Item talk:Q140356: Difference between revisions
From geokb
(Created page with "{ "OpenAlex": { "id": "https://openalex.org/A5014096050", "orcid": "https://orcid.org/0000-0001-8060-9841", "display_name": "Pardhasaradhi Teluguntla", "display_name_alternatives": [ "Pardhasaradhi Teluguntla", "P. Teluguntla", "Pardhasaradhi Gangadhara Rao", "Pardharsadhi Teluguntla", "Pardhasaradhi G. Teluguntla" ], "works_count": 47, "cited_by_count": 1960, "summary_stats": { "2yr_mean_citedness": 5...") |
No edit summary |
||
Line 965: | Line 965: | ||
"id": "https://openalex.org/T10766", | "id": "https://openalex.org/T10766", | ||
"display_name": "Urban Heat Islands and Mitigation Strategies", | "display_name": "Urban Heat Islands and Mitigation Strategies", | ||
"value": 1e-05, | "value": "1e-05", | ||
"subfield": { | "subfield": { | ||
"id": "https://openalex.org/subfields/2305", | "id": "https://openalex.org/subfields/2305", | ||
Line 1,279: | Line 1,279: | ||
"created_date": "2023-07-21", | "created_date": "2023-07-21", | ||
"_id": "https://openalex.org/A5014096050" | "_id": "https://openalex.org/A5014096050" | ||
}, | |||
"ORCID": { | |||
"@context": "http://schema.org", | |||
"@type": "Person", | |||
"@id": "https://orcid.org/0000-0001-8060-9841", | |||
"mainEntityOfPage": "https://orcid.org/0000-0001-8060-9841", | |||
"givenName": "Pardhasaradhi", | |||
"familyName": "Teluguntla", | |||
"affiliation": { | |||
"@type": "Organization", | |||
"@id": "grid.426886.6", | |||
"name": "Bay Area Environmental Research Institute" | |||
}, | |||
"@reverse": { | |||
"creator": [ | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs15194894", | |||
"name": "Crop Water Productivity from Cloud-Based Landsat Helps Assess California\u2019s Water Savings", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs15194894" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Global Cropland-Extent Product at 30-m Resolution (GCEP30) Derived from Landsat Satellite Time-Series Data for the Year 2015 Using Multiple Machine-Learning Algorithms on Google Earth Engine Cloud" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Hyperspectral Narrowband Data Propel Gigantic Leap in the Earth Remote Sensing" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Impact of flooded rice paddy on remotely sensed evapotranspiration in the Krishna River basin, India" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17538947.2019.1651912", | |||
"name": "A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85071647372" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17538947.2019.1651912" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/15481603.2019.1690780", | |||
"name": "Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85075351890" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/15481603.2019.1690780" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.isprsjprs.2018.07.017", | |||
"name": "A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85051136400" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.isprsjprs.2018.07.017" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/15481603.2018.1482855", | |||
"name": "Mapping cropland fallow areas in myanmar to scale up sustainable intensification of pulse crops in the farming system", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85048044474" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/15481603.2018.1482855" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.isprsjprs.2017.01.019", | |||
"name": "Automated cropland mapping of continental Africa using Google Earth Engine cloud computing", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.isprsjprs.2017.01.019" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85014705870" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs9101065", | |||
"name": "Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs9101065" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85032864011" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17538947.2016.1267269", | |||
"name": "Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000\u20132015) data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17538947.2016.1267269" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85008422868" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1080/17538947.2016.1168489", | |||
"name": "Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250\u2005m time-series data", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84965031268" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1080/17538947.2016.1168489" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Global food security support analysis data at nominal 1 km (GFSAD1km) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85051140400" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1109/ictsd.2015.7095869", | |||
