Item talk:Q141538: Difference between revisions
From geokb
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5034610242", "orcid": "https://orcid.org/0000-0003-1897-0163", "display_name": "Steven P. Loheide", "display_name_alternatives": [ "Steven Loheide", "S. P. Loheide", "Steven P. Loheide", "Steve Loheide" ], "works_count": 179, "cited_by_count": 4097, "summary_stats": { "2yr_mean_citedness": 2.227272727272727, "h_index": 37, "i10_index": 61 }, "i...") |
No edit summary |
||
Line 912: | Line 912: | ||
"id": "https://openalex.org/T10779", | "id": "https://openalex.org/T10779", | ||
"display_name": "Importance of Mangrove Ecosystems in Coastal Protection", | "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", | ||
"value": 5e-05, | "value": "5e-05", | ||
"subfield": { | "subfield": { | ||
"id": "https://openalex.org/subfields/2303", | "id": "https://openalex.org/subfields/2303", | ||
Line 1,234: | Line 1,234: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5034610242" | "_id": "https://openalex.org/A5034610242" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0003-1897-0163", | |||
"mainEntityOfPage": "https://orcid.org/0000-0003-1897-0163", | |||
"givenName": "Steven", | |||
"familyName": "Loheide", | |||
"@reverse": { | |||
"funder": [ | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/501100000592", | |||
"name": "Council for International Exchange of Scholars", | |||
"alternateName": "Ecohydrology for Sustainability", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "40f75215add074772ee5ad3377708ddb" | |||
} | |||
}, | |||
{ | |||
"@type": "Organization", | |||
"@id": "https://doi.org/10.13039/100000085", | |||
"name": "Directorate for Geosciences", | |||
"alternateName": "Groundwater-forest interactions during drought in temperate forests across scales", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "grant_number", | |||
"value": "1700983" | |||
} | |||
} | |||
], | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.biocon.2022.109448", | |||
"name": "Indicators of regional high capacity well impacts predicts fen floristic quality and composition in Wisconsin calcareous fens", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.biocon.2022.109448" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85122617365" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.scitotenv.2021.151296", | |||
"name": "Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.scitotenv.2021.151296" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85118237489" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/abfc06", | |||
"name": "Climatic controls on the hydrologic effects of urban low impact development practices", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/abfc06" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85107529253" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/eco.2294", | |||
"name": "Groundwater subsidizes tree growth and transpiration in sandy humid forests", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/eco.2294" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85107910689" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2021gl094980", | |||
"name": "Monitoring Tree Sway as an Indicator of Interception Dynamics Before, During, and Following a Storm", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2021gl094980" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85118274501" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5194/bg-18-4059-2021", | |||
"name": "The motion of trees in the wind: A data synthesis", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85109388245" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5194/bg-18-4059-2021" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/hyp.13693", | |||
"name": "Adding our leaves: A community-wide perspective on research directions in ecohydrology", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/hyp.13693" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85078748068" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/jeq2.20059", | |||
"name": "Impacts of groundwater extraction on calcareous fen floristic quality", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85084117889" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/jeq2.20059" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3389/frwa.2020.578367", | |||
"name": "Retrieving Heterogeneous Surface Soil Moisture at 100 m Across the Globe via Fusion of Remote Sensing and Land Surface Parameters", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3389/frwa.2020.578367" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85102078146" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/1752-1688.12870", | |||
"name": "Where and When Soil Amendment is Most Effective as a Low Impact Development Practice in Residential Areas", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85090233394" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/1752-1688.12870" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs11212460", | |||
"name": "Combining evapotranspiration and soil apparent electrical conductivity mapping to identify potential precision irrigation benefits", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs11212460" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85074652479" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.scitotenv.2019.07.290", | |||
"name": "Comparing the effects of climate and land use on surface water quality using future watershed scenarios", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.scitotenv.2019.07.290" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85069835235" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jhydrol.2019.123920", | |||
"name": "Management of minimum lake levels and impacts on flood mitigation: A case study of the Yahara Watershed, Wisconsin, USA", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85068583199" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jhydrol.2019.123920" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2019gl084122", | |||
"name": "Monitoring Tree Sway as an Indicator of Water Stress", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2019gl084122" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85075196522" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1038/s41893-019-0278-2", | |||
"name": "Nonlinear groundwater influence on biophysical indicators of ecosystem services", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85065198044" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1038/s41893-019-0278-2" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.jhydrol.2018.08.022", | |||
"name": "Continuous separation of land use and climate effects on the past and future water balance", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85051622730" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.jhydrol.2018.08.022" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2136/vzj2017.01.0008", | |||
"name": "Drivers of potential recharge from irrigated agroecosystems in the wisconsin central sands", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2136/vzj2017.01.0008" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85044717332" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.enbuild.2018.01.022", | |||
