | |||
"name": "Detection of Spatial and Temporal Patterns of Liana Infestation Using Satellite-Derived Imagery", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs13142774" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijerph18147242", | |||
"name": "Seasonal SUHI Analysis Using Local Climate Zone Classification: A Case Study of Wuhan, China", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijerph18147242" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/rse2.188", | |||
"name": "Let your maps be fuzzy!\u2014Class probabilities and floristic gradients as alternatives to crisp mapping for remote sensing of vegetation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/rse2.188" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/2041-210x.13583", | |||
"name": "rasterdiv\u2014An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/2041-210x.13583" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/geb.13270", | |||
"name": "From zero to infinity: Minimum to maximum diversity of the planet by spatio\u2010parametric Rao\u2019s quadratic entropy", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/geb.13270" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1101/2021.02.09.430391", | |||
"name": "rasterdiv - an Information Theory tailored R package for measuring ecosystem heterogeneity from space: to the origin and back", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1101/2021.02.09.430391" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2020.2999943", | |||
"name": "Spatiotemporal Fusion of Land Surface Temperature Based on a Convolutional Neural Network", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2020.2999943" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs13030358", | |||
"name": "Scrutinizing Relationships between Submarine Groundwater Discharge and Upstream Areas Using Thermal Remote Sensing: A Case Study in the Northern Persian Gulf", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs13030358" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/land10010035", | |||
"name": "Comparison of Simple Averaging and Latent Class Modeling to Estimate the Area of Land Cover in the Presence of Reference Data Variability", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/land10010035" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2020.2996064", | |||
"name": "Iterative Training Sample Expansion to Increase and Balance the Accuracy of Land Classification From VHR Imagery", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2020.2996064" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/su12239834", | |||
"name": "Investigating the Potential of Radar Interferometry for Monitoring Rural Artisanal Cobalt Mines in the Democratic Republic of the Congo", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/su12239834" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1126/science.aay4490", | |||
"name": "Active restoration accelerates the carbon recovery of human-modified tropical forests", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1126/science.aay4490" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs12071186", | |||
"name": "Use of Automated Change Detection and VGI Sources for Identifying and Validating Urban Land Use Change", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs12071186" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs12030503", | |||
"name": "Spatio-Temporal Sub-Pixel Land Cover Mapping of Remote Sensing Imagery Using Spatial Distribution Information From Same-Class Pixels", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs12030503" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/13658816.2019.1593422", | |||
"name": "Crowdsourced geospatial data quality: challenges and future directions", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/13658816.2019.1593422" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/lgrs.2019.2894805", | |||
"name": "Optimal Endmember-Based Super-Resolution Land Cover Mapping", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/lgrs.2019.2894805" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2018wr024136", | |||
"name": "Measuring River Wetted Width From Remotely Sensed Imagery at the Subpixel Scale With a Deep Convolutional Neural Network", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2018wr024136" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2019.2894773", | |||
"name": "Spatial\u2013Temporal Super-Resolution Land Cover Mapping With a Local Spatial\u2013Temporal Dependence Model", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2019.2894773" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/2150704x.2019.1587196", | |||
"name": "Super-resolution land cover mapping by deep learning", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/2150704x.2019.1587196" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.gloenvcha.2019.01.004", | |||
"name": "Exploring temporality in socio-ecological resilience through experiences of the 2015\u201316 El Ni\u00f1o across the Tropics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.gloenvcha.2019.01.004" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs11030266", | |||
"name": "Earth Observation and Machine Learning to Meet Sustainable Development Goal 8.7: Mapping Sites Associated with Slavery from Space", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs11030266" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/2041-210x.12941", | |||
"name": "Measuring \u03b2\u2010diversity by remote sensing: A challenge for biodiversity monitoring", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/2041-210x.12941" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijgi7030080", | |||
"name": "Increasing the Accuracy of Crowdsourced Information on Land Cover via a Voting Procedure Weighted by Information Inferred from the Contributed Data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijgi7030080" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecolind.2017.09.055", | |||
"name": "Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity study", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecolind.2017.09.055" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85036478630" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.isprsjprs.2018.02.012", | |||
"name": "Slavery from Space: Demonstrating the role for satellite remote sensing to inform evidence-based action related to UN SDG number 8", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.isprsjprs.2018.02.012" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85042604549" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2018.05.010", | |||
"name": "Spatial-temporal fraction map fusion with multi-scale remotely sensed images", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85047057538" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2018.05.010" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2017.11.024", | |||
"name": "Supervised methods of image segmentation accuracy assessment in land cover mapping", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2017.11.024" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85037527926" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2018.04.014", | |||
"name": "Using volunteered geographic information (VGI) in design-based statistical inference for area estimation and accuracy assessment of land cover", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85046169385" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2018.04.014" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs9111148", | |||
"name": "Impervious Surface Change Mapping with an Uncertainty-Based Spatial-Temporal Consistency Model: A Case Study in Wuhan City Using Landsat Time-Series Datasets from 1987 to 2016", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs9111148" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs9111175", | |||
"name": "Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs9111175" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/app7090888", | |||
"name": "Impacts of Sample Design for Validation Data on the Accuracy of Feedforward Neural Network Classification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/app7090888" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.scitotenv.2016.12.038", | |||
"name": "Anticipating species distributions: Handling sampling effort bias under a Bayesian framework", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.scitotenv.2016.12.038" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85014825767" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2017.05.011", | |||
"name": "Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2017.05.011" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85019386206" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431161.2017.1292073", | |||
"name": "Improving specific class mapping from remotely sensed data by Cost-Sensitive learning", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85028874290" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431161.2017.1292073" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/tgis.12189", | |||
"name": "The Scale of VGI in Map Production: A Perspective on European National Mapping Agencies", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85011660628" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/tgis.12189" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2016.12.017", | |||
"name": "Using mixed objects in the training of object-based image classifications", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85008210901" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2016.12.017" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijgi5110199", | |||
"name": "The Sensitivity of Mapping Methods to Reference Data Quality: Training Supervised Image Classifications with Imperfect Reference Data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijgi5110199" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijgi5050064", | |||
"name": "Investigating the Feasibility of Geo-Tagged Photographs as Sources of Land Cover Input Data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijgi5050064" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijgi5050055", | |||
"name": "Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijgi5050055" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2016.2528583", | |||
"name": "A superresolution land-cover change detection method using remotely sensed images with different spatial resolutions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2016.2528583" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84959933954" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.dib.2016.02.058", | |||
"name": "A virtual species set for robust and reproducible species distribution modelling tests", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84960192540" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.dib.2016.02.058" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2016.2598534", | |||
"name": "An Iterative Interpolation Deconvolution Algorithm for Superresolution Land Cover Mapping", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84983631049" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2016.2598534" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs8080642", | |||
"name": "Assessing a temporal change strategy for sub-pixel land cover change mapping from multi-scale remote sensing imagery", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84983749140" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs8080642" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/rse2.18", | |||
"name": "Earth observation archives for plant conservation: 50\u00a0years monitoring of Itigi-Sumbu thicket", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85021348063" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/rse2.18" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10707-016-0248-z", | |||
"name": "Geographically weighted evidence combination approaches for combining discordant and inconsistent volunteered geographical information", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10707-016-0248-z" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84964723119" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431161.2016.1148288", | |||
"name": "Improving super-resolution mapping through combining multiple super-resolution land-cover maps", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84978388193" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431161.2016.1148288" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2016.2527841", | |||
"name": "Learning-Based Superresolution Land Cover Mapping", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2016.2527841" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84977951529" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/rse2.9", | |||
"name": "Satellite remote sensing to monitor species diversity: potential and pitfalls", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/rse2.9" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84994559423" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/00087041.2015.1108658", | |||
"name": "Accurate attribute mapping from volunteered geographic information: Issues of volunteer quantity and quality", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/00087041.2015.1108658" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84956663590" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2015.7327053", | |||
"name": "Citizen science in support of remote sensing research", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84962599793" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2015.7327053" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/joc.4210", | |||
"name": "Crowdsourcing for climate and atmospheric sciences: Current status and future potential", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/joc.4210" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84940889436" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.scs.2015.04.007", | |||
"name": "Enhancing the spatial resolution of satellite-derived land surface temperature mapping for urban areas", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.scs.2015.04.007" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84944166820" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/ijgi4042496", | |||
"name": "Impacts of species misidentification on species distribution modeling with presence-only data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/ijgi4042496" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84952802470" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.14358/pers.81.6.451", | |||
"name": "Integrating user needs on misclassification error sensitivity into image segmentation quality assessment", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84930066941" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.14358/pers.81.6.451" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2015.7326952", | |||
"name": "The effect of mis-labeled training data on the accuracy of supervised image classification by SVM", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2015.7326952" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84962619558" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/13658816.2015.1018266", | |||
"name": "Usability of VGI for validation of land cover maps", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84938422185" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/13658816.2015.1018266" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecolecon.2015.01.003", | |||
"name": "Valuing map validation: The need for rigorous land cover map accuracy assessment in economic valuations of ecosystem services", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84921522459" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecolecon.2015.01.003" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Assessing the accuracy of volunteered geographic information derived habitat classification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84991387598" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Exploring the accuracy of crowdsourced annotations of post-disaster building damage derived from fine spatial resolution satellite sensor data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84991409016" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2014.02.015", | |||
"name": "Good practices for estimating area and assessing accuracy of land change", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2014.02.015" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84897951081" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17538947.2013.839008", | |||
"name": "Rating crowdsourced annotations: evaluating contributions of variable quality and completeness", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84902486384" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17538947.2013.839008" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431161.2014.857862", | |||
"name": "Recent developments in publishing on remote sensing", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431161.2014.857862" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84890929667" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Volunteered geographic information", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84950236173" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s12517-011-0411-7", | |||
"name": "Assessing flash flood hazard in an arid mountainous region", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84874949608" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s12517-011-0411-7" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/tgis.12033", | |||
"name": "Assessing the accuracy of volunteered geographic information arising from multiple contributors to an internet based collaborative project", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/tgis.12033" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84888860604" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecoinf.2012.04.002", | |||
"name": "Calculating landscape diversity with information-theory based indices: A GRASS GIS solution", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecoinf.2012.04.002" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84884928525" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/2150704x.2013.798708", | |||
"name": "Ground reference data error and the mis-estimation of the Area of land cover change as a function of its abundance", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/2150704x.2013.798708" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84879322724" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2012.10.031", | |||
"name": "Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84870202759" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2012.10.031" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2013.6721249", | |||
"name": "Rating the quality of post-disaster damage maps: Mapping building damage after the 2010 Haiti earthquake", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2013.6721249" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84894261226" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/498037d", | |||
"name": "Satellites: Ambition for forest initiative", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84878723784" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/498037d" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.cageo.2012.05.022", | |||
"name": "Uncertainty in ecosystem mapping by remote sensing", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.cageo.2012.05.022" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84870814570" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jag.2012.11.002", | |||
"name": "Using control data to determine the reliability of volunteered geographic information about land cover", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jag.2012.11.002" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84880321994" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/jstars.2013.2250257", | |||
"name": "Using volunteered data in land cover map validation: Mapping west African forests", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/jstars.2013.2250257" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84880301861" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2012.6351018", | |||
"name": "A contour-based pixel swapping method for super-resolution mapping", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84873166378" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2012.6351018" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/jstars.2012.2191537", | |||
"name": "Combining hopfield neural network and contouring methods to enhance super-resolution mapping", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/jstars.2012.2191537" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84869494118" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/jstars.2012.2216514", | |||
"name": "Combining pixel swapping and contouring methods to enhance super-resolution mapping", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84869504907" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/jstars.2012.2216514" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.isprsjprs.2012.03.011", | |||
"name": "Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84860520922" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.isprsjprs.2012.03.011" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/jstars.2012.2215310", | |||
"name": "Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/jstars.2012.2215310" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84869488312" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/lgrs.2011.2170810", | |||