"name": "Hot spot analysis using NDVI data for impact assessment of watershed development", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84931033860" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1109/ictsd.2015.7095869" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Hyperspectral remote sensing for terrestrial applications", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84971639839" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Inland valley wetland cultivation and preservation for africa\u2019s green and blue revolution using multisensor remote sensing", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-85054268718" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3390/rs70708858", | |||
"name": "Mapping flooded rice paddies using time series of MODIS imagery in the Krishna River Basin, India", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3390/rs70708858" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84937899618" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "HYPERSPECTRAL REMOTE SENSING OF VEGETATION AND AGRICULTURAL CROPS" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1007/s11269-014-0567-5", | |||
"name": "Relating Trends in Streamflow to Anthropogenic Influences: A Case Study of Himayat Sagar Catchment, India", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1007/s11269-014-0567-5" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84897573872" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.2136/vzj2012.0118", | |||
"name": "Multidecadal trend of basin-scale evapotranspiration estimated using AVHRR data in the Krishna River Basin, India", | |||
"identifier": [ | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84881567310" | |||
}, | |||
{ | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.2136/vzj2012.0118" | |||
} | |||
] | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Changes in agricultural cropland areas between a water-surplus year and a water-deficit year impacting food security, determined using MODIS 250 m time-series data and spectral matching techniques, in the Krishna River basin (India)" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Analysis of spectral measurements in paddy rice field: Implications for land use classification", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84858853823" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Impact of spatial scale on remotely sensed evapotranspiration estimates from heterogeneous land surfaces", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "eid", | |||
"value": "2-s2.0-84863418522" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1016/j.agwat.2010.01.027", | |||
"name": "Mapping agricultural responses to water supply shocks in large irrigation systems, southern India", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1016/j.agwat.2010.01.027" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.1061/(asce)ir.1943-4774.0000225", | |||
"name": "Farmers\u2019 Adaptation and Regional Land-Use Changes in Irrigation Systems under Fluctuating Water Supply, South India", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.1061/(asce)ir.1943-4774.0000225" | |||
} | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Water Scarcity Effects on Equitable Water Distribution and Land Use in a Major Irrigation Project\u2014Case Study in India" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Spectral matching techniques to determine historical land-use/land-cover (LULC) and irrigated areas using time-series 0.1-degree AVHRR Pathfinder datasets" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"name": "Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India" | |||
}, | |||
{ | |||
"@type": "CreativeWork", | |||
"@id": "https://doi.org/10.3910/2009.111", | |||
"name": "Closing of the Krishna Basin: Irrigation, Streamflow Depletion and Macroscale Hydrology.", | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "doi", | |||
"value": "10.3910/2009.111" | |||
} | |||
} | |||
] | |||
}, | |||
"identifier": { | |||
"@type": "PropertyValue", | |||
"propertyID": "Scopus Author ID", | |||
"value": "55135808700" | |||
} | |||
} | } | ||
} | } |
Latest revision as of 20:41, 30 August 2024
{