"name": "Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A\u2013DTS) technology", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.enbuild.2018.01.022" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85048159253" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/eap.1633", | |||
"name": "Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape:", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/eap.1633" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85040234858" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/aabb87", | |||
"name": "Understanding relationships among ecosystem services across spatial scales and over time", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/aabb87" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85048082262" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2018wr022534", | |||
"name": "Urban Residential Surface and Subsurface Hydrology: Synergistic Effects of Low-Impact Features at the Parcel Scale", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85055529728" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2018wr022534" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2136/vzj2017.06.0118", | |||
"name": "Effects of root distribution and root water compensation on simulated water use in maize influenced by shallow groundwater", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2136/vzj2017.06.0118" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85030869263" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecolmodel.2017.06.002", | |||
"name": "Quantifying indirect groundwater-mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete critical zone model", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85020636978" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecolmodel.2017.06.002" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2017jg003831", | |||
"name": "Relationship between root water uptake and soil respiration: A modeling perspective", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2017jg003831" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85029142860" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10021-017-0125-0", | |||
"name": "The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85014787359" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10021-017-0125-0" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/hyp.11070", | |||
"name": "The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/hyp.11070" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85006511615" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2016gl072190", | |||
"name": "Urban heat island-induced increases in evapotranspirative demand", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85010953580" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2016gl072190" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.foreco.2016.03.025", | |||
"name": "Ecohydrological implications of drought for forests in the United States", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.foreco.2016.03.025" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84961226077" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.envsoft.2016.08.008", | |||
"name": "From qualitative to quantitative environmental scenarios: Translating storylines into biophysical modeling inputs at the watershed scale", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.envsoft.2016.08.008" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84983494251" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs8070597", | |||
"name": "How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? A global assessment", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85010674750" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs8070597" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.ecoser.2016.08.007", | |||
"name": "Is groundwater recharge always serving us well? Water supply provisioning, crop production, and flood attenuation in conflict in Wisconsin, USA", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.ecoser.2016.08.007" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84982307016" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/hyp.10615", | |||
"name": "Obstacles to long-term soil moisture monitoring with heated distributed temperature sensingc", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/hyp.10615" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84949658565" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1088/1748-9326/11/5/054023", | |||
"name": "Urban heat island impacts on plant phenology: Intra-urban variability and response to land cover", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1088/1748-9326/11/5/054023" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85014427917" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.5751/es-07433-200210", | |||
"name": "Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.5751/es-07433-200210" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84934783681" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/2015wr017522", | |||
"name": "Untangling the effects of shallow groundwater and soil texture as drivers of subfield-scale yield variability", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/2015wr017522" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84941996912" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2136/vzj2015.03.0037", | |||
"name": "Visualizing large data sets: Spatial and temporal soil moisture regime dynamics", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84947093042" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2136/vzj2015.03.0037" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10021-014-9775-3", | |||
"name": "Hydrologic Regimes Revealed Bundles and Tradeoffs Among Six Wetland Services", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84906085266" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10021-014-9775-3" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2014.01.019", | |||
"name": "Influence of groundwater on plant water use and productivity: Development of an integrated ecosystem - Variably saturated soil water flow model", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2014.01.019" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84894319200" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/jawr.12155", | |||
"name": "Instream Restoration to Improve the Ecohydrologic Function of a Subalpine Meadow: Pre-implementation Modeling with HEC-RAS", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84905405618" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/jawr.12155" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/hyp.9909", | |||
"name": "Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmelt-dominated upper Tuolumne Basin, Sierra Nevada", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/hyp.9909" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84901843824" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.advwatres.2014.08.013", | |||