"name": "Evaluation of envisat MERIS terrestrial chlorophyll index-based models for the estimation of terrestrial gross primary productivity", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/lgrs.2011.2170810" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84858071405" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Exploring the potential role of volunteer citizen sensors in land cover map accuracy assessment", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84975748779" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/jstars.2012.2191145", | |||
"name": "Impact of land cover patch size on the accuracy of patch area representation in HNN-based super resolution mapping", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84869429066" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/jstars.2012.2191145" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2011.2174156", | |||
"name": "Latent class modeling for site- and non-site-specific classification accuracy assessment without ground data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2011.2174156" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84863008703" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.landurbplan.2012.05.016", | |||
"name": "Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.landurbplan.2012.05.016" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84863879982" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jag.2011.06.002", | |||
"name": "Super-resolution mapping of lakes from imagery with a coarse spatial and fine temporal resolution", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84864507901" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jag.2011.06.002" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2012.6352675", | |||
"name": "Using volunteered data in land cover map validation: Mapping tropical forests across West Africa", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84873185446" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2012.6352675" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecoinf.2010.07.007", | |||
"name": "An overview of recent remote sensing and GIS based research in ecological informatics", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecoinf.2010.07.007" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79651474138" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1466-8238.2010.00605.x", | |||
"name": "Impacts of imperfect reference data on the apparent accuracy of species presence-absence models and their predictions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79953782022" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1466-8238.2010.00605.x" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Remote sensing of barley stressed with CO<inf>2</inf>and herbicide", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84868629201" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/21507040903538130", | |||
"name": "A fresh start", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79955409384" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/21507040903538130" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2010.05.003", | |||
"name": "Assessing the accuracy of land cover change with imperfect ground reference data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2010.05.003" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77955275042" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160903516119", | |||
"name": "Editorial: A new launch", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85009577047" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160903516119" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2010.5654088", | |||
"name": "Estimating terrestrial gross primary productivity with the envisat medium resolution imaging spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI)", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2010.5654088" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-78650905227" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160902887339", | |||
"name": "Estimating the relative abundance of C<inf>3</inf>and C<inf>4</inf>grasses in the Great Plains from multi-temporal MTCI data: Issues of compositing period and spatial generalizability", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77649165358" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160902887339" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2009.2039484", | |||
"name": "Feature selection for classification of hyperspectral data by SVM", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77951295936" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2009.2039484" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160902922888", | |||
"name": "Geostatistically estimated image noise is a function of variance in the underlying signal", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77951135424" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160902922888" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecoinf.2010.06.001", | |||
"name": "Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecoinf.2010.06.001" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77956878537" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Spatial entropy for the measurement of the spatial accuracy of classified remote sensing imagery", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84975746784" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2010.5649083", | |||
"name": "Super-resolution analysis for accurate mapping of land cover and land cover pattern", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-78650856186" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2010.5649083" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Super-resolution mapping of landscape objects from coarse spatial resolution imagery", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84923950843" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1117/12.865092", | |||
"name": "Super-resolution mapping using multiple observations and Hopfield neural network", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-78649741998" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1117/12.865092" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "An estimation of tropical forest biomass with a combination of JERS-1 and Landsat TM data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84879896452" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2009.03.014", | |||
"name": "Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2009.03.014" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-67349093551" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2009.5417349", | |||
"name": "Correcting estimates of land cover change and change detection accuracy for error in ground reference data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77951286015" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2009.5417349" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "On Training and Evaluation of SVM for Remote Sensing Applications", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84869498235" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160903131059", | |||
"name": "Preface: Spatial accuracy in remote sensing", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160903131059" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-70449428661" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160903130937", | |||
"name": "Sample size determination for image classification accuracy assessment and comparison", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160903130937" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-70449338714" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160902755346", | |||
"name": "The impact of imperfect ground reference data on the accuracy of land cover change estimation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-70449441439" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160902755346" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1475-4762.2009.00908.x", | |||
"name": "The nature of publishing and assessment in Geography and Environmental Studies: Evidence from the Research Assessment Exercise 2008", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1475-4762.2009.00908.x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-68749102184" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "A Look to the Future", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84949769009" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Accuracy Assessment", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84949812908" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160701758152", | |||
"name": "All change?", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160701758152" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-37249066993" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160701395203", | |||
"name": "Crop classification by support vector machine with intelligently selected training data for an operational application", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-40349110669" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160701395203" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160802029685", | |||
"name": "DEM and bathymetry estimation for mapping a tide-coordinated shoreline from fine spatial resolution satellite sensor imagery", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-48249150046" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160802029685" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160802290568", | |||
"name": "Estimating per-pixel thematic uncertainty in remote sensing classifications", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-57049119072" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160802290568" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1177/0309133308094656", | |||
"name": "GIS: Biodiversity applications", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1177/0309133308094656" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-55249092068" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160701442120", | |||
"name": "Harshness in image classification accuracy assessment", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160701442120" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-40349114181" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1177/0309133308093606", | |||
"name": "Measuring and modelling biodiversity from space", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-55249100510" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1177/0309133308093606" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/lgrs.2008.915597", | |||
"name": "Multiclass and binary SVM classification: Implications for training and classification users", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-57649140412" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/lgrs.2008.915597" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160701822115", | |||
"name": "RVM-based multi-class classification of remotely sensed data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160701822115" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-40349100592" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecoinf.2008.02.002", | |||
"name": "Refining predictions of climate change impacts on plant species distribution through the use of local statistics", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecoinf.2008.02.002" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-48749098066" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Remote Sensing Policy", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84949773559" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Remote Sensing Scale and Data Selection Issues", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84949812448" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.4135/9780857021052", | |||
"name": "The SAGE Handbook of Remote Sensing", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.4135/9780857021052" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84949780315" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecoinf.2007.03.009", | |||
"name": "Discriminating and mapping the C3 and C4 composition of grasslands in the northern Great Plains, USA", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecoinf.2007.03.009" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-34548474765" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecoinf.2007.06.001", | |||
"name": "Editorial: Ecological applications of remote sensing and GIS", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecoinf.2007.06.001" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-34548481046" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.14358/pers.73.7.841", | |||
"name": "Exploring the geostatistical method for estimating the signal-to-noise ratio of images", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.14358/pers.73.7.841" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-34447101055" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1117/12.738437", | |||
"name": "Image-based method for noise estimation in remotely sensed data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1117/12.738437" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-42449144733" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160701244872", | |||
"name": "Increasing soft classification accuracy through the use of an ensemble of classifiers", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160701244872" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-34748885521" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.0906-7590.2007.04726.x", | |||
"name": "Investigating spatial structure in specific tree species in ancient semi-natural woodland using remote sensing and marked point pattern analysis", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.0906-7590.2007.04726.x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33847229497" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160600784259", | |||
"name": "Land cover classification using multi-temporal MERIS vegetation indices", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33947423832" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160600784259" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1177/0309133307081294", | |||
"name": "Map comparison in GIS", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-34848882176" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1177/0309133307081294" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160600962566", | |||
"name": "Mapping a specific class with an ensemble of classifiers", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-34547111054" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160600962566" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecoinf.2007.04.003", | |||
"name": "Mapping specific habitats from remotely sensed imagery: Support vector machine and support vector data description based classification of coastal saltmarsh habitats", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecoinf.2007.04.003" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-34548510616" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160600981533", | |||
"name": "Modelling geometric and misregistration error in airborne sensor data to enhance change detection", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160600981533" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-34249914209" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1472-4642.2007.00344.x", | |||
"name": "Non-stationarity and local approaches to modelling the distributions of wildlife", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1472-4642.2007.00344.x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-34247354914" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2006.890414", | |||
"name": "One-class classification for mapping a specific land-cover class: SVDD classification of fenland", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33947711252" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2006.890414" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2007.4423373", | |||
"name": "Reducing the impacts of intra-class spectral variability on soft classification and its implications for super-resolution mapping", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2007.4423373" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79954572905" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2112/04-0421.1", | |||
"name": "Shoreline mapping from coarse-spatial resolution remote sensing imagery of Seberang Takir, Malaysia", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-38349058007" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2112/04-0421.1" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.14358/pers.73.8.923", | |||
"name": "Variability in soft classification prediction and its implications for sub-pixel scale change detection and super resolution mapping", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.14358/pers.73.8.923" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-34547609867" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Current Status of Uncertainty Issues in Remote Sensing and GIS", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-9144260429" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Deriving thematic uncertainty measures in remote sensing using classification outputs", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-57049142104" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160500396527", | |||
"name": "Dynamics of ENSO drought events on Sabah rainforests observed by NOAA AVHRR", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160500396527" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33747143722" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1177/0309133306071152", | |||
"name": "GIS: Health applications", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1177/0309133306071152" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33947402589" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2006.536", | |||
"name": "Impacts of class spectral variability on soft classification prediction and implications for change detection", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-34948843456" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2006.536" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1117/12.695460", | |||
"name": "Issues in training SVM classifications", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1117/12.695460" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33751438835" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160500396741", | |||
"name": "Localized soft classification for super-resolution mapping of the shoreline", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160500396741" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33747112013" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160600554348", | |||
"name": "Mapping a specific class for priority habitats monitoring from satellite sensor data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33747107396" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160600554348" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecolmodel.2005.11.007", | |||
"name": "Mapping the species richness and composition of tropical forests from remotely sensed data with neural networks", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecolmodel.2005.11.007" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33646155530" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Pattern recognition and classification of remotely sensed images by artificial neural networks", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84865785612" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Preface", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84948845495" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Remote Monitoring of the Impact of ENSO-related Drought on Sabah Rainforest Using NOAA AVHRR Middle Infrared Reflectance: Exploring Emissivity Uncertainty", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84948766907" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The evaluation and comparison of thematic maps derived from remote sensing", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84959343631" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2006.04.001", | |||
"name": "The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33745756516" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2006.04.001" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2006.03.004", | |||
"name": "Training set size requirements for the classification of a specific class", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2006.03.004" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33747610735" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/0470035269", | |||
"name": "Uncertainty in Remote Sensing and GIS", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84885532231" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/0470035269" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Uncertainty in Remote Sensing and GIS: Fundamentals", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84948760931" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10109-006-0023-z", | |||
"name": "What is the difference between two maps? A remote senser's view", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10109-006-0023-z" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33646735739" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2005.03.001", | |||
"name": "Appointment of new editorial board members", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2005.03.001" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-20144388072" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1466-822x.2005.00142.x", | |||