"OpenAlex": { "id": "https://openalex.org/A5014096050", "orcid": "https://orcid.org/0000-0001-8060-9841", "display_name": "Pardhasaradhi Teluguntla", "display_name_alternatives": [ "Pardhasaradhi Teluguntla", "P. Teluguntla", "Pardhasaradhi Gangadhara Rao", "Pardharsadhi Teluguntla", "Pardhasaradhi G. Teluguntla" ], "works_count": 47, "cited_by_count": 1960, "summary_stats": { "2yr_mean_citedness": 5.0, "h_index": 15, "i10_index": 17 }, "ids": { "openalex": "https://openalex.org/A5014096050", "orcid": "https://orcid.org/0000-0001-8060-9841", "scopus": "http://www.scopus.com/inward/authorDetails.url?authorID=55135808700&partnerID=MN8TOARS" }, "affiliations": [ { "institution": { "id": "https://openalex.org/I1286329397", "ror": "https://ror.org/035a68863", "display_name": "United States Geological Survey", "country_code": "US", "type": "government", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249" ] }, "years": [ 2024, 2023, 2022, 2021, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I2800713631", "ror": "https://ror.org/04hccab49", "display_name": "NASA Research Park", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1280536761", "https://openalex.org/I2800713631", "https://openalex.org/I4210124779" ] }, "years": [ 2024, 2023, 2019, 2018 ] }, { "institution": { "id": "https://openalex.org/I4210109616", "ror": "https://ror.org/024tt5x58", "display_name": "Bay Area Environmental Research Institute", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210109616" ] }, "years": [ 2024, 2023, 2022, 2019, 2018, 2017 ] }, { "institution": { "id": "https://openalex.org/I1280536761", "ror": "https://ror.org/02acart68", "display_name": "Ames Research Center", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1280536761", "https://openalex.org/I4210124779" ] }, "years": [ 2024, 2023 ] }, { "institution": { "id": "https://openalex.org/I4210111045", "ror": "https://ror.org/02623eb90", "display_name": "Astrogeology Science Center", "country_code": "US", "type": "facility", "lineage": [ "https://openalex.org/I1286329397", "https://openalex.org/I1335927249", "https://openalex.org/I4210111045" ] }, "years": [ 2023, 2021, 2019, 2018, 2017, 2016, 2015 ] }, { "institution": { "id": "https://openalex.org/I165779595", "ror": "https://ror.org/01ej9dk98", "display_name": "University of Melbourne", "country_code": "AU", "type": "education", "lineage": [ "https://openalex.org/I165779595" ] }, "years": [ 2020, 2015, 2014, 2013, 2012, 2011, 2010 ] }, { "institution": { "id": "https://openalex.org/I4210163774", "ror": "https://ror.org/0541a3n79", "display_name": "International Crops Research Institute for the Semi-Arid Tropics", "country_code": "IN", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210163774" ] }, "years": [ 2010 ] } ], "last_known_institutions": [ { "id": "https://openalex.org/I4210109616", "ror": "https://ror.org/024tt5x58", "display_name": "Bay Area Environmental Research Institute", "country_code": "US", "type": "nonprofit", "lineage": [ "https://openalex.org/I4210109616" ] } ], "topics": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "count": 27, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "count": 9, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13890", "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "count": 9, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "count": 6, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13058", "display_name": "Land-Use Suitability Assessment Using GIS", "count": 5, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12045", "display_name": "Rice Water Management and Productivity Enhancement", "count": 5, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10439", "display_name": "Adaptation to Climate Change in Agriculture", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11276", "display_name": "Machine Learning Methods for Solar Radiation Forecasting", "count": 4, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10969", "display_name": "Optimal Operation of Water Resources Systems", "count": 4, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10616", "display_name": "Precision Agriculture Technologies", "count": 3, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10689", "display_name": "Hyperspectral Image Analysis and Classification", "count": 3, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11490", "display_name": "Hydrological Modeling using Machine Learning Methods", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12467", "display_name": "Rangeland Degradation and Pastoral Livelihoods", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12120", "display_name": "Low-Cost Air Quality Monitoring Systems", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11588", "display_name": "Global Methane Emissions and Impacts", "count": 2, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12486", "display_name": "Traceability in Food Supply Chain Management", "count": 1, "subfield": { "id": "https://openalex.org/subfields/1106", "display_name": "Food Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T13490", "display_name": "Ecological