"name": "Root water compensation sustains transpiration rates in an Australian woodland", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84907697365" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.advwatres.2014.08.013" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agrformet.2014.06.009", | |||
"name": "Using evapotranspiration to assess drought sensitivity on a subfield scale with HRMET, a high resolution surface energy balance model", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agrformet.2014.06.009" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84903768443" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/grl.50620", | |||
"name": "Dynamic ice formation in channels as a driver for stream-aquifer interactions", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/grl.50620" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84880026874" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/eco.250", | |||
"name": "Comparing surface effective saturation and depth-to-water-level as predictors of plant composition in a restored riparian wetland", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/eco.250" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84860360636" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1745-6584.2012.00928.x", | |||
"name": "Heated Distributed Temperature Sensing for Field Scale Soil Moisture Monitoring", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1745-6584.2012.00928.x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84860363687" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2011jg001831", | |||
"name": "Hydroecological model predictions indicate wetter and more diverse soil water regimes and vegetation types following floodplain restoration", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2011jg001831" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84860377991" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2011rg000383", | |||
"name": "Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2011rg000383" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84864746114" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2011wr010964", | |||
"name": "On evapotranspiration and shallow groundwater fluctuations: A Fourier-based improvement to the White method", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84862224770" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2011wr010964" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1752-1688.2012.00673.x", | |||
"name": "Sensitivity of Thermal Habitat of a Trout Stream to Potential Climate Change, Wisconsin, United States", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1752-1688.2012.00673.x" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84870478675" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.geomorph.2010.04.016", | |||
"name": "Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater-dependent ecosystems", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79551694207" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.geomorph.2010.04.016" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2010wr010086", | |||
"name": "Groundwater controls on vegetation composition and patterning in mountain meadows", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2010wr010086" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-80053362826" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2010wr010050", | |||
"name": "How evaporative water losses vary between wet and dry water years as a function of elevation in the Sierra Nevada, California, and critical factors for modeling", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2010wr010050" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79958030357" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/09500693.2010.490570", | |||
"name": "Linking physical and numerical modelling in hydrogeology using sand tank experiments and COMSOL multiphysics", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-79952398751" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/09500693.2010.490570" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/hyp.7707", | |||
"name": "Effects of evapotranspiration partitioning, plant water stress response and topsoil removal on the soil moisture regime of a floodplain wetland: Implications for restoration", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/hyp.7707" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77954413016" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2009wr008874", | |||
"name": "Groundwater-dependent vegetation: Quantifying the groundwater subsidy", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77954389914" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2009wr008874" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1002/hyp.7714", | |||
"name": "Linking snowmelt-derived fluxes and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-78149455648" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1002/hyp.7714" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10040-010-0635-8", | |||
"name": "Reply to comment on \"A framework for understanding the hydroecology of impacted wet meadows in the Sierra Nevada and Cascade Ranges, California, USA\": Paper published in Hydrogeology Journal (2009) 17:229-246, by Steven P. Loheide II, Richard S. Deitchman, David J. Cooper, Evan C. Wolf, Christopher T. Hammersmark, Jessica D. Lundquist", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10040-010-0635-8" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-77958480069" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s10040-008-0380-4", | |||
"name": "A framework for understanding the hydroecology of impacted wet meadows in the Sierra Nevada and Cascade Ranges, California, USA", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-59549087724" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s10040-008-0380-4" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1111/j.1745-6584.2009.00584.x", | |||
"name": "COMSOL multiphysics: A novel approach to ground water modeling", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-68249118882" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1111/j.1745-6584.2009.00584.x" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2009gl038103", | |||
"name": "Ground-based thermal imaging of groundwater flow processes at the seepage face", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2009gl038103" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-70349591567" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3368/er.27.2.136", | |||
"name": "Postsettlement alluvium removal: A novel floodplain restoration technique (Wisconsin)", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-67650114930" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3368/er.27.2.136" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2008wr007329", | |||
"name": "Snowmelt-induced diel fluxes through the hyporheic zone", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2008wr007329" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-69249088085" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2005wr004627", | |||