"name": "Clarifications on local and global data analysis", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-12444346852" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1466-822x.2005.00142.x" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1890/04-1061", | |||
"name": "Identification of specific tree species in ancient semi-natural woodland from digital aerial sensor imagery", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1890/04-1061" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-23044503721" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/igarss.2005.1526217", | |||
"name": "Increasing soft classification accuracy through the use of an ensemble of classifiers", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33745713885" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/igarss.2005.1526217" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160500254999", | |||
"name": "Interpreting image-based methods for estimating the signal-to-noise ratio", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160500254999" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33745103492" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160512331326521", | |||
"name": "Local characterization of thematic classification accuracy through spatially constrained confusion matrices", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-17144416175" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160512331326521" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160500165716", | |||
"name": "Mapping the richness and composition of British breeding birds from coarse spatial resolution satellite sensor imagery", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-27744511267" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160500165716" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160500213292", | |||
"name": "Super-resolution mapping of the waterline from remotely sensed data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33745106415" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160500213292" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/tgrs.2004.827257", | |||
"name": "A relative evaluation of multiclass image classification by support vector machines", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/tgrs.2004.827257" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-3042654673" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1191/0309133304pp407pr", | |||
"name": "GIS: Stressing the geographical", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84990370512" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1191/0309133304pp407pr" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Land cover classification by support vector machine: Towards efficient training", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-15944418297" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jhydrol.2003.12.045", | |||
"name": "Predicting locations sensitive to flash flooding in an arid environment", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jhydrol.2003.12.045" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-2342479993" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1466-822x.2004.00097.x", | |||
"name": "Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-3142751254" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1466-822x.2004.00097.x" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160310001648019", | |||
"name": "Supervised image classification by MLP and RBF neural networks with and without an exhaustively defined set of classes", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-3242759024" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160310001648019" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160310001654969", | |||
"name": "Thematic labelling from hyperspectral remotely sensed imagery: Trade-offs in image properties", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160310001654969" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-3242769079" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.14358/pers.70.5.627", | |||
"name": "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-3042661357" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.14358/pers.70.5.627" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2004.06.017", | |||
"name": "Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2004.06.017" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-4544272407" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2003.08.004", | |||
"name": "Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI-rainfall relationship", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2003.08.004" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0842306347" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Potential improvements in the characterization of forest canopy gaps caused by windthrow using fine spatial resolution multispectral data: Comparing hard and soft classification techniques", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0038209052" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s0034-4257(03)00039-7", | |||
"name": "Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0037986221" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s0034-4257(03)00039-7" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/0143116031000103853", | |||
"name": "Remote sensing of tropical forest environments: Towards the monitoring of environmental resources for sustainable development", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/0143116031000103853" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0142197746" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Spatio-temporal Response of Extreme Events on Bornean Rainforests", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0242710519" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Super-resolution mapping of the shoreline through soft classification analyses", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0242625767" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1046/j.1365-2699.2003.00887.x", | |||
"name": "Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1046/j.1365-2699.2003.00887.x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0037897270" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1191/0309133303pp345pr", | |||
"name": "Uncertainty, knowledge discovery and data mining in GIS", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0037342756" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1191/0309133303pp345pr" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Characterizing the flash flood hazards potential along the Red Sea coast of Egypt", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0036126947" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s0143-6228(02)00048-6", | |||
"name": "Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s0143-6228(02)00048-6" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0036812380" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160210163128", | |||
"name": "Exploring the utility of NOAA AVHRR middle infrared reflectance to monitor the impacts of ENSO-induced drought stress on Sabah rainforests", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160210163128" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0037059198" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160110069791", | |||
"name": "Forest regeneration on abandoned clearances in Central Amazonia", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160110069791" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0037051192" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160110109570", | |||
"name": "Hard and soft classifications by a neural network with a non-exhaustively defined set of classes", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0037144618" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160110109570" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Remote sensing of biodiversity: Using neural networks to estimate the diversity and composition of a Bornean tropical rainforest from Landsat TM data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0036031101" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s005210200017", | |||
"name": "Sharpened mapping of tropical forest biophysical properties from coarse spatial resolution satellite sensor data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0036665988" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s005210200017" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s0034-4257(01)00295-4", | |||
"name": "Status of land cover classification accuracy assessment", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0036213079" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s0034-4257(01)00295-4" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The role of soft classification techniques in the refinement of estimates of ground control point location", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0036731661" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Accuracy of image classifications. Problems in evaluating thematic maps derived from imagery", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0035037741" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160050505883", | |||
"name": "Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery: Statistical and artificial neural network approaches", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160050505883" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0035048764" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1191/030913301680193841", | |||
"name": "GIS: The accuracy of spatial data revisited", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1191/030913301680193841" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0034753302" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Land cover classification from hyperspectral remotely sensed data: An investigation of spectral, spatial and noise issues", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0035574595" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1046/j.1466-822x.2001.00248.x", | |||
"name": "Mapping the biomass of Bornean tropical rain forest from remotely sensed data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1046/j.1466-822x.2001.00248.x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0034957101" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Monitoring the magnitude of land-cover change around the southern limits of the Sahara", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0034959023" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160116869", | |||
"name": "Relationship between green leaf biomass volumetric density and ERS-2 SAR backscatter of four vegetation formations in the semi-arid zone of Israel", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160116869" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0035918545" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Remote monitoring of impacts of ENSO related drought stress on Sabah rainforests", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0035575031" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The effect of a non-exhaustively defined set of classes on neural network classifications", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0035573303" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/pl00011477", | |||
"name": "Thematic mapping from remotely sensed data with neural networks: MLP, RBF and PNN based approaches", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/pl00011477" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-1342343252" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160050110188", | |||
"name": "Assessing the ground data requirements for regional scale remote sensing of tropical forest biophysical properties", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160050110188" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0033904637" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s0378-1127(00)00284-x", | |||
"name": "Characterising windthrown gaps from fine spatial resolution remotely sensed data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s0378-1127(00)00284-x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0034666591" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160050121276", | |||
"name": "Characterizing tropical forest regeneration in Cameroon using NOAA AVHRR data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160050121276" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0033821354" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s0098-3004(99)00125-9", | |||
"name": "Estimation of sub-pixel land cover composition in the presence of untrained classes", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0034010010" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s0098-3004(99)00125-9" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1117/12.406583", | |||
"name": "General approach to assessing the value of hyperspectral imagery and its application to sensor concept evaluation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1117/12.406583" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0034505225" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Linking remote sensing, land cover and disease", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0033835012" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1023/a:1008112125526", | |||
"name": "Mapping land cover from remotely sensed data with a softened feedforward neural network classification", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1023/a:1008112125526" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0034548685" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160050121285", | |||
"name": "Mapping the regional extent of tropical forest regeneration stages in the Brazilian Legal Amazon using NOAA AVHRR data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160050121285" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0033810997" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431160050029620", | |||
"name": "The relationship between ERS-2 SAR backscatter and soil moisture: Generalization from a humid to semi-arid transect", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431160050029620" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0033909994" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s0304-3800(99)00094-0", | |||
"name": "Applications of the self-organising feature map neural network in community data analysis", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s0304-3800(99)00094-0" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0033578381" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/014311699211769", | |||
"name": "Detection of partial land cover change associated with the migration of inter-class transitional zones", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0033434022" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/014311699211769" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s101090050003", | |||
"name": "Fuzzy mapping of tropical land cover along an environmental gradient from remotely sensed data with an artificial neural network", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0013367757" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s101090050003" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The continuum of classification fuzziness in thematic mapping", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0033005338" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/014311699213055", | |||
"name": "The relationship between the biomass of cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0-5.0 m\u00b5)", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0033586413" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/014311699213055" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/014311699211192", | |||
"name": "The significance of border training patterns in classification by a feedforward neural network using back propagation learning", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0033372875" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/014311699211192" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/014311698214479", | |||
"name": "A fuzzy classification of sub-urban land cover from remotely sensed imagery", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0032552476" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/014311698214479" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Estimating biophysical properties of tropical forests using radiation reflected in middle infrared wavelengths (3.0 - 5.0 \u03bcm)", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0031625878" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Issues in training set selection and refinement for classification by a feedforward neural network", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0031642397" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/014311698214659", | |||
"name": "Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0032505168" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/014311698214659" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1117/12.326720", | |||
"name": "Soft classifications for the mapping of land cover from remotely sensed data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1117/12.326720" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0342722872" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1068/a301929", | |||
"name": "Unmixing aggregate data: estimating the social composition of enumeration districts", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1068/a301929" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0032434177" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/014311697218764", | |||
"name": "An evaluation of some factors affecting the accuracy of classification by an artificial neural network", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0031105722" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/014311697218764" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/bf01424229", | |||
"name": "Fully fuzzy supervised classification of land cover from remotely sensed imagery with an artificial neural network", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-21744459008" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/bf01424229" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/014311697218755", | |||
"name": "Log-linear modelling for the evaluation of the variables affecting the accuracy of probabilistic, fuzzy and neural network classifications", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0031106423" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/014311697218755" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1023/a:1009775619936", | |||
"name": "Mapping tropical forest fractional cover from coarse spatial resolution remote sensing imagery", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1023/a:1009775619936" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0030984130" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/014311697218845", | |||
"name": "Non-linear mixture modelling without end-members using an artificial neural network", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0031105570" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/014311697218845" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/014311697219024", | |||
"name": "Observations on the relationship between SIR-C radar backscatter and the biomass of regenerating tropical forests", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0031077818" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/014311697219024" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169608949003", | |||
"name": "An assessment of radiance in landsat tm middle and thermal infrared wavebands for the detection of tropical forest regeneration", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169608949003" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0029728982" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169608948706", | |||
"name": "Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169608948706" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0030135691" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169608948777", | |||
"name": "Classification of tropical forest classes from landsat tm data.", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169608948777" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0030208643" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Coupling remotely sensed data to an ecosystem simulation model - An example involving a coniferous plantation in upland Wales", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0008743113" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/07038992.1996.10874666", | |||
"name": "Estimation of the Areal Extent of Land Cover Classes that Only Occur at a Sub-Pixel Level", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0030392042" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/07038992.1996.10874666" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Fuzzy modelling of vegetation from remotely sensed imagery", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0002780271" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s0034-4257(95)00196-4", | |||
"name": "Identifying terrestrial carbon sinks: Classification of successional stages in regenerating tropical forest from Landsat TM data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0029769688" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s0034-4257(95)00196-4" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/s0167-8655(96)00095-5", | |||