Dynamics of African Great Lakes", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13540", "display_name": "Compositional and Nutritional Aspects of Camel Milk", "count": 1, "subfield": { "id": "https://openalex.org/subfields/1106", "display_name": "Food Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12724", "display_name": "Integrated Management of Water, Energy, and Food Resources", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10766", "display_name": "Urban Heat Islands and Mitigation Strategies", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12729", "display_name": "Mechanical Effects of Plant Roots on Slope Stability", "count": 1, "subfield": { "id": "https://openalex.org/subfields/2210", "display_name": "Mechanical Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "topic_share": [ { "id": "https://openalex.org/T10111", "display_name": "Remote Sensing in Vegetation Monitoring and Phenology", "value": 0.0001893, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13058", "display_name": "Land-Use Suitability Assessment Using GIS", "value": 8.34e-05, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10439", "display_name": "Adaptation to Climate Change in Agriculture", "value": 6.48e-05, "subfield": { "id": "https://openalex.org/subfields/1105", "display_name": "Ecology, Evolution, Behavior and Systematics" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10226", "display_name": "Global Analysis of Ecosystem Services and Land Use", "value": 4.55e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10770", "display_name": "Digital Soil Mapping Techniques", "value": 3.99e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11276", "display_name": "Machine Learning Methods for Solar Radiation Forecasting", "value": 3.61e-05, "subfield": { "id": "https://openalex.org/subfields/1702", "display_name": "Artificial Intelligence" }, "field": { "id": "https://openalex.org/fields/17", "display_name": "Computer Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10616", "display_name": "Precision Agriculture Technologies", "value": 3.52e-05, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12045", "display_name": "Rice Water Management and Productivity Enhancement", "value": 3.26e-05, "subfield": { "id": "https://openalex.org/subfields/1110", "display_name": "Plant Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T13890", "display_name": "Applications of Remote Sensing in Geoscience and Agriculture", "value": 3.15e-05, "subfield": { "id": "https://openalex.org/subfields/1902", "display_name": "Atmospheric Science" }, "field": { "id": "https://openalex.org/fields/19", "display_name": "Earth and Planetary Sciences" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10266", "display_name": "Global Forest Drought Response and Climate Change", "value": 2.99e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11490", "display_name": "Hydrological Modeling using Machine Learning Methods", "value": 2.92e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10689", "display_name": "Hyperspectral Image Analysis and Classification", "value": 2.55e-05, "subfield": { "id": "https://openalex.org/subfields/2214", "display_name": "Media Technology" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12486", "display_name": "Traceability in Food Supply Chain Management", "value": 2.36e-05, "subfield": { "id": "https://openalex.org/subfields/1106", "display_name": "Food Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T10969", "display_name": "Optimal Operation of Water Resources Systems", "value": 2.18e-05, "subfield": { "id": "https://openalex.org/subfields/2212", "display_name": "Ocean Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13490", "display_name": "Ecological Dynamics of African Great Lakes", "value": 2.13e-05, "subfield": { "id": "https://openalex.org/subfields/2303", "display_name": "Ecology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10330", "display_name": "Hydrological Modeling and Water Resource Management", "value": 1.86e-05, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12467", "display_name": "Rangeland Degradation and Pastoral Livelihoods", "value": 1.27e-05, "subfield": { "id": "https://openalex.org/subfields/2308", "display_name": "Management, Monitoring, Policy and Law" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T13540", "display_name": "Compositional and Nutritional Aspects of Camel Milk", "value": 1.26e-05, "subfield": { "id": "https://openalex.org/subfields/1106", "display_name": "Food Science" }, "field": { "id": "https://openalex.org/fields/11", "display_name": "Agricultural and Biological