"name": "A field investigation of phreatophyte-induced fluctuations in the water table", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2005wr004627" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33947733072" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2006wr005233", | |||
"name": "Riparian hydroecology: A coupled model of the observed interactions between groundwater flow and meadow vegetation patterning", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2006wr005233" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-36649002042" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1021/es0522074", | |||
"name": "Quantifying stream-aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1021/es0522074" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-33646798429" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.rse.2005.07.003", | |||
"name": "A local-scale, high-resolution evapotranspiration mapping algorithm (ETMA) with hydroecological applications at riparian meadow restoration sites", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.rse.2005.07.003" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-25844448696" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1029/2005wr003942", | |||
"name": "Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1029/2005wr003942" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-23944512746" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Noise in pressure transducer readings produced by variations in solar radiation", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-7944222319" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Hydraulic tests with direct-push equipment", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-0036007175" | |||
} | |||
} | |||
] | |||
}, | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "ResearcherID", | |||
"value": "L-3132-2015" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "6603611442" | |||
} | |||
] | |||
} | } | ||
} | } |
Latest revision as of 21:11, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5034610242", "orcid": "https://orcid.org/0000-0003-1897-0163", "display_name": "Steven P. Loheide", "display_name_alternatives": [ "Steven Loheide", "S. P. Loheide", "Steven P. Loheide", "Steve Loheide" ], "works_count": 179, "cited_by_count": 4097, "summary_stats": { "2yr_mean_citedness": 2.227272727272727, "h_index": 37, "i10_index": 61 }, "ids": { "openalex": "https://openalex.org/A5034610242", "orcid": "https://orcid.org/0000-0003-1897-0163", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=6603611442&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I135310074", "ror": "https://ror.org/01y2jtd41", "display_name": "University of Wisconsin\u2013Madison", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I135310074" ] }, "years": [ 2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I177877127", "ror": "https://ror.org/047272k79", "display_name": "University of Western Australia", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I177877127" ] }, "years": [ 2024, 2021, 2020, 2017 ] }, { "institution": { "id": "https://openalex.org/I822440", "ror": "https://ror.org/02mxmh518", "display_name": "Okanagan University College", "country_code": "CA", "type": "education", "lineage": [ "https://openalex.org/I822440" ] }, "years": [ 2024, 2021, 2020, 2017 ] }, { "institution": { "id": "https://openalex.org/I141945490", "ror": "https://ror.org/03rmrcq20", "display_name": "University of British Columbia", "country_code": "CA", "type": "education", "lineage": [ "https://openalex.org/I141945490" ] }, "years": [ 2024, 2021, 2020, 2017 ] }, { "institution": { "id": "https://openalex.org/I91045830", "ror": "https://ror.org/01f5ytq51", "display_name": "Texas A&M University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I91045830" ] }, "years": [ 2024, 2021, 2020 ] }, { "institution": { "id": "https://openalex.org/I135140700", "ror": "https://ror.org/041nas322", "display_name": "University of Bonn", "country_code": "DE", "type": "education", "lineage": [ "https://openalex.org/I135140700" ] }, "years": [ 2024 ] }, { "institution": { "id": "https://openalex.org/I131249849", "ror": "https://ror.org/00ysfqy60", "display_name": "Oregon State University", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I131249849" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I142606810", "ror": "https://ror.org/05h992307", "display_name": "Pacific Northwest National Laboratory", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1325736334", "https://openalex.org/I1330989302", "https://openalex.org/I142606810", "https://openalex.org/I39565521" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I4210087138", "ror": "https://ror.org/003m0tv02", "display_name": "Michigan Public Health Institute", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210087138" ] }, "years": [ 2023 ] }, { "institution": { "id": "https://openalex.org/I174659583", "ror": "https://ror.org/03y54e085", "display_name": "Ecological Society of America", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I174659583" ] }, "years": [ 2018 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I135310074", "ror": "https://ror.org/01y2jtd41", "display_name": "University of Wisconsin\u2013Madison", "country_code": "US", "type": "education", "lineage": [ "https://openalex.org/I135310074" ] } ], "topics": [ { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 56, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 35, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "count": 17, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "count": 16, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10577", "display_name": "Ecological Dynamics of Riverine Landscapes", "count": 14, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10894", "display_name": "Groundwater Flow and Transport Modeling", "count": 14, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10889", "display_name": "Soil Erosion and Agricultural Sustainability", "count": 14, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T11311", "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "count": 13, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11119", "display_name": "Urban Stormwater Management and Sustainable Drainage Systems", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "count": 11, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12729", "display_name": "Mechanical Effects of Plant Roots on Slope Stability", "count": 10, "subfield": { "id": "https://openalex.org/subfields/2210", "display_name": "Mechanical Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "count": 10, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "count": 9, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10766", "display_name": "Urban Heat Islands and Mitigation Strategies", "count": 8, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10779", "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10535", "display_name": "Landslide Hazards and Risk Assessment", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10692", "display_name": "Impact of Urban Green Space on