"name": "Incorporating mixed pixels in the training, allocation and testing stages of supervised classifications", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0030292025" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/s0167-8655(96)00095-5" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Relating the land-cover composition of mixed pixels to artificial neural network classification output", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0029750642" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169608948707", | |||
"name": "Relations between tropical forest biophysical properties and data acquired in AVHRR channels 1-5", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0030136457" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169608948707" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/10106049609354519", | |||
"name": "Representation of ecological trends in remotely sensed data: Relating the probability of class membership to canopy composition and a vegetation ordination", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0030456229" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/10106049609354519" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The mystery of the missing carbon", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-6244293672" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The mystery of the missing carbon", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0029750042" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/bimj.4710380206", | |||
"name": "Weighting class importance in agricultural crop classification from remotely sensed data with an artificial neural network", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0030526510" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/bimj.4710380206" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/0924-2716(95)90116-v", | |||
"name": "Cross-entropy for the evaluation of the accuracy of a fuzzy land cover classification with fuzzy ground data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/0924-2716(95)90116-v" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0028982899" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/bf00807952", | |||
"name": "Estimation of land coverage from a land cover classification derived from remotely sensed data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/bf00807952" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0028981335" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/02693799508902054", | |||
"name": "Land cover classification by an artificial neural network with ancillary information", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/02693799508902054" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0029478734" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/0198-9715(95)00025-9", | |||
"name": "Mapping despoiled land cover from Landsat thematic mapper imagery", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/0198-9715(95)00025-9" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0029415395" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The effect of sampling on the species-area curve", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0028572837" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169508954507", | |||
"name": "The effect of training set size and composition on artificial neural network classification", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0029473455" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169508954507" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/bf01414080", | |||
"name": "Training pattern replication and weighted class allocation in artificial neural network classification", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0346256369" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/bf01414080" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169508954396", | |||
"name": "Using prior knowledge in artificial neural network classification with a minimal training set", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0028874010" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169508954396" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Classification of remotely sensed data by an artificial neural network: issues related to training data characteristics", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0028560774" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169408954289", | |||
"name": "Crop classification from c-band polarimetric radar data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169408954289" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0028552715" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Environmental remote sensing from regional to global scales", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85041151672" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2307/2845527", | |||
"name": "Estimation of tropical forest extent and regenerative stage using remotely sensed data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2307/2845527" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0028163167" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/07038992.1994.10874582", | |||
"name": "Multi-source image classification II: An empirical comparison of evidential reasoning and neural network approaches", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/07038992.1994.10874582" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0028740098" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Ordinal-level classification of sub-pixel tropical forest cover", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0028165056" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169408954276", | |||
"name": "Separability of tropical rain-forest types in the tambopata-candamo reserved zone, peru", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0028594257" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169408954276" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169408954100", | |||
"name": "Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0028184024" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169408954100" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169308904419", | |||
"name": "Characterizing tropical secondary forests using multi-temporal landsat sensor imagery", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169308904419" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0027698706" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/ldr.3400040306", | |||
"name": "Determining the extent and spectral separability of industrially despoiled land in South Wales from satellite sensor data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/ldr.3400040306" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0027846682" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/bf00807535", | |||
"name": "Non-classificatory analysis and representation of heathland vegetation from remotely sensed imagery", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/bf00807535" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0027832861" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Using cover-type likelihoods and typicalities in a geographic information system data structure to map gradually changing environments", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0027371435" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "A fuzzy sets approach to the representation of vegetation continua from remotely sensed data: an example from lowland heath", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0026614862" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0027007203" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169108955183", | |||
"name": "Soil moisture content ground data for remote sensing investigations of agricultural regions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169108955183" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0026358111" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431169008955148", | |||
"name": "Directed ground survey for improved maximum likelihood classification of remotely sensed data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0025573157" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431169008955148" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Remote sensing of soils and vegetation in the USSR", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85040890543" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431168908903855", | |||
"name": "Analysis and representation of vegetation continua from landsat thematic mapper data for lowland heaths", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431168908903855" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0024471330" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/10106048909354218", | |||
"name": "Multi\u2010temporal airborne synthetic aperture radar data for crop classification", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0024816843" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/10106048909354218" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Some aspects of the accuracy and comparability of soil ground data collected for microwave remote sensing investigations", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0024807598" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Classification decision rule modification on the basis of information extracted from training data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0024224303" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Classification decision rule modification on the basis of information extracted from training data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0024078941" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431168808954884", | |||
"name": "Crop classification from airborne synthetic aperture radar data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0024248564" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431168808954884" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Crop classification with multi-temporal X-band SAR data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0024152048" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Crop classification with multi-temporal X-band SAR data", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0024078747" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/10106048809354161", | |||
"name": "Incorporating remotely sensed data into a GIS: The problem of classification evaluation", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/10106048809354161" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-3342892569" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431168808954989", | |||
"name": "The effects of viewing geometry on image classification", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431168808954989" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0024199256" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/10106048709354091", | |||
"name": "A method for thematic classification with synthetic aperture radar data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/10106048709354091" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84946341770" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Image classification: the spatial component.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0023482564" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431168708948700", | |||
"name": "Remote sensing letters: Radiometric balancing a comment", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431168708948700" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0023504188" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The use of Landsat TM data in a GIS for environmental monitoring.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0023471475" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/07038992.1986.10855104", | |||
"name": "An assessment of the topographic effects on sar image tone", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0022879252" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/07038992.1986.10855104" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Crop mapping with multi-feature synthetic aperture radar data ( East Anglia, UK).", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0022851525" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/07038992.1986.10855095", | |||
"name": "Land-cover mapping from synthetic aperture radar: The importance of radiometric correction", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0022927017" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/07038992.1986.10855095" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Viewing geometry effects on SAR image tone and its importance for land cover mapping.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0022850282" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "The influence of SAR viewing geometry on land cover mapping accuracy.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0022235380" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/01431168408948892", | |||
"name": "Sectoring radar images to improve land cover map accuracy", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/01431168408948892" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0021613390" | |||
} | |||
] | |||
} | |||
] | |||
}, | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "7007014233" | |||
} | |||
} | } | ||
} | } |
Latest revision as of 21:20, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5053923666", "orcid": "https://orcid.org/0000-0001-6464-3054", "display_name": "Giles M. Foody", "display_name_alternatives": [ "G. M. Foody", "G.A. Foody", "Giles M. Foody", "G.M Foody", "G. Foody", "Glles M. Foody", "Giles Foody" ], "works_count": 392, "cited_by_count": 32419, "summary_stats": { "2yr_mean_citedness": 5.862068965517241, "h_index": 82, "i10_index": 238 }, "ids": { "openalex": "https://openalex.org/A5053923666", "orcid": "https://orcid.org/0000-0001-6464-3054", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=7007014233&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I142263535", "ror": "https://ror.org/01ee9ar58", "display_name": "University of Nottingham", "country_code": "GB", "type": "education", "lineage": [ "https://openalex.org/I142263535" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I4210142203", "ror": "https://ror.org/03msk5846", "display_name": "Museum of the American Revolution", "country_code": "US", "type": "archive", "lineage": [ "https://openalex.org/I4210142203" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I4210105990", "ror": "https://ror.org/01gkn6j11", "display_name": "Institute of Geodesy and Geophysics", "country_code": "CN", "type": "facility", "lineage": [ "https://openalex.org/I19820366", "https://openalex.org/I4210105990" ] }, "years": [ 2016 ] }, { "institution": { "id": "https://openalex.org/I19820366", "ror": "https://ror.org/034t30j35", "display_name": "Chinese Academy of Sciences", "country_code": "CN", "type": "government", "lineage": [ "https://openalex.org/I19820366" ] }, "years": [ 2016 ] }, { "institution": { "id": "https://openalex.org/I91125648", "ror": "https://ror.org/04jcykh16", "display_name": "Wuhan Institute of Technology", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I91125648" ] }, "years": [ 2016 ] }, { "institution": { "id": "https://openalex.org/I3124059619", "ror": "https://ror.org/04gcegc37", "display_name": "China University of Geosciences", "country_code": "CN", "type": "education", "lineage": [ "https://openalex.org/I3124059619" ] }, "years": [ 2016 ] }, { "institution": { "id": "https://openalex.org/I4210135175", "ror": "https://ror.org/044wmmj34", "display_name": "Hefei Institute of Technology Innovation", "country_code": "CN", "type": "facility", "lineage": [ "https://openalex.org/I4210135175" ] }, "years": [ 2016 ] }, { "institution": { "id": "https://openalex.org/I43439940", "ror": "https://ror.org/01ryk1543", "display_name": "University of Southampton", "country_code": "GB", "type": "education", "lineage": [ "https://openalex.org/I43439940" ] }, "years": [ 2009, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999 ] }, { "institution": { "id": "https://openalex.org/I2801402261", "ror": "https://ror.org/037tapg39", "display_name": "Kingston College", "country_code": "GB", "type": "education", "lineage": [ "https://openalex.org/I2801402261" ] }, "years": [ 2005, 1989, 1988, 1987, 1986 ] }, { "institution": { "id": "https://openalex.org/I154570441", "ror": "https://ror.org/02t274463", "display_name": "University of California, Santa Barbara", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I154570441" ] }, "years": [ 2001 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I142263535", "ror": "https://ror.org/01ee9ar58", "display_name": "University of Nottingham", "country_code": "GB", "type": "education", "lineage": [ "https://openalex.org/I142263535" ] } ], "topics": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "count": 165, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10689", "display_name": "Hyperspectral Image Analysis and Classification", "count": 101, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "count": 66, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10757", "display_name": "Volunteered Geographic Information and Geospatial Crowdsourcing", "count": 49, "subfield": { "id": "https://openalex.org/subfields/3305", "display_name": "Geography, Planning and Development" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "count": 49, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13890", "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "count": 45, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10895", "display_name": "Species Distribution Modeling and Climate Change Impacts", "count": 41, "subfield": { "id": "https://openalex.org/subfields/2302", "display_name": "Ecological Modeling" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "count": 37, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "count": 30, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11659", "display_name": "Multispectral and Hyperspectral Image Fusion", "count": 29, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11106", "display_name": "Trajectory Data Mining and Analysis", "count": 19, "subfield": { "id": "https://openalex.org/subfields/1711", "display_name": "Signal Processing" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10005", "display_name": "Biodiversity Conservation and Ecosystem Management", "count": 19, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11880", "display_name": "Estimation of Forest Biomass and Carbon Stocks", "count": 14, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11819", "display_name": "Digital Epidemiology and Disease Surveillance", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2713", "display_name": "Epidemiology" }, "field": { "id": "https://openalex.org/fields/27", "display_name": "Medicine" }, "domain": { "id": "https://openalex.org/domains/4", "display_name": "Health Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "count": 12, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10640", "display_name": "Chemometrics in Analytical Chemistry and Food Technology", "count": 12, "subfield": { "id": "https://openalex.org/subfields/1602", "display_name": "Analytical Chemistry" }, "field": { "id": "https://openalex.org/fields/16", "display_name": "Chemistry" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10320", "display_name": "Neural Network Fundamentals and Applications", "count": 12, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10801", "display_name": "Synthetic Aperture Radar Interferometry", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10319", "display_name": "Drivers and Impacts of Tropical Deforestation", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "count": 10, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10199", "display_name": "Wildlife Ecology and Conservation Biology", "count": 9, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10766", "display_name": "Urban Heat Islands and Mitigation Strategies", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 7, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 7, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "value": 0.0011568, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10689", "display_name": "Hyperspectral Image Analysis and Classification", "value": 0.0008601, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "value": 0.0003692, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11164", "display_name": "Mapping Forests with Lidar Remote Sensing", "value": 0.0003637, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11659", "display_name": "Multispectral and Hyperspectral Image Fusion", "value": 0.0003057, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10757", "display_name": "Volunteered Geographic Information and Geospatial Crowdsourcing", "value": 0.0002981, "subfield": { "id": "https://openalex.org/subfields/3305", "display_name": "Geography, Planning and Development" }, "field": { "id": "https://openalex.org/fields/33", "display_name": "Social Sciences" }, "domain": { "id": "https://openalex.org/domains/2", "display_name": "Social Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "value": 0.0002476, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11819", "display_name": "Digital Epidemiology and Disease Surveillance", "value": 0.0001817, "subfield": { "id": "https://openalex.org/subfields/2713", "display_name": "Epidemiology" }, "field": { "id": "https://openalex.org/fields/27", "display_name": "Medicine" }, "domain": { "id": "https://openalex.org/domains/4", "display_name": "Health Sciences" } }, { "id": "https://openalex.org/T10801", "display_name": "Synthetic Aperture Radar