Sciences" }, "domain": { "id": "https://openalex.org/domains/1", "display_name": "Life Sciences" } }, { "id": "https://openalex.org/T12120", "display_name": "Low-Cost Air Quality Monitoring Systems", "value": 1.23e-05, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12724", "display_name": "Integrated Management of Water, Energy, and Food Resources", "value": 1.02e-05, "subfield": { "id": "https://openalex.org/subfields/2312", "display_name": "Water Science and Technology" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10930", "display_name": "Global Flood Risk Assessment and Management", "value": 1.02e-05, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T10766", "display_name": "Urban Heat Islands and Mitigation Strategies", "value": "1e-05", "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11186", "display_name": "Global Drought Monitoring and Assessment", "value": 9.8e-06, "subfield": { "id": "https://openalex.org/subfields/2306", "display_name": "Global and Planetary Change" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T12729", "display_name": "Mechanical Effects of Plant Roots on Slope Stability", "value": 9.8e-06, "subfield": { "id": "https://openalex.org/subfields/2210", "display_name": "Mechanical Engineering" }, "field": { "id": "https://openalex.org/fields/22", "display_name": "Engineering" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } }, { "id": "https://openalex.org/T11312", "display_name": "Remote Sensing of Soil Moisture", "value": 9.8e-06, "subfield": { "id": "https://openalex.org/subfields/2305", "display_name": "Environmental Engineering" }, "field": { "id": "https://openalex.org/fields/23", "display_name": "Environmental Science" }, "domain": { "id": "https://openalex.org/domains/3", "display_name": "Physical Sciences" } } ], "x_concepts": [ { "id": "https://openalex.org/C205649164", "wikidata": "https://www.wikidata.org/wiki/Q1071", "display_name": "Geography", "level": 0, "score": 97.9 }, { "id": "https://openalex.org/C86803240", "wikidata": "https://www.wikidata.org/wiki/Q420", "display_name": "Biology", "level": 0, "score": 85.1 }, { "id": "https://openalex.org/C127313418", "wikidata": "https://www.wikidata.org/wiki/Q1069", "display_name": "Geology", "level": 0, "score": 85.1 }, { "id": "https://openalex.org/C18903297", "wikidata": "https://www.wikidata.org/wiki/Q7150", "display_name": "Ecology", "level": 1, "score": 80.9 }, { "id": "https://openalex.org/C39432304", "wikidata": "https://www.wikidata.org/wiki/Q188847", "display_name": "Environmental science", "level": 0, "score": 78.7 }, { "id": "https://openalex.org/C62649853", "wikidata": "https://www.wikidata.org/wiki/Q199687", "display_name": "Remote sensing", "level": 1, "score": 63.8 }, { "id": "https://openalex.org/C95457728", "wikidata": "https://www.wikidata.org/wiki/Q309", "display_name": "History", "level": 0, "score": 63.8 }, { "id": "https://openalex.org/C166957645", "wikidata": "https://www.wikidata.org/wiki/Q23498", "display_name": "Archaeology", "level": 1, "score": 63.8 }, { "id": "https://openalex.org/C127413603", "wikidata": "https://www.wikidata.org/wiki/Q11023", "display_name": "Engineering", "level": 0, "score": 61.7 }, { "id": "https://openalex.org/C118518473", "wikidata": "https://www.wikidata.org/wiki/Q11451", "display_name": "Agriculture", "level": 2, "score": 59.6 }, { "id": "https://openalex.org/C121332964", "wikidata": "https://www.wikidata.org/wiki/Q413", "display_name": "Physics", "level": 0, "score": 59.6 }, { "id": "https://openalex.org/C41008148", "wikidata": "https://www.wikidata.org/wiki/Q21198", "display_name": "Computer science", "level": 0, "score": 53.2 }, { "id": "https://openalex.org/C1276947", "wikidata": "https://www.wikidata.org/wiki/Q333", "display_name": "Astronomy", "level": 1, "score": 44.7 }, { "id": "https://openalex.org/C6557445", "wikidata": "https://www.wikidata.org/wiki/Q173113", "display_name": "Agronomy", "level": 1, "score": 42.6 }, { "id": "https://openalex.org/C19269812", "wikidata": "https://www.wikidata.org/wiki/Q26540", "display_name": "Satellite", "level": 2, "score": 40.4 }, { "id": "https://openalex.org/C33923547", "wikidata": "https://www.wikidata.org/wiki/Q395", "display_name": "Mathematics", "level": 0, "score": 40.4 }, { "id": "https://openalex.org/C146978453", "wikidata": "https://www.wikidata.org/wiki/Q3798668", "display_name": "Aerospace engineering", "level": 1, "score": 40.4 }, { "id": "https://openalex.org/C58640448", "wikidata": "https://www.wikidata.org/wiki/Q42515", "display_name": "Cartography", "level": 1, "score": 34.0 }, { "id": "https://openalex.org/C111368507", "wikidata": "https://www.wikidata.org/wiki/Q43518", "display_name": "Oceanography", "level": 1, "score": 34.0 }, { "id": "https://openalex.org/C59822182", "wikidata": "https://www.wikidata.org/wiki/Q441", "display_name": "Botany", "level": 1, "score": 31.9 }, { "id": "https://openalex.org/C549605437", "wikidata": "https://www.wikidata.org/wiki/Q1229911", "display_name": "Food security", "level": 3, "score": 31.9 }, { "id": "https://openalex.org/C71924100", "wikidata": "https://www.wikidata.org/wiki/Q11190", "display_name": "Medicine", "level": 0, "score": 29.8 }, { "id": "https://openalex.org/C97137747", "wikidata": "https://www.wikidata.org/wiki/Q38112", "display_name": "Forestry", "level": 1, "score": 25.5 }, { "id": "https://openalex.org/C132651083", "wikidata": "https://www.wikidata.org/wiki/Q7942", "display_name": "Climate change", "level": 2, "score": 25.5 }, { "id": "https://openalex.org/C1549246", "wikidata": "https://www.wikidata.org/wiki/Q718775", "display_name": "Normalized Difference Vegetation Index", "level": 3, "score": 21.3 } ], "counts_by_year": [ { "year": 2024, "works_count": 4, "cited_by_count": 671 }, { "year": 2023, "works_count": 1, "cited_by_count": 1067 }, { "year": 2022, "works_count": 5, "cited_by_count": 1075 }, { "year": 2021, "works_count": 3, "cited_by_count": 1088 }, { "year": 2020, "works_count": 1, "cited_by_count": 865 }, { "year": 2019, "works_count": 5, "cited_by_count": 471 }, { "year": 2018, "works_count": 3, "cited_by_count": 244 }, { "year": 2017, "works_count": 11, "cited_by_count": 70 }, { "year": 2016, "works_count": 3, "cited_by_count": 12 }, { "year": 2015, "works_count": 6, "cited_by_count": 11 }, { "year": 2014, "works_count": 1, "cited_by_count": 4 }, { "year": 2013, "works_count": 1, "cited_by_count": 4 }, { "year": 2012, "works_count": 1, "cited_by_count": 5 } ], "works_api_url": "https://api.openalex.org/works?filter=author.id:A5014096050", "updated_date": "2024-08-22T01:16:13.716919", "created_date": "2023-07-21", "_id": "https://openalex.org/A5014096050" }, "ORCID": { "@context": "http://schema.org", "@type": "Person", "@id": "https://orcid.org/0000-0001-8060-9841", "mainEntityOfPage": "https://orcid.org/0000-0001-8060-9841", "givenName": "Pardhasaradhi", "familyName": "Teluguntla", "affiliation": { "@type": "Organization", "@id": "grid.426886.6", "name": "Bay Area Environmental Research Institute" }, "@reverse": { "creator": [ { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs15194894", "name": "Crop Water Productivity from Cloud-Based Landsat Helps Assess California\u2019s Water Savings", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs15194894" } }, { "@type": "CreativeWork", "name": "Global Cropland-Extent Product at 30-m Resolution (GCEP30) Derived from Landsat Satellite Time-Series Data for the Year 2015 Using Multiple Machine-Learning Algorithms on Google Earth Engine Cloud" }, { "@type": "CreativeWork", "name": "Hyperspectral Narrowband Data Propel Gigantic Leap in the Earth Remote Sensing" }, { "@type": "CreativeWork", "name": "Impact of flooded rice paddy on remotely sensed evapotranspiration in the Krishna River basin, India" }, { "@type": "CreativeWork", "name": "Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/17538947.2019.1651912", "name": "A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85071647372" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/17538947.2019.1651912" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/15481603.2019.1690780", "name": "Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85075351890" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/15481603.2019.1690780" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.isprsjprs.2018.07.017", "name": "A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85051136400" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.isprsjprs.2018.07.017" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/15481603.2018.1482855", "name": "Mapping cropland fallow areas in myanmar to scale up sustainable intensification of pulse crops in the farming system", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85048044474" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/15481603.2018.1482855" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.isprsjprs.2017.01.019", "name": "Automated cropland mapping of continental Africa using Google Earth Engine cloud computing", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.isprsjprs.2017.01.019" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85014705870" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs9101065", "name": "Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs9101065" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85032864011" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/17538947.2016.1267269", "name": "Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000\u20132015) data", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/17538947.2016.1267269" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85008422868" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1080/17538947.2016.1168489", "name": "Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250\u2005m