Public Health", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2307", "display_name": "Health, Toxicology and Mutagenesis" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10644", "display_name": "Impacts of Climate Change on Glaciers and Water Availability", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10439", "display_name": "Adaptation to Climate Change in Agriculture", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10969", "display_name": "Optimal Operation of Water Resources Systems", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11880", "display_name": "Estimation of Forest Biomass and Carbon Stocks", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10302", "display_name": "Importance and Conservation of Freshwater Biodiversity", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2309", "display_name": "Nature and Landscape Conservation" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 0.0001743, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "value": 0.0001738, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11119", "display_name": "Urban Stormwater Management and Sustainable Drainage Systems", "value": 0.0001656, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12091", "display_name": "Carbon Dynamics in Peatland Ecosystems", "value": 0.0001398, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11594", "display_name": "Causes and Impacts of Climate Change Over Millennia", "value": 0.0001164, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "value": 0.0001073, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12729", "display_name": "Mechanical Effects of Plant Roots on Slope Stability", "value": 9.78e-05, "subfield": { "id": "https://openalex.org/subfields/2210", "display_name": "Mechanical Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10716", "display_name": "Mechanics and Transport in Unsaturated Soils", "value": 9.37e-05, "subfield": { "id": "https://openalex.org/subfields/2205", "display_name": "Civil and Structural Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11311", "display_name": "Biogeochemical Cycling of Nutrients in Aquatic Ecosystems", "value": 8.75e-05, "subfield": { "id": "https://openalex.org/subfields/2304", "display_name": "Environmental Chemistry" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10766", "display_name": "Urban Heat Islands and Mitigation Strategies", "value": 7.99e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10577", "display_name": "Ecological Dynamics of Riverine Landscapes", "value": 7.65e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10894", "display_name": "Groundwater Flow and Transport Modeling", "value": 7.54e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10889", "display_name": "Soil Erosion and Agricultural Sustainability", "value": 7.22e-05, "subfield": { "id": "https://openalex.org/subfields/1111", "display_name": "Soil Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10439", "display_name": "Adaptation to Climate Change in Agriculture", "value": 6.48e-05, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "value": 5.56e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "value": 5.1e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10779", "display_name": "Importance of Mangrove Ecosystems in Coastal Protection", "value": "5e-05", "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10692", "display_name": "Impact of Urban Green Space on Public Health", "value": 4.98e-05, "subfield": { "id": "https://openalex.org/subfields/2307", "display_name": "Health, Toxicology and Mutagenesis" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "value": 4.92e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14106", "display_name": "Science-Policy Integration for Water Management", "value": 4.68e-05, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13785", "display_name": "Coastal Hydrophysical Processes in Shallow Water Basins", "value": 3.87e-05, "subfield": { "id": "https://openalex.org/subfields/1904", "display_name": "Earth-Surface Processes" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T14427", "display_name": "Hydrologic Data Management and Analysis", "value": 3.33e-05, "subfield": { "id": "https://openalex.org/subfields/1907", "display_name": "Geology" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12724", "display_name": "Integrated Management of Water, Energy, and Food Resources", "value": 3.07e-05, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11333", "display_name": "Arctic Permafrost Dynamics and Climate Change", "value": 2.97e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11490", "display_name": "Hydrological Modeling using Machine Learning Methods", "value": 2.92e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 79.9 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 75.4 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 69.8 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 66.5 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 64.2 }, { "id": "https://openalex.org/C187320778", "wikidata": "https://www.wikidata.org/wiki/Q1349130", "display_name": "Geotechnical engineering", "level": 1, "score": 62.6 }, { "id": "https://openalex.org/C76886044", "wikidata": "https://www.wikidata.org/wiki/Q2883300", "display_name": "Hydrology (agriculture)", "level": 2, "score": 57.5 }, { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 52.5 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 48.0 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 31.3 }, { "id": "https://openalex.org/C76177295", "wikidata": "https://www.wikidata.org/wiki/Q161598", "display_name": "Groundwater", "level": 2, "score": 29.1 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 21.8 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 20.7 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 20.7 } ], "counts_by_year": [ { "year": 2024, "works_count": 4, "cited_by_count": 281 }, { "year": 2023, "works_count": 12, "cited_by_count": 569 }, { "year": 2022, "works_count": 13, "cited_by_count": 604 }, { "year": 2021, "works_count": 9, "cited_by_count": 547 }, { "year": 2020, "works_count": 21, "cited_by_count": 413 }, { "year": 2019, "works_count": 15, "cited_by_count": 379 }, { "year": 2018, "works_count": 13, "cited_by_count": 339 }, { "year": 2017, "works_count": 13, "cited_by_count": 316 }, { "year": 2016, "works_count": 13, "cited_by_count": 242 }, { "year": 2015, "works_count": 4, "cited_by_count": 254 }, { "year": 2014, "works_count": 6, "cited_by_count": 194 }, { "year": 2013, "works_count": 5, "cited_by_count": 146 }, { "year": 2012, "works_count": 7, "cited_by_count": 126 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5034610242", "updated_date": "2024-08-21T14:36:21.633704", "created_date": "2023-07-21", "_id": "https://openalex.org/A5034610242" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0003-1897-0163", "mainEntityOfPage": "https://orcid.org/0000-0003-1897-0163", "givenName": "Steven", "familyName": "Loheide", "@reverse": { "funder": [ { "@type": "Organization", "@id": "https://doi.org/10.13039/501100000592", "name": "Council for International Exchange