Interferometry", "value": 0.0001584, "subfield": { "id": "https://openalex.org/subfields/2202", "display_name": "Aerospace Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13890", "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "value": 0.0001573, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10895", "display_name": "Species Distribution Modeling and Climate Change Impacts", "value": 0.0001439, "subfield": { "id": "https://openalex.org/subfields/2302", "display_name": "Ecological Modeling" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13282", "display_name": "Automatic Road Extraction from Remote Sensing Images", "value": 0.0001114, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "value": 9.75e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11704", "display_name": "Crowdsourcing for Research and Data Collection", "value": 9.09e-05, "subfield": { "id": "https://openalex.org/subfields/1706", "display_name": "Computer Science Applications" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10319", "display_name": "Drivers and Impacts of Tropical Deforestation", "value": 8.91e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11106", "display_name": "Trajectory Data Mining and Analysis", "value": 8.2e-05, "subfield": { "id": "https://openalex.org/subfields/1711", "display_name": "Signal Processing" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10766", "display_name": "Urban Heat Islands and Mitigation Strategies", "value": 7.99e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10616", "display_name": "Precision Agriculture Technologies", "value": 7.04e-05, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12157", "display_name": "Machine Learning for Mineral Prospectivity Mapping", "value": 6.79e-05, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13058", "display_name": "Land-Use Suitability Assessment Using GIS", "value": 6.67e-05, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14427", "display_name": "Hydrologic Data Management and Analysis", "value": 6.66e-05, "subfield": { "id": "https://openalex.org/subfields/1907", "display_name": "Geology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11880", "display_name": "Estimation of Forest Biomass and Carbon Stocks", "value": 6.59e-05, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "value": 6.11e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13030", "display_name": "Statistical Methods for Sensitive Survey Questions", "value": 5.89e-05, "subfield": { "id": "https://openalex.org/subfields/2613", "display_name": "Statistics and Probability" }, "field": { "id": "https://openalex.org/fields/26", "display_name": "Mathematics" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10005", "display_name": "Biodiversity Conservation and Ecosystem Management", "value": 5.88e-05, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 84.4 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 81.1 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 74.5 }, { "id": "https://openalex.org/C62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 67.3 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 65.6 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 59.2 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 58.9 }, { "id": "https://openalex.org/C154945302", "wikidata": "https://www.wikidata.org/wiki/Q11660", "display_name": "Artificial intelligence", "level": 1, "score": 55.4 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 53.6 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 44.1 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 39.8 }, { "id": "https://openalex.org/C31972630", "wikidata": "https://www.wikidata.org/wiki/Q844240", "display_name": "Computer vision", "level": 1, "score": 38.3 }, { "id": "https://openalex.org/C119857082", "wikidata": "https://www.wikidata.org/wiki/Q2539", "display_name": "Machine learning", "level": 1, "score": 31.9 }, { "id": "https://openalex.org/C105795698", "wikidata": "https://www.wikidata.org/wiki/Q12483", "display_name": "Statistics", "level": 1, "score": 29.8 }, { "id": "https://openalex.org/C120665830", "wikidata": "https://www.wikidata.org/wiki/Q14620", "display_name": "Optics", "level": 1, "score": 29.6 }, { "id": "https://openalex.org/C138885662", "wikidata": "https://www.wikidata.org/wiki/Q5891", "display_name": "Philosophy", "level": 0, "score": 29.6 }, { "id": "https://openalex.org/C58640448", "wikidata": "https://www.wikidata.org/wiki/Q42515", "display_name": "Cartography", "level": 1, "score": 28.8 }, { "id": "https://openalex.org/C15744967", "wikidata": "https://www.wikidata.org/wiki/Q9418", "display_name": "Psychology", "level": 0, "score": 26.5 }, { "id": "https://openalex.org/C124101348", "wikidata": "https://www.wikidata.org/wiki/Q172491", "display_name": "Data mining", "level": 1, "score": 26.3 }, { "id": "https://openalex.org/C147176958", "wikidata": "https://www.wikidata.org/wiki/Q77590", "display_name": "Civil engineering", "level": 1, "score": 26.3 }, { "id": "https://openalex.org/C4792198", "wikidata": "https://www.wikidata.org/wiki/Q1165944", "display_name": "Land use", "level": 2, "score": 25.5 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 25.0 }, { "id": "https://openalex.org/C2780648208", "wikidata": "https://www.wikidata.org/wiki/Q3001793", "display_name": "Land cover", "level": 3, "score": 24.2 }, { "id": "https://openalex.org/C59822182", "wikidata": "https://www.wikidata.org/wiki/Q441", "display_name": "Botany", "level": 1, "score": 24.0 }, { "id": "https://openalex.org/C199360897", "wikidata": "https://www.wikidata.org/wiki/Q9143", "display_name": "Programming language", "level": 1, "score": 24.0 } ], "counts_by_year": [ { "year": 2024, "works_count": 5, "cited_by_count": 1590 }, { "year": 2023, "works_count": 15, "cited_by_count": 2420 }, { "year": 2022, "works_count": 11, "cited_by_count": 2753 }, { "year": 2021, "works_count": 18, "cited_by_count": 2685 }, { "year": 2020, "works_count": 15, "cited_by_count": 2509 }, { "year": 2019, "works_count": 13, "cited_by_count": 2207 }, { "year": 2018, "works_count": 9, "cited_by_count": 2075 }, { "year": 2017, "works_count": 11, "cited_by_count": 1869 }, { "year": 2016, "works_count": 15, "cited_by_count": 1706 }, { "year": 2015, "works_count": 16, "cited_by_count": 1660 }, { "year": 2014, "works_count": 6, "cited_by_count": 1600 }, { "year": 2013, "works_count": 16, "cited_by_count": 1357 }, { "year": 2012, "works_count": 12, "cited_by_count": 1310 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5053923666", "updated_date": "2024-08-23T20:50:43.462628", "created_date": "2023-07-21", "_id": "https://openalex.org/A5053923666" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0001-6464-3054", "mainEntityOfPage": "https://orcid.org/0000-0001-6464-3054", "givenName": "Giles", "familyName": "Foody", "affiliation": { "@type": "Organization", "name": "University of Nottingham", "alternateName": "Geography", "identifier": { "@type": "PropertyValue", "propertyID": "RINGGOLD", "value": "6123" } }, "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2024.131512", "name": "DeepWaterFraction: A globally applicable, self-training deep learning approach for percent surface water area estimation from Landsat mission imagery", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2024.131512" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/geomatics4010005", "name": "Ground Truth in Classification Accuracy Assessment: Myth and Reality", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/geomatics4010005" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10095020.2022.2100285", "name": "Assuring the quality of VGI on land use and land cover: experiences and learnings from the LandSense project", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10095020.2022.2100285" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/15481603.2023.2217573", "name": "Regression-based surface water fraction mapping using a synthetic spectral library for monitoring small water bodies", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/15481603.2023.2217573" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1371/journal.pone.0291908", "name": "Challenges in the real world use of classification accuracy metrics: From recall and precision to the Matthews correlation coefficient", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1371/journal.pone.0291908" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs15174336", "name": "Spectral Characteristics of Beached Sargassum in Response to Drying and Decay over Time", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs15174336" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2023.3234306", "name": "Deep Feature and Domain Knowledge Fusion Network for Mapping Surface Water Bodies by Fusing Google Earth RGB and Sentinel-2 Images", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2023.3234306" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2023.3308902", "name": "Unmixing-Based Spatiotemporal Image Fusion Based on the Self-Trained Random Forest Regression and Residual Compensation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2023.3308902" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs14215380", "name": "Global and Local Assessment of Image Classification Quality on an Overall and Per-Class Basis without Ground Reference Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs14215380" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/s22197672", "name": "Towards an Automated Approach for Monitoring Tree Phenology Using Vehicle Dashcams in Urban Environments", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/s22197672" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2022jg007026", "name": "The Spectral Species Concept in Living Color", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2022jg007026" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1365-2745.13844", "name": "Making (remote) sense of lianas", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1365-2745.13844" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2020.3020395", "name": "Superresolution Land Cover Mapping Using a Generative Adversarial Network", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2020.3020395" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2020.3041724", "name": "Object-Based Area-to-Point Regression Kriging for Pansharpening", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2020.3041724" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/rse2.197", "name": "Remote sensing liana infestation in an aseasonal tropical forest: addressing mismatch in spatial units of analyses", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/rse2.197" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs13142774", "name": "Detection of Spatial and Temporal Patterns of Liana Infestation Using Satellite-Derived Imagery", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs13142774" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijerph18147242", "name": "Seasonal SUHI Analysis Using Local Climate Zone Classification: A Case Study of Wuhan, China", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijerph18147242" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/rse2.188", "name": "Let your maps be fuzzy!\u2014Class probabilities and floristic gradients as alternatives to crisp mapping for remote sensing of vegetation", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/rse2.188" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/2041-210x.13583", "name": "rasterdiv\u2014An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/2041-210x.13583" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/geb.13270", "name": "From zero to infinity: Minimum to maximum diversity of the planet by spatio\u2010parametric Rao\u2019s quadratic entropy", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/geb.13270" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1101/2021.02.09.430391", "name": "rasterdiv - an Information Theory tailored R package for measuring ecosystem heterogeneity from space: to the origin and back", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1101/2021.02.09.430391" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2020.2999943", "name": "Spatiotemporal Fusion of Land Surface Temperature Based on a Convolutional Neural Network", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2020.2999943" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs13030358", "name": "Scrutinizing Relationships between Submarine Groundwater Discharge and Upstream Areas Using Thermal Remote Sensing: A Case Study in the Northern Persian Gulf", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs13030358" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/land10010035", "name": "Comparison of Simple Averaging and Latent Class Modeling to Estimate the Area of Land Cover in the Presence of Reference Data Variability", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/land10010035" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2020.2996064", "name": "Iterative Training Sample Expansion to Increase and Balance the Accuracy of Land Classification From VHR Imagery", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2020.2996064" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/su12239834", "name": "Investigating the Potential of Radar Interferometry for Monitoring Rural Artisanal Cobalt Mines in the Democratic Republic of the Congo", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/su12239834" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1126/science.aay4490", "name": "Active restoration accelerates the carbon recovery of human-modified tropical forests", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1126/science.aay4490" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs12071186", "name": "Use of Automated Change Detection and VGI Sources for Identifying and Validating Urban Land Use Change", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs12071186" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs12030503", "name": "Spatio-Temporal Sub-Pixel Land Cover Mapping of Remote Sensing Imagery Using Spatial Distribution Information From Same-Class Pixels", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs12030503" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/13658816.2019.1593422", "name": "Crowdsourced geospatial data quality: challenges and future directions", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/13658816.2019.1593422" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2019.2894805", "name": "Optimal Endmember-Based Super-Resolution Land Cover Mapping", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2019.2894805" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2018wr024136", "name": "Measuring River Wetted Width From Remotely Sensed Imagery at the Subpixel Scale With a Deep Convolutional Neural Network", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018wr024136" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2019.2894773", "name": "Spatial\u2013Temporal Super-Resolution Land Cover Mapping With a Local Spatial\u2013Temporal Dependence Model", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2019.2894773" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/2150704x.2019.1587196", "name": "Super-resolution land cover mapping by deep learning", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/2150704x.2019.1587196" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.gloenvcha.2019.01.004", "name": "Exploring temporality in socio-ecological resilience through experiences of the 2015\u201316 El Ni\u00f1o across the Tropics", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.gloenvcha.2019.01.004" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs11030266", "name": "Earth Observation and Machine Learning to Meet Sustainable Development Goal 8.7: Mapping Sites Associated with Slavery from Space", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs11030266" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/2041-210x.12941", "name": "Measuring \u03b2\u2010diversity by remote sensing: A challenge for biodiversity monitoring", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/2041-210x.12941" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi7030080", "name": "Increasing the Accuracy of Crowdsourced Information on Land Cover via a Voting Procedure Weighted by Information Inferred from the Contributed Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi7030080" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecolind.2017.09.055", "name": "Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity study", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecolind.2017.09.055" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85036478630" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.isprsjprs.2018.02.012", "name": "Slavery from Space: Demonstrating the role for satellite remote sensing to inform evidence-based action related to UN SDG number 8", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.isprsjprs.2018.02.012" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85042604549" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2018.05.010", "name": "Spatial-temporal fraction map fusion with multi-scale remotely sensed images", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85047057538" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2018.05.010" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2017.11.024", "name": "Supervised methods of image segmentation accuracy assessment in land cover mapping", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2017.11.024" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85037527926" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2018.04.014", "name": "Using volunteered geographic information (VGI) in design-based statistical inference for area estimation and accuracy assessment of land cover", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85046169385" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2018.04.014" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs9111148", "name": "Impervious Surface Change Mapping with an Uncertainty-Based Spatial-Temporal Consistency Model: A Case Study in Wuhan City Using Landsat Time-Series Datasets from 1987 to 2016", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs9111148" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs9111175", "name": "Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs9111175" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/app7090888", "name": "Impacts of Sample Design for Validation Data on the Accuracy of Feedforward Neural Network Classification", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/app7090888" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.scitotenv.2016.12.038", "name": "Anticipating species distributions: Handling sampling effort bias under a Bayesian framework", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2016.12.038" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85014825767" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2017.05.011", "name": "Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2017.05.011" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85019386206" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431161.2017.1292073", "name": "Improving specific class mapping from remotely sensed data by Cost-Sensitive learning", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85028874290" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2017.1292073" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/tgis.12189", "name": "The Scale of VGI in Map Production: A Perspective on European National Mapping Agencies", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85011660628" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/tgis.12189" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2016.12.017", "name": "Using mixed objects in the training of object-based image classifications", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85008210901" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2016.12.017" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi5110199", "name": "The Sensitivity of Mapping Methods to Reference Data Quality: Training Supervised Image Classifications with Imperfect Reference Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi5110199" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi5050064", "name": "Investigating the Feasibility of Geo-Tagged Photographs as Sources of Land Cover Input Data", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi5050064" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi5050055", "name": "Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi5050055" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2016.2528583", "name": "A superresolution land-cover change detection method using remotely sensed images with different spatial resolutions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2016.2528583" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84959933954" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.dib.2016.02.058", "name": "A virtual species set for robust and reproducible species distribution modelling tests", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84960192540" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.dib.2016.02.058" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2016.2598534", "name": "An Iterative Interpolation Deconvolution Algorithm for Superresolution Land Cover Mapping", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84983631049" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2016.2598534" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs8080642", "name": "Assessing a temporal change strategy for sub-pixel land cover change mapping from multi-scale remote sensing