time-series data", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84965031268" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1080/17538947.2016.1168489" } ] }, { "@type": "CreativeWork", "name": "Global food security support analysis data at nominal 1 km (GFSAD1km) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85051140400" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1109/ictsd.2015.7095869", "name": "Hot spot analysis using NDVI data for impact assessment of watershed development", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84931033860" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1109/ictsd.2015.7095869" } ] }, { "@type": "CreativeWork", "name": "Hyperspectral remote sensing for terrestrial applications", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84971639839" } }, { "@type": "CreativeWork", "name": "Inland valley wetland cultivation and preservation for africa\u2019s green and blue revolution using multisensor remote sensing", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-85054268718" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3390/rs70708858", "name": "Mapping flooded rice paddies using time series of MODIS imagery in the Krishna River Basin, India", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3390/rs70708858" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84937899618" } ] }, { "@type": "CreativeWork", "name": "HYPERSPECTRAL REMOTE SENSING OF VEGETATION AND AGRICULTURAL CROPS" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1007/s11269-014-0567-5", "name": "Relating Trends in Streamflow to Anthropogenic Influences: A Case Study of Himayat Sagar Catchment, India", "identifier": [ { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1007/s11269-014-0567-5" }, { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84897573872" } ] }, { "@type": "CreativeWork", "@id": "https://doi.org/10.2136/vzj2012.0118", "name": "Multidecadal trend of basin-scale evapotranspiration estimated using AVHRR data in the Krishna River Basin, India", "identifier": [ { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84881567310" }, { "@type": "PropertyValue", "propertyID": "doi", "value": "10.2136/vzj2012.0118" } ] }, { "@type": "CreativeWork", "name": "Changes in agricultural cropland areas between a water-surplus year and a water-deficit year impacting food security, determined using MODIS 250 m time-series data and spectral matching techniques, in the Krishna River basin (India)" }, { "@type": "CreativeWork", "name": "Analysis of spectral measurements in paddy rice field: Implications for land use classification", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84858853823" } }, { "@type": "CreativeWork", "name": "Impact of spatial scale on remotely sensed evapotranspiration estimates from heterogeneous land surfaces", "identifier": { "@type": "PropertyValue", "propertyID": "eid", "value": "2-s2.0-84863418522" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1016/j.agwat.2010.01.027", "name": "Mapping agricultural responses to water supply shocks in large irrigation systems, southern India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1016/j.agwat.2010.01.027" } }, { "@type": "CreativeWork", "@id": "https://doi.org/10.1061/(asce)ir.1943-4774.0000225", "name": "Farmers\u2019 Adaptation and Regional Land-Use Changes in Irrigation Systems under Fluctuating Water Supply, South India", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.1061/(asce)ir.1943-4774.0000225" } }, { "@type": "CreativeWork", "name": "Water Scarcity Effects on Equitable Water Distribution and Land Use in a Major Irrigation Project\u2014Case Study in India" }, { "@type": "CreativeWork", "name": "Spectral matching techniques to determine historical land-use/land-cover (LULC) and irrigated areas using time-series 0.1-degree AVHRR Pathfinder datasets" }, { "@type": "CreativeWork", "name": "Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India" }, { "@type": "CreativeWork", "@id": "https://doi.org/10.3910/2009.111", "name": "Closing of the Krishna Basin: Irrigation, Streamflow Depletion and Macroscale Hydrology.", "identifier": { "@type": "PropertyValue", "propertyID": "doi", "value": "10.3910/2009.111" } } ] }, "identifier": { "@type": "PropertyValue", "propertyID": "Scopus Author ID", "value": "55135808700" } }
}