of Scholars", "alternateName": "Ecohydrology for Sustainability", "identifier": { "@type": "PropertyValue", "propertyID": "grant_number", "value": "40f75215add074772ee5ad3377708ddb" } }, { "@type": "Organization", "@id": "https://doi.org/10.13039/100000085", "name": "Directorate for Geosciences", "alternateName": "Groundwater-forest interactions during drought in temperate forests across scales", "identifier": { "@type": "PropertyValue", "propertyID": "grant_number", "value": "1700983" } } ], "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.biocon.2022.109448", "name": "Indicators of regional high capacity well impacts predicts fen floristic quality and composition in Wisconsin calcareous fens", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.biocon.2022.109448" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85122617365" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.scitotenv.2021.151296", "name": "Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2021.151296" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85118237489" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/abfc06", "name": "Climatic controls on the hydrologic effects of urban low impact development practices", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/abfc06" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85107529253" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/eco.2294", "name": "Groundwater subsidizes tree growth and transpiration in sandy humid forests", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/eco.2294" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85107910689" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2021gl094980", "name": "Monitoring Tree Sway as an Indicator of Interception Dynamics Before, During, and Following a Storm", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2021gl094980" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85118274501" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5194/bg-18-4059-2021", "name": "The motion of trees in the wind: A data synthesis", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85109388245" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5194/bg-18-4059-2021" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.13693", "name": "Adding our leaves: A community-wide perspective on research directions in ecohydrology", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.13693" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85078748068" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/jeq2.20059", "name": "Impacts of groundwater extraction on calcareous fen floristic quality", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85084117889" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/jeq2.20059" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3389/frwa.2020.578367", "name": "Retrieving Heterogeneous Surface Soil Moisture at 100 m Across the Globe via Fusion of Remote Sensing and Land Surface Parameters", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3389/frwa.2020.578367" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85102078146" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/1752-1688.12870", "name": "Where and When Soil Amendment is Most Effective as a Low Impact Development Practice in Residential Areas", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85090233394" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/1752-1688.12870" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs11212460", "name": "Combining evapotranspiration and soil apparent electrical conductivity mapping to identify potential precision irrigation benefits", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs11212460" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85074652479" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.scitotenv.2019.07.290", "name": "Comparing the effects of climate and land use on surface water quality using future watershed scenarios", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.scitotenv.2019.07.290" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85069835235" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2019.123920", "name": "Management of minimum lake levels and impacts on flood mitigation: A case study of the Yahara Watershed, Wisconsin, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85068583199" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2019.123920" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2019gl084122", "name": "Monitoring Tree Sway as an Indicator of Water Stress", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2019gl084122" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85075196522" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1038/s41893-019-0278-2", "name": "Nonlinear groundwater influence on biophysical indicators of ecosystem services", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85065198044" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1038/s41893-019-0278-2" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.jhydrol.2018.08.022", "name": "Continuous separation of land use and climate effects on the past and future water balance", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85051622730" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.jhydrol.2018.08.022" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2136/vzj2017.01.0008", "name": "Drivers of potential recharge from irrigated agroecosystems in the wisconsin central sands", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2136/vzj2017.01.0008" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85044717332" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.enbuild.2018.01.022", "name": "Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A\u2013DTS) technology", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.enbuild.2018.01.022" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85048159253" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/eap.1633", "name": "Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape:", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/eap.1633" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85040234858" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/aabb87", "name": "Understanding relationships among ecosystem services across spatial scales and over time", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/aabb87" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85048082262" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2018wr022534", "name": "Urban Residential Surface and Subsurface Hydrology: Synergistic Effects of Low-Impact Features at the Parcel Scale", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85055529728" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2018wr022534" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2136/vzj2017.06.0118", "name": "Effects of root distribution and root water compensation on simulated water use in maize influenced by shallow groundwater", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2136/vzj2017.06.0118" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85030869263" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecolmodel.2017.06.002", "name": "Quantifying