imagery", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84983749140" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs8080642" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/rse2.18", "name": "Earth observation archives for plant conservation: 50\u00a0years monitoring of Itigi-Sumbu thicket", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85021348063" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/rse2.18" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10707-016-0248-z", "name": "Geographically weighted evidence combination approaches for combining discordant and inconsistent volunteered geographical information", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10707-016-0248-z" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84964723119" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431161.2016.1148288", "name": "Improving super-resolution mapping through combining multiple super-resolution land-cover maps", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84978388193" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2016.1148288" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2016.2527841", "name": "Learning-Based Superresolution Land Cover Mapping", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2016.2527841" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84977951529" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/rse2.9", "name": "Satellite remote sensing to monitor species diversity: potential and pitfalls", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/rse2.9" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84994559423" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/00087041.2015.1108658", "name": "Accurate attribute mapping from volunteered geographic information: Issues of volunteer quantity and quality", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/00087041.2015.1108658" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84956663590" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2015.7327053", "name": "Citizen science in support of remote sensing research", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84962599793" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2015.7327053" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/joc.4210", "name": "Crowdsourcing for climate and atmospheric sciences: Current status and future potential", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/joc.4210" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84940889436" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.scs.2015.04.007", "name": "Enhancing the spatial resolution of satellite-derived land surface temperature mapping for urban areas", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scs.2015.04.007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84944166820" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/ijgi4042496", "name": "Impacts of species misidentification on species distribution modeling with presence-only data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/ijgi4042496" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84952802470" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.14358/pers.81.6.451", "name": "Integrating user needs on misclassification error sensitivity into image segmentation quality assessment", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84930066941" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.14358/pers.81.6.451" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2015.7326952", "name": "The effect of mis-labeled training data on the accuracy of supervised image classification by SVM", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2015.7326952" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84962619558" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/13658816.2015.1018266", "name": "Usability of VGI for validation of land cover maps", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84938422185" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/13658816.2015.1018266" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecolecon.2015.01.003", "name": "Valuing map validation: The need for rigorous land cover map accuracy assessment in economic valuations of ecosystem services", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84921522459" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecolecon.2015.01.003" } ] }, { "@type": "CreativeWork", "name": "Assessing the accuracy of volunteered geographic information derived habitat classification", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84991387598" } }, { "@type": "CreativeWork", "name": "Exploring the accuracy of crowdsourced annotations of post-disaster building damage derived from fine spatial resolution satellite sensor data", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84991409016" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2014.02.015", "name": "Good practices for estimating area and assessing accuracy of land change", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2014.02.015" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84897951081" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/17538947.2013.839008", "name": "Rating crowdsourced annotations: evaluating contributions of variable quality and completeness", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84902486384" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/17538947.2013.839008" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431161.2014.857862", "name": "Recent developments in publishing on remote sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431161.2014.857862" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84890929667" } ] }, { "@type": "CreativeWork", "name": "Volunteered geographic information", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84950236173" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s12517-011-0411-7", "name": "Assessing flash flood hazard in an arid mountainous region", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84874949608" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s12517-011-0411-7" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/tgis.12033", "name": "Assessing the accuracy of volunteered geographic information arising from multiple contributors to an internet based collaborative project", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/tgis.12033" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84888860604" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecoinf.2012.04.002", "name": "Calculating landscape diversity with information-theory based indices: A GRASS GIS solution", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecoinf.2012.04.002" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84884928525" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/2150704x.2013.798708", "name": "Ground reference data error and the mis-estimation of the Area of land cover change as a function of its abundance", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/2150704x.2013.798708" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879322724" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2012.10.031", "name": "Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84870202759" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2012.10.031" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2013.6721249", "name": "Rating the quality of post-disaster damage maps: Mapping building damage after the 2010 Haiti earthquake", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2013.6721249" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84894261226" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/498037d", "name": "Satellites: Ambition for forest initiative", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84878723784" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/498037d" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.cageo.2012.05.022", "name": "Uncertainty in ecosystem mapping by remote sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.cageo.2012.05.022" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84870814570" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jag.2012.11.002", "name": "Using control data to determine the reliability of volunteered geographic information about land cover", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jag.2012.11.002" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880321994" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2013.2250257", "name": "Using volunteered data in land cover map validation: Mapping west African forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2013.2250257" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880301861" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2012.6351018", "name": "A contour-based pixel swapping method for super-resolution mapping", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873166378" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2012.6351018" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2012.2191537", "name": "Combining hopfield neural network and contouring methods to enhance super-resolution mapping", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2012.2191537" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84869494118" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2012.2216514", "name": "Combining pixel swapping and contouring methods to enhance super-resolution mapping", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84869504907" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2012.2216514" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.isprsjprs.2012.03.011", "name": "Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84860520922" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.isprsjprs.2012.03.011" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2012.2215310", "name": "Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2012.2215310" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84869488312" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2011.2170810", "name": "Evaluation of envisat MERIS terrestrial chlorophyll index-based models for the estimation of terrestrial gross primary productivity", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2011.2170810" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84858071405" } ] }, { "@type": "CreativeWork", "name": "Exploring the potential role of volunteer citizen sensors in land cover map accuracy assessment", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84975748779" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/jstars.2012.2191145", "name": "Impact of land cover patch size on the accuracy of patch area representation in HNN-based super resolution mapping", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84869429066" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/jstars.2012.2191145" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2011.2174156", "name": "Latent class modeling for site- and non-site-specific classification accuracy assessment without ground data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2011.2174156" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84863008703" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.landurbplan.2012.05.016", "name": "Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.landurbplan.2012.05.016" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84863879982" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jag.2011.06.002", "name": "Super-resolution mapping of lakes from imagery with a coarse spatial and fine temporal resolution", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84864507901" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jag.2011.06.002" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2012.6352675", "name": "Using volunteered data in land cover map validation: Mapping tropical forests across West Africa", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84873185446" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2012.6352675" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecoinf.2010.07.007", "name": "An overview of recent remote sensing and GIS based research in ecological informatics", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecoinf.2010.07.007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79651474138" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1466-8238.2010.00605.x", "name": "Impacts of imperfect reference data on the apparent accuracy of species presence-absence models and their predictions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79953782022" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1466-8238.2010.00605.x" } ] }, { "@type": "CreativeWork", "name": "Remote sensing of barley stressed with CO<inf>2</inf>and herbicide", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84868629201" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/21507040903538130", "name": "A fresh start", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79955409384" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/21507040903538130" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2010.05.003", "name": "Assessing the accuracy of land cover change with imperfect ground reference data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2010.05.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77955275042" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160903516119", "name": "Editorial: A new launch", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85009577047" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160903516119" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2010.5654088", "name": "Estimating terrestrial gross primary productivity with the envisat medium resolution imaging spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI)", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2010.5654088" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78650905227" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160902887339", "name": "Estimating the relative abundance of C<inf>3</inf>and C<inf>4</inf>grasses in the Great Plains from multi-temporal MTCI data: Issues of compositing period and spatial generalizability", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77649165358" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160902887339" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2009.2039484", "name": "Feature selection for classification of hyperspectral data by SVM", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77951295936" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2009.2039484" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160902922888", "name": "Geostatistically estimated image noise is a function of variance in the underlying signal", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77951135424" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160902922888" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecoinf.2010.06.001", "name": "Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecoinf.2010.06.001" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77956878537" } ] }, { "@type": "CreativeWork", "name": "Spatial entropy for the measurement of the spatial accuracy of classified remote sensing imagery", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84975746784" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2010.5649083", "name": "Super-resolution analysis for accurate mapping of land cover and land cover pattern", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78650856186" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2010.5649083" } ] }, { "@type": "CreativeWork", "name": "Super-resolution mapping of landscape objects from coarse spatial resolution imagery", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84923950843" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.865092", "name": "Super-resolution mapping using multiple observations and Hopfield neural network", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78649741998" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.865092" } ] }, { "@type": "CreativeWork", "name": "An estimation of tropical forest biomass with a combination of JERS-1 and Landsat TM data", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84879896452" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2009.03.014", "name": "Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2009.03.014" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-67349093551" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2009.5417349", "name": "Correcting estimates of land cover change and change detection accuracy for error in ground reference data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77951286015" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2009.5417349" } ] }, { "@type": "CreativeWork", "name": "On Training and Evaluation of SVM for Remote Sensing Applications", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84869498235" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160903131059", "name": "Preface: Spatial accuracy in remote sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160903131059" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-70449428661" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160903130937", "name": "Sample size determination for image classification accuracy assessment and comparison", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160903130937" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-70449338714" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160902755346", "name": "The impact of imperfect ground reference data on the accuracy of land cover change estimation", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-70449441439" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160902755346" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1475-4762.2009.00908.x", "name": "The nature of publishing and assessment in Geography and Environmental Studies: Evidence from the Research Assessment Exercise 2008", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1475-4762.2009.00908.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-68749102184" } ] }, { "@type": "CreativeWork", "name": "A Look to the Future", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84949769009" } }, { "@type": "CreativeWork", "name": "Accuracy Assessment", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84949812908" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160701758152", "name": "All change?", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160701758152" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-37249066993" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160701395203", "name": "Crop classification by support vector machine with intelligently selected training data for an operational application", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-40349110669" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160701395203" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160802029685", "name": "DEM and bathymetry estimation for mapping a tide-coordinated shoreline from fine spatial resolution satellite sensor imagery", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-48249150046" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160802029685" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160802290568", "name": "Estimating per-pixel thematic uncertainty in remote sensing classifications", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-57049119072" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160802290568" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0309133308094656", "name": "GIS: Biodiversity applications", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0309133308094656" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-55249092068" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160701442120", "name": "Harshness in image classification accuracy assessment", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160701442120" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-40349114181" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0309133308093606", "name": "Measuring and modelling biodiversity from space", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-55249100510" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0309133308093606" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/lgrs.2008.915597", "name": "Multiclass and binary SVM classification: Implications for training and classification users", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-57649140412" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/lgrs.2008.915597" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160701822115", "name": "RVM-based multi-class classification of remotely sensed data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160701822115" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-40349100592" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecoinf.2008.02.002", "name": "Refining predictions of climate change impacts on plant species distribution through the use of local statistics", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecoinf.2008.02.002" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-48749098066" } ] }, { "@type": "CreativeWork", "name": "Remote Sensing Policy", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84949773559" } }, { "@type": "CreativeWork", "name": "Remote Sensing Scale and Data Selection Issues", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84949812448" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.4135/9780857021052", "name": "The SAGE Handbook of Remote Sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.4135/9780857021052" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84949780315" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecoinf.2007.03.009", "name": "Discriminating and mapping the C3 and C4 composition of grasslands in the northern Great Plains, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecoinf.2007.03.009" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34548474765" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecoinf.2007.06.001", "name": "Editorial: Ecological applications of remote sensing and GIS", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecoinf.2007.06.001" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34548481046" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.14358/pers.73.7.841", "name": "Exploring the geostatistical method for estimating the signal-to-noise ratio of images", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.14358/pers.73.7.841" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34447101055" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.738437", "name": "Image-based method for noise estimation in remotely sensed data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.738437" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-42449144733" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160701244872", "name": "Increasing soft classification accuracy through the use of an ensemble of classifiers", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160701244872" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34748885521" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.0906-7590.2007.04726.x", "name": "Investigating spatial structure in specific tree species in ancient semi-natural woodland using remote sensing and marked point pattern analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.0906-7590.2007.04726.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33847229497" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160600784259", "name": "Land cover classification using multi-temporal MERIS vegetation indices", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33947423832" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160600784259" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0309133307081294", "name": "Map comparison in GIS", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34848882176" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0309133307081294" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160600962566", "name": "Mapping a specific class with an ensemble of classifiers", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34547111054" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160600962566" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecoinf.2007.04.003", "name": "Mapping specific habitats from remotely sensed imagery: Support vector machine and support vector data description based classification of coastal saltmarsh habitats", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecoinf.2007.04.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34548510616" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160600981533", "name": "Modelling geometric and misregistration error in airborne sensor data to enhance change detection", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160600981533" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34249914209" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1472-4642.2007.00344.x", "name": "Non-stationarity and local approaches to modelling the distributions of wildlife", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1472-4642.2007.00344.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34247354914" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2006.890414", "name": "One-class classification for mapping a specific land-cover class: SVDD classification of fenland", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33947711252" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2006.890414" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2007.4423373", "name": "Reducing the impacts of intra-class spectral variability on soft classification and its implications for super-resolution mapping", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2007.4423373" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79954572905" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2112/04-0421.1", "name": "Shoreline mapping from coarse-spatial resolution remote sensing imagery of Seberang Takir, Malaysia", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-38349058007" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2112/04-0421.1" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.14358/pers.73.8.923", "name": "Variability in soft classification prediction and its implications for sub-pixel scale change detection and super resolution mapping", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.14358/pers.73.8.923" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34547609867" } ] }, { "@type": "CreativeWork", "name": "Current Status of Uncertainty Issues in Remote Sensing and GIS", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-9144260429" } }, { "@type": "CreativeWork", "name": "Deriving thematic uncertainty measures in remote sensing using classification outputs", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-57049142104" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160500396527", "name": "Dynamics of ENSO drought events on Sabah rainforests observed by NOAA AVHRR", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160500396527" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33747143722" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1177/0309133306071152", "name": "GIS: Health applications", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1177/0309133306071152" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33947402589" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2006.536", "name": "Impacts of class spectral variability on soft classification prediction and implications for change detection", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-34948843456" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2006.536" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.695460", "name": "Issues in training SVM classifications", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.695460" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33751438835" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160500396741", "name": "Localized soft classification for super-resolution mapping of the shoreline", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160500396741" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33747112013" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160600554348", "name": "Mapping a specific class for priority habitats monitoring from satellite sensor data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33747107396" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160600554348" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecolmodel.2005.11.007", "name": "Mapping the species richness and composition of tropical forests from remotely sensed data with neural networks", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecolmodel.2005.11.007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33646155530" } ] }, { "@type": "CreativeWork", "name": "Pattern recognition and classification of remotely sensed images by artificial neural networks", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84865785612" } }, { "@type": "CreativeWork", "name": "Preface", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84948845495" } }, { "@type": "CreativeWork", "name": "Remote Monitoring of the Impact of ENSO-related Drought on Sabah Rainforest Using NOAA AVHRR Middle Infrared Reflectance: Exploring Emissivity Uncertainty", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84948766907" } }, { "@type": "CreativeWork", "name": "The evaluation and comparison of thematic maps derived from remote sensing", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84959343631" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2006.04.001", "name": "The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33745756516" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2006.04.001" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2006.03.004", "name": "Training set size requirements for the classification of a specific class", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2006.03.004" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33747610735" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/0470035269", "name": "Uncertainty in Remote Sensing and GIS", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84885532231" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/0470035269" } ] }, { "@type": "CreativeWork", "name": "Uncertainty in Remote Sensing and GIS: Fundamentals", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84948760931" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10109-006-0023-z", "name": "What is the difference between two maps? A remote senser's view", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10109-006-0023-z" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33646735739" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2005.03.001", "name": "Appointment of new editorial board members", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2005.03.001" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-20144388072" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1466-822x.2005.00142.x", "name": "Clarifications on local and global data analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-12444346852" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1466-822x.2005.00142.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1890/04-1061", "name": "Identification of specific tree species in ancient semi-natural woodland from digital aerial sensor imagery", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1890/04-1061" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-23044503721" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/igarss.2005.1526217", "name": "Increasing soft classification accuracy through the use of an ensemble of classifiers", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33745713885" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/igarss.2005.1526217" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160500254999", "name": "Interpreting image-based methods for estimating the signal-to-noise ratio", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160500254999" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33745103492" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160512331326521", "name": "Local characterization of thematic classification accuracy through spatially constrained confusion matrices", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-17144416175" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160512331326521" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160500165716", "name": "Mapping the richness and composition of British breeding birds from coarse spatial resolution satellite sensor imagery", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-27744511267" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160500165716" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160500213292", "name": "Super-resolution mapping of the waterline from remotely sensed data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33745106415" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160500213292" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/tgrs.2004.827257", "name": "A relative evaluation of multiclass image classification by support vector machines", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/tgrs.2004.827257" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-3042654673" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1191/0309133304pp407pr", "name": "GIS: Stressing the geographical", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84990370512" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1191/0309133304pp407pr" } ] }, { "@type": "CreativeWork", "name": "Land cover classification by support vector machine: Towards efficient training", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-15944418297" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2003.12.045", "name": "Predicting locations sensitive to flash flooding in an arid environment", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2003.12.045" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-2342479993" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1466-822x.2004.00097.x", "name": "Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-3142751254" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1466-822x.2004.00097.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160310001648019", "name": "Supervised image classification by MLP and RBF neural networks with and without an exhaustively defined set of classes", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-3242759024" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160310001648019" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160310001654969", "name": "Thematic labelling from hyperspectral remotely sensed imagery: Trade-offs in image properties", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160310001654969" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-3242769079" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.14358/pers.70.5.627", "name": "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-3042661357" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.14358/pers.70.5.627" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2004.06.017", "name": "Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2004.06.017" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-4544272407" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2003.08.004", "name": "Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI-rainfall relationship", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2003.08.004" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0842306347" } ] }, { "@type": "CreativeWork", "name": "Potential improvements in the characterization of forest canopy gaps caused by windthrow using fine spatial resolution multispectral data: Comparing hard and soft classification techniques", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0038209052" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0034-4257(03)00039-7", "name": "Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0037986221" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0034-4257(03)00039-7" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/0143116031000103853", "name": "Remote sensing of tropical forest environments: Towards the monitoring of environmental resources for sustainable development", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/0143116031000103853" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0142197746" } ] }, { "@type": "CreativeWork", "name": "Spatio-temporal Response of Extreme Events on Bornean Rainforests", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0242710519" } }, { "@type": "CreativeWork", "name": "Super-resolution mapping of the shoreline through soft classification analyses", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0242625767" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1046/j.1365-2699.2003.00887.x", "name": "Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1365-2699.2003.00887.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0037897270" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1191/0309133303pp345pr", "name": "Uncertainty, knowledge discovery and data mining in GIS", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0037342756" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1191/0309133303pp345pr" } ] }, { "@type": "CreativeWork", "name": "Characterizing the flash flood hazards potential along the Red Sea coast of Egypt", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036126947" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0143-6228(02)00048-6", "name": "Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0143-6228(02)00048-6" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036812380" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160210163128", "name": "Exploring the utility of NOAA AVHRR middle infrared reflectance to monitor the impacts of ENSO-induced drought stress on Sabah rainforests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160210163128" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0037059198" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160110069791", "name": "Forest regeneration on abandoned clearances in Central Amazonia", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160110069791" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0037051192" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160110109570", "name": "Hard and soft classifications by a neural network with a non-exhaustively defined set of classes", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0037144618" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160110109570" } ] }, { "@type": "CreativeWork", "name": "Remote sensing of biodiversity: Using neural networks to estimate the diversity and composition of a Bornean tropical rainforest from Landsat TM data", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036031101" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s005210200017", "name": "Sharpened mapping of tropical forest biophysical properties from coarse spatial resolution satellite sensor data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036665988" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s005210200017" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0034-4257(01)00295-4", "name": "Status of land cover classification accuracy assessment", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036213079" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0034-4257(01)00295-4" } ] }, { "@type": "CreativeWork", "name": "The role of soft classification techniques in the refinement of estimates of ground control point location", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036731661" } }, { "@type": "CreativeWork", "name": "Accuracy of image classifications. Problems in evaluating thematic maps derived from imagery", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035037741" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160050505883", "name": "Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery: Statistical and artificial neural network approaches", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160050505883" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035048764" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1191/030913301680193841", "name": "GIS: The accuracy of spatial data revisited", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1191/030913301680193841" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034753302" } ] }, { "@type": "CreativeWork", "name": "Land cover classification from hyperspectral remotely sensed data: An investigation of spectral, spatial and noise issues", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035574595" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1046/j.1466-822x.2001.00248.x", "name": "Mapping the biomass of Bornean tropical rain forest from remotely sensed data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1046/j.1466-822x.2001.00248.