indirect groundwater-mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete critical zone model", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85020636978" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecolmodel.2017.06.002" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2017jg003831", "name": "Relationship between root water uptake and soil respiration: A modeling perspective", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2017jg003831" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85029142860" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10021-017-0125-0", "name": "The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85014787359" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-017-0125-0" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.11070", "name": "The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.11070" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85006511615" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2016gl072190", "name": "Urban heat island-induced increases in evapotranspirative demand", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85010953580" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2016gl072190" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.foreco.2016.03.025", "name": "Ecohydrological implications of drought for forests in the United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.foreco.2016.03.025" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84961226077" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.envsoft.2016.08.008", "name": "From qualitative to quantitative environmental scenarios: Translating storylines into biophysical modeling inputs at the watershed scale", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.envsoft.2016.08.008" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84983494251" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs8070597", "name": "How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? A global assessment", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85010674750" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs8070597" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.ecoser.2016.08.007", "name": "Is groundwater recharge always serving us well? Water supply provisioning, crop production, and flood attenuation in conflict in Wisconsin, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.ecoser.2016.08.007" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84982307016" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.10615", "name": "Obstacles to long-term soil moisture monitoring with heated distributed temperature sensingc", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.10615" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84949658565" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1088/1748-9326/11/5/054023", "name": "Urban heat island impacts on plant phenology: Intra-urban variability and response to land cover", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1088/1748-9326/11/5/054023" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85014427917" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.5751/es-07433-200210", "name": "Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.5751/es-07433-200210" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84934783681" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/2015wr017522", "name": "Untangling the effects of shallow groundwater and soil texture as drivers of subfield-scale yield variability", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/2015wr017522" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84941996912" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2136/vzj2015.03.0037", "name": "Visualizing large data sets: Spatial and temporal soil moisture regime dynamics", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84947093042" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2136/vzj2015.03.0037" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10021-014-9775-3", "name": "Hydrologic Regimes Revealed Bundles and Tradeoffs Among Six Wetland Services", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84906085266" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10021-014-9775-3" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2014.01.019", "name": "Influence of groundwater on plant water use and productivity: Development of an integrated ecosystem - Variably saturated soil water flow model", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2014.01.019" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84894319200" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/jawr.12155", "name": "Instream Restoration to Improve the Ecohydrologic Function of a Subalpine Meadow: Pre-implementation Modeling with HEC-RAS", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84905405618" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/jawr.12155" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.9909", "name": "Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmelt-dominated upper Tuolumne Basin, Sierra Nevada", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.9909" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84901843824" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.advwatres.2014.08.013", "name": "Root water compensation sustains transpiration rates in an Australian woodland", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84907697365" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.advwatres.2014.08.013" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agrformet.2014.06.009", "name": "Using evapotranspiration to assess drought sensitivity on a subfield scale with HRMET, a high resolution surface energy balance model", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agrformet.2014.06.009" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84903768443" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/grl.50620", "name": "Dynamic ice formation in channels as a driver for stream-aquifer interactions", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/grl.50620" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84880026874" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/eco.250", "name": "Comparing surface effective saturation and depth-to-water-level as predictors of plant composition in a restored riparian wetland", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/eco.250" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84860360636" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1745-6584.2012.00928.x", "name": "Heated Distributed Temperature Sensing for Field Scale Soil Moisture Monitoring", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1745-6584.2012.00928.