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034957101" } ] }, { "@type": "CreativeWork", "name": "Monitoring the magnitude of land-cover change around the southern limits of the Sahara", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034959023" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160116869", "name": "Relationship between green leaf biomass volumetric density and ERS-2 SAR backscatter of four vegetation formations in the semi-arid zone of Israel", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160116869" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035918545" } ] }, { "@type": "CreativeWork", "name": "Remote monitoring of impacts of ENSO related drought stress on Sabah rainforests", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035575031" } }, { "@type": "CreativeWork", "name": "The effect of a non-exhaustively defined set of classes on neural network classifications", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0035573303" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/pl00011477", "name": "Thematic mapping from remotely sensed data with neural networks: MLP, RBF and PNN based approaches", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/pl00011477" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-1342343252" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160050110188", "name": "Assessing the ground data requirements for regional scale remote sensing of tropical forest biophysical properties", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160050110188" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033904637" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0378-1127(00)00284-x", "name": "Characterising windthrown gaps from fine spatial resolution remotely sensed data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0378-1127(00)00284-x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034666591" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160050121276", "name": "Characterizing tropical forest regeneration in Cameroon using NOAA AVHRR data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160050121276" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033821354" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0098-3004(99)00125-9", "name": "Estimation of sub-pixel land cover composition in the presence of untrained classes", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034010010" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0098-3004(99)00125-9" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.406583", "name": "General approach to assessing the value of hyperspectral imagery and its application to sensor concept evaluation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.406583" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034505225" } ] }, { "@type": "CreativeWork", "name": "Linking remote sensing, land cover and disease", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033835012" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1023/a:1008112125526", "name": "Mapping land cover from remotely sensed data with a softened feedforward neural network classification", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1023/a:1008112125526" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0034548685" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160050121285", "name": "Mapping the regional extent of tropical forest regeneration stages in the Brazilian Legal Amazon using NOAA AVHRR data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160050121285" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033810997" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431160050029620", "name": "The relationship between ERS-2 SAR backscatter and soil moisture: Generalization from a humid to semi-arid transect", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431160050029620" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033909994" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0304-3800(99)00094-0", "name": "Applications of the self-organising feature map neural network in community data analysis", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0304-3800(99)00094-0" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033578381" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/014311699211769", "name": "Detection of partial land cover change associated with the migration of inter-class transitional zones", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033434022" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/014311699211769" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s101090050003", "name": "Fuzzy mapping of tropical land cover along an environmental gradient from remotely sensed data with an artificial neural network", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0013367757" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s101090050003" } ] }, { "@type": "CreativeWork", "name": "The continuum of classification fuzziness in thematic mapping", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033005338" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/014311699213055", "name": "The relationship between the biomass of cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0-5.0 m\u00b5)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033586413" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/014311699213055" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/014311699211192", "name": "The significance of border training patterns in classification by a feedforward neural network using back propagation learning", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0033372875" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/014311699211192" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/014311698214479", "name": "A fuzzy classification of sub-urban land cover from remotely sensed imagery", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0032552476" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/014311698214479" } ] }, { "@type": "CreativeWork", "name": "Estimating biophysical properties of tropical forests using radiation reflected in middle infrared wavelengths (3.0 - 5.0 \u03bcm)", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031625878" } }, { "@type": "CreativeWork", "name": "Issues in training set selection and refinement for classification by a feedforward neural network", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031642397" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/014311698214659", "name": "Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0032505168" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/014311698214659" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1117/12.326720", "name": "Soft classifications for the mapping of land cover from remotely sensed data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1117/12.326720" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0342722872" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1068/a301929", "name": "Unmixing aggregate data: estimating the social composition of enumeration districts", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1068/a301929" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0032434177" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/014311697218764", "name": "An evaluation of some factors affecting the accuracy of classification by an artificial neural network", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031105722" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/014311697218764" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/bf01424229", "name": "Fully fuzzy supervised classification of land cover from remotely sensed imagery with an artificial neural network", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-21744459008" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/bf01424229" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/014311697218755", "name": "Log-linear modelling for the evaluation of the variables affecting the accuracy of probabilistic, fuzzy and neural network classifications", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031106423" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/014311697218755" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1023/a:1009775619936", "name": "Mapping tropical forest fractional cover from coarse spatial resolution remote sensing imagery", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1023/a:1009775619936" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030984130" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/014311697218845", "name": "Non-linear mixture modelling without end-members using an artificial neural network", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031105570" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/014311697218845" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/014311697219024", "name": "Observations on the relationship between SIR-C radar backscatter and the biomass of regenerating tropical forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0031077818" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/014311697219024" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169608949003", "name": "An assessment of radiance in landsat tm middle and thermal infrared wavebands for the detection of tropical forest regeneration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169608949003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0029728982" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169608948706", "name": "Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169608948706" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030135691" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169608948777", "name": "Classification of tropical forest classes from landsat tm data.", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169608948777" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030208643" } ] }, { "@type": "CreativeWork", "name": "Coupling remotely sensed data to an ecosystem simulation model - An example involving a coniferous plantation in upland Wales", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0008743113" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/07038992.1996.10874666", "name": "Estimation of the Areal Extent of Land Cover Classes that Only Occur at a Sub-Pixel Level", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030392042" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/07038992.1996.10874666" } ] }, { "@type": "CreativeWork", "name": "Fuzzy modelling of vegetation from remotely sensed imagery", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0002780271" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0034-4257(95)00196-4", "name": "Identifying terrestrial carbon sinks: Classification of successional stages in regenerating tropical forest from Landsat TM data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0029769688" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0034-4257(95)00196-4" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/s0167-8655(96)00095-5", "name": "Incorporating mixed pixels in the training, allocation and testing stages of supervised classifications", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030292025" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/s0167-8655(96)00095-5" } ] }, { "@type": "CreativeWork", "name": "Relating the land-cover composition of mixed pixels to artificial neural network classification output", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0029750642" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169608948707", "name": "Relations between tropical forest biophysical properties and data acquired in AVHRR channels 1-5", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030136457" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169608948707" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106049609354519", "name": "Representation of ecological trends in remotely sensed data: Relating the probability of class membership to canopy composition and a vegetation ordination", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030456229" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106049609354519" } ] }, { "@type": "CreativeWork", "name": "The mystery of the missing carbon", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-6244293672" } }, { "@type": "CreativeWork", "name": "The mystery of the missing carbon", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0029750042" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/bimj.4710380206", "name": "Weighting class importance in agricultural crop classification from remotely sensed data with an artificial neural network", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0030526510" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/bimj.4710380206" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/0924-2716(95)90116-v", "name": "Cross-entropy for the evaluation of the accuracy of a fuzzy land cover classification with fuzzy ground data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/0924-2716(95)90116-v" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028982899" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/bf00807952", "name": "Estimation of land coverage from a land cover classification derived from remotely sensed data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/bf00807952" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028981335" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/02693799508902054", "name": "Land cover classification by an artificial neural network with ancillary information", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/02693799508902054" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0029478734" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/0198-9715(95)00025-9", "name": "Mapping despoiled land cover from Landsat thematic mapper imagery", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/0198-9715(95)00025-9" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0029415395" } ] }, { "@type": "CreativeWork", "name": "The effect of sampling on the species-area curve", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028572837" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169508954507", "name": "The effect of training set size and composition on artificial neural network classification", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0029473455" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169508954507" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/bf01414080", "name": "Training pattern replication and weighted class allocation in artificial neural network classification", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0346256369" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/bf01414080" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169508954396", "name": "Using prior knowledge in artificial neural network classification with a minimal training set", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028874010" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169508954396" } ] }, { "@type": "CreativeWork", "name": "Classification of remotely sensed data by an artificial neural network: issues related to training data characteristics", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028560774" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169408954289", "name": "Crop classification from c-band polarimetric radar data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169408954289" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028552715" } ] }, { "@type": "CreativeWork", "name": "Environmental remote sensing from regional to global scales", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85041151672" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2307/2845527", "name": "Estimation of tropical forest extent and regenerative stage using remotely sensed data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2307/2845527" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028163167" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/07038992.1994.10874582", "name": "Multi-source image classification II: An empirical comparison of evidential reasoning and neural network approaches", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/07038992.1994.10874582" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028740098" } ] }, { "@type": "CreativeWork", "name": "Ordinal-level classification of sub-pixel tropical forest cover", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028165056" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169408954276", "name": "Separability of tropical rain-forest types in the tambopata-candamo reserved zone, peru", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028594257" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169408954276" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169408954100", "name": "Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0028184024" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169408954100" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169308904419", "name": "Characterizing tropical secondary forests using multi-temporal landsat sensor imagery", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169308904419" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027698706" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/ldr.3400040306", "name": "Determining the extent and spectral separability of industrially despoiled land in South Wales from satellite sensor data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/ldr.3400040306" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027846682" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/bf00807535", "name": "Non-classificatory analysis and representation of heathland vegetation from remotely sensed imagery", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/bf00807535" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027832861" } ] }, { "@type": "CreativeWork", "name": "Using cover-type likelihoods and typicalities in a geographic information system data structure to map gradually changing environments", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027371435" } }, { "@type": "CreativeWork", "name": "A fuzzy sets approach to the representation of vegetation continua from remotely sensed data: an example from lowland heath", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0026614862" } }, { "@type": "CreativeWork", "name": "Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0027007203" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169108955183", "name": "Soil moisture content ground data for remote sensing investigations of agricultural regions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169108955183" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0026358111" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431169008955148", "name": "Directed ground survey for improved maximum likelihood classification of remotely sensed data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0025573157" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431169008955148" } ] }, { "@type": "CreativeWork", "name": "Remote sensing of soils and vegetation in the USSR", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85040890543" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431168908903855", "name": "Analysis and representation of vegetation continua from landsat thematic mapper data for lowland heaths", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431168908903855" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024471330" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106048909354218", "name": "Multi\u2010temporal airborne synthetic aperture radar data for crop classification", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024816843" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106048909354218" } ] }, { "@type": "CreativeWork", "name": "Some aspects of the accuracy and comparability of soil ground data collected for microwave remote sensing investigations", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024807598" } }, { "@type": "CreativeWork", "name": "Classification decision rule modification on the basis of information extracted from training data", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024224303" } }, { "@type": "CreativeWork", "name": "Classification decision rule modification on the basis of information extracted from training data", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024078941" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431168808954884", "name": "Crop classification from airborne synthetic aperture radar data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024248564" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431168808954884" } ] }, { "@type": "CreativeWork", "name": "Crop classification with multi-temporal X-band SAR data", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024152048" } }, { "@type": "CreativeWork", "name": "Crop classification with multi-temporal X-band SAR data", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024078747" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106048809354161", "name": "Incorporating remotely sensed data into a GIS: The problem of classification evaluation", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106048809354161" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-3342892569" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431168808954989", "name": "The effects of viewing geometry on image classification", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431168808954989" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0024199256" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/10106048709354091", "name": "A method for thematic classification with synthetic aperture radar data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/10106048709354091" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84946341770" } ] }, { "@type": "CreativeWork", "name": "Image classification: the spatial component.", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0023482564" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431168708948700", "name": "Remote sensing letters: Radiometric balancing a comment", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431168708948700" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0023504188" } ] }, { "@type": "CreativeWork", "name": "The use of Landsat TM data in a GIS for environmental monitoring.", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0023471475" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/07038992.1986.10855104", "name": "An assessment of the topographic effects on sar image tone", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0022879252" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/07038992.1986.10855104" } ] }, { "@type": "CreativeWork", "name": "Crop mapping with multi-feature synthetic aperture radar data ( East Anglia, UK).", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0022851525" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/07038992.1986.10855095", "name": "Land-cover mapping from synthetic aperture radar: The importance of radiometric correction", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0022927017" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/07038992.1986.10855095" } ] }, { "@type": "CreativeWork", "name": "Viewing geometry effects on SAR image tone and its importance for land cover mapping.", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0022850282" } }, { "@type": "CreativeWork", "name": "The influence of SAR viewing geometry on land cover mapping accuracy.", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0022235380" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/01431168408948892", "name": "Sectoring radar images to improve land cover map accuracy", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/01431168408948892" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0021613390" } ] } ] }, "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "7007014233" } }
}