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84860363687" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2011jg001831", "name": "Hydroecological model predictions indicate wetter and more diverse soil water regimes and vegetation types following floodplain restoration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011jg001831" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84860377991" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2011rg000383", "name": "Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011rg000383" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84864746114" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2011wr010964", "name": "On evapotranspiration and shallow groundwater fluctuations: A Fourier-based improvement to the White method", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84862224770" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2011wr010964" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1752-1688.2012.00673.x", "name": "Sensitivity of Thermal Habitat of a Trout Stream to Potential Climate Change, Wisconsin, United States", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1752-1688.2012.00673.x" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84870478675" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.geomorph.2010.04.016", "name": "Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater-dependent ecosystems", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79551694207" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.geomorph.2010.04.016" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2010wr010086", "name": "Groundwater controls on vegetation composition and patterning in mountain meadows", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010wr010086" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-80053362826" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2010wr010050", "name": "How evaporative water losses vary between wet and dry water years as a function of elevation in the Sierra Nevada, California, and critical factors for modeling", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2010wr010050" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79958030357" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/09500693.2010.490570", "name": "Linking physical and numerical modelling in hydrogeology using sand tank experiments and COMSOL multiphysics", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-79952398751" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/09500693.2010.490570" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.7707", "name": "Effects of evapotranspiration partitioning, plant water stress response and topsoil removal on the soil moisture regime of a floodplain wetland: Implications for restoration", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.7707" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954413016" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2009wr008874", "name": "Groundwater-dependent vegetation: Quantifying the groundwater subsidy", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77954389914" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2009wr008874" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1002/hyp.7714", "name": "Linking snowmelt-derived fluxes and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-78149455648" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1002/hyp.7714" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10040-010-0635-8", "name": "Reply to comment on \"A framework for understanding the hydroecology of impacted wet meadows in the Sierra Nevada and Cascade Ranges, California, USA\": Paper published in Hydrogeology Journal (2009) 17:229-246, by Steven P. Loheide II, Richard S. Deitchman, David J. Cooper, Evan C. Wolf, Christopher T. Hammersmark, Jessica D. Lundquist", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10040-010-0635-8" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-77958480069" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s10040-008-0380-4", "name": "A framework for understanding the hydroecology of impacted wet meadows in the Sierra Nevada and Cascade Ranges, California, USA", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-59549087724" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s10040-008-0380-4" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1111/j.1745-6584.2009.00584.x", "name": "COMSOL multiphysics: A novel approach to ground water modeling", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-68249118882" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1111/j.1745-6584.2009.00584.x" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2009gl038103", "name": "Ground-based thermal imaging of groundwater flow processes at the seepage face", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2009gl038103" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-70349591567" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3368/er.27.2.136", "name": "Postsettlement alluvium removal: A novel floodplain restoration technique (Wisconsin)", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-67650114930" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3368/er.27.2.136" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2008wr007329", "name": "Snowmelt-induced diel fluxes through the hyporheic zone", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2008wr007329" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-69249088085" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2005wr004627", "name": "A field investigation of phreatophyte-induced fluctuations in the water table", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2005wr004627" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33947733072" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2006wr005233", "name": "Riparian hydroecology: A coupled model of the observed interactions between groundwater flow and meadow vegetation patterning", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2006wr005233" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-36649002042" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1021/es0522074", "name": "Quantifying stream-aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1021/es0522074" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-33646798429" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.rse.2005.07.003", "name": "A local-scale, high-resolution evapotranspiration mapping algorithm (ETMA) with hydroecological applications at riparian meadow restoration sites", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.rse.2005.07.003" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-25844448696" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1029/2005wr003942", "name": "Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1029/2005wr003942" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-23944512746" } ] }, { "@type": "CreativeWork", "name": "Noise in pressure transducer readings produced by variations in solar radiation", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-7944222319" } }, { "@type": "CreativeWork", "name": "Hydraulic tests with direct-push equipment", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-0036007175" } } ] }, "identifier": [ { "@type": "PropertyValue", "propertyID": "ResearcherID", "value": "L-3132-2015" }, { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "6603611442" } ] }
}